金黄色葡萄球菌病防治研究进展
作者:
基金项目:

国家自然科学基金(32102684);国家生猪技术创新中心项目(NCTIP-XDIC17);重庆市生猪产业技术体系(20211105);重庆市高校创新研究群体(CXQT20004)


Research progress in prevention and treatment of Staphylococcus aureus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    金黄色葡萄球菌(Staphylococcus aureus, SA)被认为是最常见的食源性致病菌之一,引起人畜的感染性疾病,导致皮肤、软组织和血液感染,引发脓毒症和中毒性休克综合征。随着抗生素的滥用,金黄色葡萄球菌的耐药性逐渐增强,导致耐甲氧西林金黄色葡萄球菌(methicillin resistant Staphylococcus aureus, MRSA)的出现,并且在全球范围内散播,严重危害公共卫生安全。目前亟需有效控制SA感染的新疗法,因此本文对金黄色葡萄球菌防治技术的研究进展进行综述,并对其防治前景进行了分析,以期对金黄色葡萄球菌尤其是MRSA的控制提供理论指导。

    Abstract:

    Staphylococcus aureus is considered as one of the most common foodborne pathogens causing infectious diseases in human and animals results in skin, soft tissue, and blood the infections, leading to sepsis and toxic shock syndrome. The overuse of antibiotics improves antibiotic resistance of S. aureus, leading to the emergence of methicillin-resistant S. aureus (MRSA), which has spread globally and seriously threatens the public health. Therefore, it is an urgent need to search for new therapies to effectively control S. aureus infection. This review focuses on the research progress in the prevention and treatment of S. aureus and makes an outlook on the controlling prospects, to provide theoretical guidance for the control of Staphylococcus aureus, especially MRSA.

    参考文献
    [1] LEE AS, de LENCASTRE H, GARAU J, KLUYTMANS J, MALHOTRA-KUMAR S, PESCHEL A, HARBARTH S. Methicillin-resistant Staphylococcus aureus[J]. Nature Reviews Disease Primers, 2018, 4:18033.
    [2] FOWLER VG, ALLEN KB, MOREIRA ED, MOUSTAFA M, ISGRO F, BOUCHER HW, COREY GR, CARMELI Y, BETTS R, HARTZEL JS, CHAN ISF, McNEELY TB, KARTSONIS NA, GURIS D, ONORATO MT, SMUGAR SS, DiNUBILE MJ, SOBANJO-TER MEULEN A. Effect of an investigational vaccine for preventing Staphylococcus aureus infections after cardiothoracic surgery:a randomized trial[J]. JAMA, 2013, 309(13):1368-1378.
    [3] CLEGG J, SOLDAINI E, McLOUGHLIN RM, RITTENHOUSE S, BAGNOLI F, PHOGAT S. Staphylococcus aureus vaccine research and development:the past, present and future, including novel therapeutic strategies[J]. Frontiers in Immunology, 2021, 12:705360.
    [4] ZENG H, YANG F, FENG Q, ZHANG JY, GU J, JING HM, CAI CZ, XU LM, YANG X, XIA X, ZENG N, FAN SW, ZOU QM. Rapid and broad immune efficacy of a recombinant five-antigen vaccine against Staphylococcus aureus infection in animal models[J]. Vaccines, 2020, 8(1):134.
    [5] YEAMAN MR, FILLER SG, CHAILI SY, BARR K, WANG HY, KUPFERWASSER D, HENNESSEY JP Jr, FU Y, SCHMIDT CS, EDWARDS JE Jr, XIONG YQ, IBRAHIM AS. Mechanisms of NDV-3 vaccine efficacy in MRSA skin versus invasive infection[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(51):E5555-E5563.
    [6] KARAUZUM H, VENKATASUBRAMANIAM A, ADHIKARI RP, KORT T, HOLTSBERG FW, MUKHERJEE I, MEDNIKOV M, ORTINES R, NGUYEN NTQ, DOAN TMN, DIEP BA, LEE JC, AMAN MJ. IBT-V02:a multicomponent toxoid vaccine protects against primary and secondary skin infections caused by Staphylococcus aureus[J]. Frontiers in Immunology, 2021, 12:624310.
    [7] PENG LC, JIANG JL, CHEN TT, XU DY, HOU FQ, HUANG QY, PENG YY, YE C, HU DL, FANG RD. Toxic shock syndrome toxin 1 induces immune response via the activation of NLRP3 inflammasome[J]. Toxins, 2021, 13(1):68.
    [8] HOU FQ, PENG LC, JIANG JL, CHEN TT, XU DY, HUANG QY, YE C, PENG YY, HU DL, FANG RD. ATP facilitates staphylococcal enterotoxin O induced neutrophil IL-1β secretion via NLRP3 inflammasome dependent pathways[J]. Frontiers in Immunology, 2021, 12:649235.
    [9] MOSCOSO M, GARCÍA P, CABRAL MP, RUMBO C, BOU G. A d-alanine auxotrophic live vaccine is effective against lethal infection caused by Staphylococcus aureus[J]. Virulence, 2018, 9(1):604-620.
    [10] STELLA GARCIA-ROMO G, GONZALEZ-IBARRA M, DONIS-HERNANDEZ FR, ZENDEJAS-BUITRON VM, PEDROZA-GONZALEZ A. Immunization with heat-inactivated Staphylococcus aureus induced an antibody response mediated by IgG1 and IgG2 in patients with recurrent tonsillitis[J]. Microbiology and Immunology, 2015, 59(4):193-201.
    [11] WANG XG, THOMPSON CD, WEIDENMAIER C, LEE JC. Release of Staphylococcus aureus extracellular vesicles and their application as a vaccine platform[J]. Nature Communications, 2018, 9:1379.
    [12] CHOI SJ, KIM MH, JEON J, KIM OY, CHOI Y, SEO J, HONG SW, LEE WH, JEON SG, GHO YS, JEE YK, KIM YK. Active immunization with extracellular vesicles derived from Staphylococcus aureus effectively protects against staphylococcal lung infections, mainly via Th1 cell-mediated immunity[J]. PLoS One, 2015, 10(9):e0136021.
    [13] 唐丽, 靳英丽. 金黄色葡萄球菌预防及治疗研究进展[J]. 微生物学免疫学进展, 2022, 50(5):66-71. TANG L, JIN YL. New advances in prevention and treatment of Staphylococcus aureus infection[J]. Progress in Microbiology and Immunology, 2022, 50(5):66-71(in Chinese).
    [14] GHIMIRE A, SKELLY JD, SONG J. Micrococcal-nuclease-triggered on-demand release of vancomycin from intramedullary implant coating eradicates Staphylococcus aureus infection in mouse femoral canals[J]. ACS Central Science, 2019, 5(12):1929-1936.
    [15] YOSHITANI J, KABATA T, ARAKAWA H, KATO Y, NOJIMA T, HAYASHI K, TOKORO M, SUGIMOTO N, KAJINO Y, INOUE D, UEOKA K, YAMAMURO Y, TSUCHIYA H. Combinational therapy with antibiotics and antibiotic-loaded adipose-derived stem cells reduce abscess formation in implant-related infection in rats[J]. Scientific Reports, 2020, 10:11182.
    [16] ZHOU KX, LI C, CHEN DM, PAN YH, TAO YF, QU W, LIU ZL, WANG XF, XIE SY. A review on nanosystems as an effective approach against infections of Staphylococcus aureus[J]. International Journal of Nanomedicine, 2018, 13:7333-7347.
    [17] SANDE L, SANCHEZ M, MONTES J, WOLF AJ, MORGAN MA, OMRI A, LIU GY. Liposomal encapsulation of vancomycin improves killing of methicillin-resistant Staphylococcus aureus in a murine infection model[J]. Journal of Antimicrobial Chemotherapy, 2012, 67(9):2191-2194.
    [18] ESMAEILI F, HOSSEINI-NASR M, RAD- MALEKSHAHI M, SAMADI N, ATYABI F, DINARVAND R. Preparation and antibacterial activity evaluation of rifampicin-loaded poly lactide-co-glycolide nanoparticles[J]. Nanomedicine:Nanotechnology, Biology and Medicine, 2007, 3(2):161-167.
    [19] MOOKHERJEE N, ANDERSON MA, HAAGSMAN HP, DAVIDSON DJ. Antimicrobial host defence peptides:functions and clinical potential[J]. Nature Reviews Drug Discovery, 2020, 19(5):311-332.
    [20] LU Y, TIAN HL, CHEN RQ, LIU Q, JIA KX, HU DL, CHEN HW, YE C, PENG LC, FANG RD. Synergistic antimicrobial effect of antimicrobial peptides CATH-1, CATH-3, and PMAP-36 with erythromycin against bacterial pathogens[J]. Frontiers in Microbiology, 2022, 13:953720.
    [21] GE Y, MacDONALD DL, HOLROYD KJ, THORNSBERRY C, WEXLER H, ZASLOFF M. In vitro antibacterial properties of pexiganan, an analog of Magainin[J]. Antimicrobial Agents and Chemotherapy, 1999, 43(4):782-788.
    [22] MENSA B, HOWELL GL, SCOTT R, DeGRADO WF. Comparative mechanistic studies of brilacidin, daptomycin, and the antimicrobial peptide LL16[J]. Antimicrobial Agents and Chemotherapy, 2014, 58(9):5136-5145.
    [23] RASHKI S, SAFARDOUST-HOJAGHAN H, MIRZAEI H, ABDULSAHIB WK, MAHDI MA, SALAVATI-NIASARI M, KHALEDI A, KHORSHIDI A, MOUSAVI SGA. Delivery LL37 by chitosan nanoparticles for enhanced antibacterial and antibiofilm efficacy[J]. Carbohydrate Polymers, 2022, 291:119634.
    [24] ZHAO XH, KUIPERS OP. Synthesis of silver-nisin nanoparticles with low cytotoxicity as antimicrobials against biofilm-forming pathogens[J]. Colloids and Surfaces B:Biointerfaces, 2021, 206:111965.
    [25] 杜春雨, 王佳贺. 中药抑制金黄色葡萄球菌的研究进展[J]. 中国医药导报, 2018, 15(31):64-67. DU CY, WANG JH. New advance on inhibition of staphylococcus aureus infection by triditional Chinese medicine[J]. China Medical Herald, 2018, 15(31):64-67(in Chinese).
    [26] FRANÇOIS B, MERCIER E, GONZALEZ C, ASEHNOUNE K, NSEIR S, FIANCETTE M, DESACHY A, PLANTEFÈVE G, MEZIANI F, de LAME PA, LATERRE PF, STUDY GROUP FTM1. Safety and tolerability of a single administration of AR-301, a human monoclonal antibody, in ICU patients with severe pneumonia caused by Staphylococcus aureus:first-in-human trial[J]. Intensive Care Medicine, 2018, 44(11):1787-1796.
    [27] MAGYARICS Z, LESLIE F, BARTKO J, ROUHA H, LUPERCHIO S, SCHÖRGENHOFER C, SCHWAMEIS M, DERHASCHNIG U, LAGLER H, STIEBELLEHNER L, FIRBAS C, WEBER S, CAMPANARO E, JILMA B, NAGY E, STEVENS C. Randomized, double-blind, placebo-controlled, single-ascending-dose study of the penetration of a monoclonal antibody combination (ASN100) targeting Staphylococcus aureus cytotoxins in the lung epithelial lining fluid of healthy volunteers[J]. Antimicrobial Agents and Chemotherapy, 2019, 63(8):E0035-19.
    [28] HUYNH T, STECHER M, MCKINNON J, JUNG N, RUPP ME. Safety and tolerability of 514G3, a true human anti-protein A monoclonal antibody for the treatment of S. aureus bacteremia[J]. Open Forum Infectious Diseases, 2016, 3(suppl_1):1354.
    [29] LEHAR SM, PILLOW T, XU M, STABEN L, KAJIHARA KK, VANDLEN R, DePALATIS L, RAAB H, HAZENBOS WL, HIROSHI MORISAKI J, KIM J, PARK S, DARWISH M, LEE BC, HERNANDEZ H, LOYET KM, LUPARDUS P, FONG R, YAN DH, CHALOUNI C, et al. Novel antibody-antibiotic conjugate eliminates intracellular S. aureus[J]. Nature, 2015, 527(7578):323-328.
    [30] JUN SY, JANG IJ, YOON S, JANG K, YU KS, CHO JY, SEONG MW, JUNG GM, YOON SJ, KANG SH. Pharmacokinetics and tolerance of the phage endolysin-based candidate drug SAL200 after a single intravenous administration among healthy volunteers[J]. Antimicrobial Agents and Chemotherapy, 2017, 61(6):E02629-16.
    [31] FOWLER VG Jr, DAS AF, LIPKA-DIAMOND J, SCHUCH R, POMERANTZ R, JÁUREGUI-PEREDO L, BRESSLER A, EVANS D, MORAN GJ, RUPP ME, WISE R, COREY GR, ZERVOS M, DOUGLAS PS, CASSINO C. Exebacase for patients with Staphylococcus aureus bloodstream infection and endocarditis[J]. Journal of Clinical Investigation, 2020, 130(7):3750-3760.
    [32] CHENG MJ, ZHANG L, ZHANG H, LI XW, WANG YM, XIA FF, WANG B, CAI RP, GUO ZM, ZHANG YF, JI YL, SUN CJ, FENG X, LEI LC, YANG YJ, HAN WY, GU JM. An ointment consisting of the phage lysin LysGH15 and apigenin for decolonization of methicillin-resistant Staphylococcus aureus from skin wounds[J]. Viruses, 2018, 10(5):244.
    [33] SOUZA-TEIXEIRA CG, VOLPATO-SANITÁ P, DIAS-RIBEIRO AP, MENDONҪA-DIAS L, HABIB-JORGE J, CLÁUDIA-PAVARINA A. Antimicrobial photodynamic therapy effectiveness against susceptible and methicillin-resistant Staphylococcus aureus biofilms[J]. Photodiagnosis and Photodynamic Therapy, 2020, 30:101760.
    [34] GAO YR, MAI BJ, WANG A, LI M, WANG XB, ZHANG K, LIU QH, WEI SH, WANG P. Antimicrobial properties of a new type of photosensitizer derived from phthalocyanine against planktonic and biofilm forms of Staphylococcus aureus[J]. Photodiagnosis and Photodynamic Therapy, 2018, 21:316-326.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

田洪亮,徐刘溢,彭练慈,朱燕. 金黄色葡萄球菌病防治研究进展[J]. 微生物学报, 2023, 63(12): 4441-4450

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2023-04-13
  • 录用日期:2023-07-12
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码