肠道微生物群与药物相互作用的研究进展
作者:
基金项目:

国家重点研发计划(2022YFA1304104, 2021YFD1800600);国家自然科学基金(32172914);中央高校自主创新基金(2662022DKYJC005);湖北省自然科学基金(2021CFA016)


Advances in gut microbiota-drug interactions
Author:
  • ZHANG Yiyao

    ZHANG Yiyao

    National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Junhao

    WANG Junhao

    National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HAO Haihong

    HAO Haihong

    National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China;MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, Hubei, China;Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, Guangdong, China;College of Animal Science and Technology, Shihezi University, Shihezi 832000, Xinjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [127]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    药物的代谢是机体对药物处置过程的关键步骤,而肠道作为机体中重要的微生态系统,其在药物代谢方面的作用至关重要。肠道微生物群能够对各种药物等外源化合物进行生物转化、积累,并改变这些物质的活性和毒性,从而影响宿主机体对它们的反应。肠道微生物群与药物之间的相互作用相当复杂,亟待更多更加深入、全面的发掘和研究。近年来,随着人们对肠道微生物群代谢及其与药物互作关系,肠道菌-宿主共代谢认知的不断深化,越来越多的研究表明肠道微生物在药代动力学中扮演重要角色。本文通过调研、整理、归纳和总结国内外相关文献资料,对机体肠道微生物的分类、功能,几种常用药物对肠道微生物的影响以及肠道菌群对药物的代谢作用效果与几个主要的机制进行了梳理和综述,并讨论了微生物和药物之间的双向互作。有利于增进对微生物群影响药物疗效及其代谢途径和机制的了解,提高调控肠道微生物改善治疗的可能性,为指导临床合理用药、精准用药、个体化治疗、药物的评价和新药研发等提供科学参考。

    Abstract:

    Drug metabolism is a key step in the disposal of drugs, and the role of the gut as an important micro-ecosystem in the body is crucial in drug metabolism. The gut microbiota is capable of transforming and accumulating exogenous compounds (e.g., drugs) and modifying the activity and toxicity of these compounds, thereby influencing the host responses to the compounds. The interactions between gut microbiota and drugs are complex and need to be studied in detail. In recent years, the understanding of the metabolism of gut microbiota, gut microbiota-drug interactions, and the co-metabolism between gut microbiota and host are deepening, and increasing studies have shown that gut microorganisms play a crucial role in pharmacokinetics. By reviewing the relevant papers at home and abroad, we summarized the classification and functions of gut microorganisms, the effects of some commonly used drugs on gut microorganisms, and the metabolic effects and mechanisms of gut microbiota on drugs. In addition, we discussed the interactions between gut microbiota and drugs. The review helps to improve our understanding of the influences of gut microbiota on drug efficacy and the pathways and mechanisms of drug metabolism by gut microbiota, increase the possibility of modulating gut microbiota to improve treatment, and provide a reference for the rational and precise use of drugs, individualized treatment, and drug evaluation and development.

    参考文献
    [1] CANI PD. Human gut microbiome:hopes, threats and promises[J]. Gut, 2018, 67(9):1716-1725.
    [2] HADRICH D. Microbiome research is becoming the key to better understanding health and nutrition[J]. Frontiers in Genetics, 2018, 9:212.
    [3] JIN YP, DONG H, XIA LL, YANG Y, ZHU YQ, SHEN Y, ZHENG HJ, YAO CC, WANG Y, LU S. The diversity of gut microbiome is associated with favorable responses to anti-programmed death 1 immunotherapy in Chinese patients with NSCLC[J]. Journal of Thoracic Oncology:Official Publication of the International Association for the Study of Lung Cancer, 2019, 14(8):1378-1389.
    [4] GONG X, LI X, BO A, SHI RY, LI QY, LEI LJ, ZHANG L, LI MH. The interactions between gut microbiota and bioactive ingredients of traditional Chinese medicines:a review[J]. Pharmacological Research, 2020, 157:104824.
    [5] ALMEIDA A, MITCHELL AL, BOLAND M, FORSTER SC, GLOOR GB, TARKOWSKA A, LAWLEY TD, FINN RD. A new genomic blueprint of the human gut microbiota[J]. Nature, 2019, 568(7753):499-504.
    [6] GROCHOWSKA M, LASKUS T, RADKOWSKI M. Gut microbiota in neurological disorders[J]. Archivum Immunologiae et Therapiae Experimentalis, 2019, 67(6):375-383.
    [7] WANG ZZ, QIN X, HU DX, HUANG J, GUO ES, XIAO RR, LI WT, SUN CY, CHEN G. Akkermansia supplementation reverses the tumor-promoting effect of the fecal microbiota transplantation in ovarian cancer[J]. Cell Reports, 2022, 41(13):111890.
    [8] CANI PD, DEPOMMIER C, DERRIEN M, EVERARD A, de VOS WM. Akkermansia muciniphila:paradigm for next-generation beneficial microorganisms[J]. Nature Reviews Gastroenterology & Hepatology, 2022, 19(10):625-637.
    [9] BOLTE LA, VICH VILA A, IMHANN F, COLLIJ V, GACESA R, PETERS V, WIJMENGA C, KURILSHIKOV A, CAMPMANS-KUIJPERS MJE, FU JY, DIJKSTRA G, ZHERNAKOVA A, WEERSMA RK. Long-term dietary patterns are associated with pro-inflammatory and anti-inflammatory features of the gut microbiome[J]. Gut, 2021, 70(7):1287-1298.
    [10] HASHEM NM, GONZALEZ-BULNES A. The use of probiotics for management and improvement of reproductive eubiosis and function[J]. Nutrients, 2022, 14(4):902.
    [11] LIU M, XIE WJ, WAN XY, DENG T. Clostridium butyricum modulates gut microbiota and reduces colitis associated colon cancer in mice[J]. International Immunopharmacology, 2020, 88:106862.
    [12] CHOI Y, LICHTERMAN JN, COUGHLIN LA, POULIDES N, LI WL, del VALLE P, PALMER SN, GAN SH, KIM J, ZHAN XW, GAO YJ, EVERS BM, HOOPER LV, PASARE C, KOH AY. Immune checkpoint blockade induces gut microbiota translocation that augments extraintestinal antitumor immunity[J]. Science Immunology, 2023, 8(81):eabo2003.
    [13] CHEN SF, REN ZY, HUO YL, YANG WY, PENG LL, LV HH, NIE LG, WEI H, WAN CX. Targeting the gut microbiota to investigate the mechanism of Lactiplantibacillus plantarum 1201 in negating colitis aggravated by a high-salt diet[J]. Food Research International, 2022, 162:112010.
    [14] LIU LW, XIE Y, LI GQ, ZHANG T, SUI YH, ZHAO ZJ, ZHANG YY, YANG WB, GENG XL, XUE DB, CHEN H, WANG YW, LU TQ, SHANG LR, LI ZB, LI L, SUN B. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling[J]. British Journal of Pharmacology, 2023, 180(5):647-666.
    [15] LIN DF, SUN QY, LIU ZY, PAN JX, ZHU J, WANG SW, JIA SN, ZHENG MH, LI XK, GONG FH. Gut microbiota and bile acids partially mediate the improvement of fibroblast growth factor 21 on methionine-choline-deficient diet-induced non-alcoholic fatty liver disease mice[J]. Free Radical Biology & Medicine, 2023, 195:199-218.
    [16] SONG J, ZHOU B, KAN JT, LIU GY, ZHANG S, SI L, ZHANG XP, YANG X, MA JH, CHENG JR, YANG YD, LIU XB. Gut microbiota:linking nutrition and perinatal depression[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:932309.
    [17] MARTINEZ-GURYN K, HUBERT N, FRAZIER K, URLASS S, MUSCH MW, OJEDA P, PIERRE JF, MIYOSHI J, SONTAG TJ, CHAM CM, REARDON CA, LEONE V, CHANG EB. Small intestine microbiota regulate host digestive and absorptive adaptive responses to dietary lipids[J]. Cell Host & Microbe, 2018, 23(4):458-469.e5.
    [18] CHATTOPADHYAY I, DHAR R, PETHUSAMY K, SEETHY A, SRIVASTAVA T, SAH R, SHARMA J, KARMAKAR S. Exploring the role of gut microbiome in colon cancer[J]. Applied Biochemistry and Biotechnology, 2021, 193(6):1780-1799.
    [19] KIM DS, WOO JS, MIN HK, CHOI JW, MOON JH, PARK MJ, KWOK SK, PARK SH, CHO ML. Short-chain fatty acid butyrate induces IL-10-producing B cells by regulating circadian-clock-related genes to ameliorate Sjögren's syndrome[J]. Journal of Autoimmunity, 2021, 119:102611.
    [20] LIN LY, ZHANG KY, XIONG Q, ZHANG JL, CAI B, HUANG ZC, YANG B, WEI B, CHEN J, NIU Q. Gut microbiota in pre-clinical rheumatoid arthritis:from pathogenesis to preventing progression[J]. Journal of Autoimmunity, 2023. DOI:10.1016/j.jaut.2023. 103001.
    [21] LI Y, LUO ZY, HU YY, BI YW, YANG JM, ZOU WJ, SONG YL, LI S, SHEN T, LI SJ, HUANG L, ZHOU AJ, GAO TM, LI JM. The gut microbiota regulates autism-like behavior by mediating vitamin B6 homeostasis in EphB6-deficient mice[J]. Microbiome, 2020, 8(1):120.
    [22] CHEN LM, WANG DM, GARMAEVA S, KURILSHIKOV A, VILA AV, GACESA R, SINHA T, STUDY LC, SEGAL E, WEERSMA RK, WIJMENGA C, ZHERNAKOVA A, FU JY. The long-term genetic stability and individual specificity of the human gut microbiome[J]. Cell, 2021, 184(9):2302-2315.e12.
    [23] FALONY G, JOOSSENS M, VIEIRA-SILVA S, WANG J, DARZI Y, FAUST K, KURILSHIKOV A, BONDER MJ, VALLES-COLOMER M, VANDEPUTTE D, TITO RY, CHAFFRON S, RYMENANS L, VERSPECHT C, de SUTTER L, LIMA-MENDEZ G, D'HOE K, JONCKHEERE K, HOMOLA D, GARCIA R, et al. Population-level analysis of gut microbiome variation[J]. Science, 2016, 352(6285):560-564.
    [24] ZHERNAKOVA A, KURILSHIKOV A, BONDER MJ, TIGCHELAAR EF, SCHIRMER M, VATANEN T, MUJAGIC Z, VILA AV, FALONY G, VIEIRA- SILVA S, WANG J, IMHANN F, BRANDSMA E, JANKIPERSADSING SA, JOOSSENS M, CENIT MC, DEELEN P, SWERTZ MA, STUDY LC, WEERSMA RK, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity[J]. Science, 2016, 352(6285):565-569.
    [25] CHEN CY, HUANG XC, FANG SM, YANG H, HE MZ, ZHAO YZ, HUANG LS. Contribution of host genetics to the variation of microbial composition of cecum lumen and feces in pigs[J]. Frontiers in Microbiology, 2018, 9:2626.
    [26] BADAL VD, VACCARIELLO ED, MURRAY ER, YU KE, KNIGHT R, JESTE DV, NGUYEN TT. The gut microbiome, aging, and longevity:a systematic review[J]. Nutrients, 2020, 12(12):3759.
    [27] GOMAA EZ. Human gut microbiota/microbiome in health and diseases:a review[J]. Antonie Van Leeuwenhoek, 2020, 113(12):2019-2040.
    [28] SCOTT AJ, ALEXANDER JL, MERRIFIELD CA, CUNNINGHAM D, JOBIN C, BROWN R, ALVERDY J, O'KEEFE SJ, GASKINS HR, TEARE J, YU J, HUGHES DJ, VERSTRAELEN H, BURTON J, O'TOOLE PW, ROSENBERG DW, MARCHESI JR, KINROSS JM. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis[J]. Gut, 2019, 68(9):1624-1632.
    [29] ROY S, TRINCHIERI G. Microbiota:a key orchestrator of cancer therapy[J]. Nature Reviews Cancer, 2017, 17(5):271-285.
    [30] WU H, TREMAROLI V, SCHMIDT C, LUNDQVIST A, OLSSON LM, KRÄMER M, GUMMESSON A, PERKINS R, BERGSTRÖM G, BÄCKHED F. The gut microbiota in prediabetes and diabetes:a population-based cross-sectional study[J]. Cell Metabolism, 2020, 32(3):379-390.e3.
    [31] ABENAVOLI L, SCARPELLINI E, COLICA C, BOCCUTO L, SALEHI B, SHARIFI-RAD J, AIELLO V, ROMANO B, de LORENZO A, IZZO AA, CAPASSO R. Gut microbiota and obesity:a role for probiotics[J]. Nutrients, 2019, 11(11):2690.
    [32] BORSOM EM, CONN K, KEEFE CR, HERMAN C, ORSINI GM, HIRSCH AH, PALMA AVILA M, TESTO G, JARAMILLO SA, BOLYEN E, LEE K, CAPORASO JG, COPE EK. Predicting neurodegenerative disease using prepathology gut microbiota composition:a longitudinal study in mice modeling Alzheimer's disease pathologies[J]. Microbiology Spectrum, 2023, 11(2):e0345822.
    [33] YANG SS, LI Y, WANG B, YANG N, HUANG X, CHEN QB, GENG SX, ZHOU YW, SHI H, WANG LY, BRUGMAN S, SAVELKOUL H, LIU GL. Acute porcine epidemic diarrhea virus infection reshapes the intestinal microbiota[J]. Virology, 2020, 548:200-212.
    [34] ASNICAR F, BERRY SE, VALDES AM, NGUYEN LH, PICCINNO G, DREW DA, LEEMING E, GIBSON R, le ROY C, AL KHATIB H, FRANCIS L, MAZIDI M, MOMPEO O, VALLES-COLOMER M, TETT A, BEGHINI F, DUBOIS L, BAZZANI D, THOMAS AM, MIRZAYI C, et al. Microbiome connections with host metabolism and habitual diet from 1098 deeply phenotyped individuals[J]. Nature Medicine, 2021, 27(2):321-332.
    [35] RINNINELLA E, CINTONI M, RAOUL P, LOPETUSO LR, SCALDAFERRI F, PULCINI G, MIGGIANO GAD, GASBARRINI A, MELE MC. Food components and dietary habits:keys for a healthy gut microbiota composition[J]. Nutrients, 2019, 11(10):2393.
    [36] VALLES-COLOMER M, BLANCO-MÍGUEZ A, MANGHI P, ASNICAR F, DUBOIS L, GOLZATO D, ARMANINI F, CUMBO F, HUANG KD, MANARA S, MASETTI G, PINTO F, PIPERNI E, PUNČOCHÁŘ M, RICCI L, ZOLFO M, FARRANT O, GONCALVES A, SELMA-ROYO M, BINETTI AG, et al. The person-to-person transmission landscape of the gut and oral microbiomes[J]. Nature, 2023, 614(7946):125-135.
    [37] YANG JF, FENG PY, LING ZM, KHAN A, WANG X, CHEN YL, ALI G, FANG YT, SALAMA ES, WANG XM, LIU P, LI XK. Nickel exposure induces gut microbiome disorder and serum uric acid elevation[J]. Environmental Pollution, 2023, 324:121349.
    [38] ZIMMERMANN P, CURTIS N. The effect of antibiotics on the composition of the intestinal microbiota-a systematic review[J]. The Journal of Infection, 2019, 79(6):471-489.
    [39] MAIER LS, PRUTEANU M, KUHN M, ZELLER G, TELZEROW A, ANDERSON EE, BROCHADO AR, FERNANDEZ KC, DOSE H, MORI H, PATIL KR, BORK P, TYPAS A. Extensive impact of non-antibiotic drugs on human gut bacteria[J]. Nature, 2018, 555(7698):623-628.
    [40] HUGHES RL. A review of the role of the gut microbiome in personalized sports nutrition[J]. Frontiers in Nutrition, 2020, 6:191.
    [41] BIEDERMANN L, ZEITZ J, MWINYI J, SUTTER-MINDER E, REHMAN A, OTT SJ, STEURER-STEY C, FREI A, FREI P, SCHARL M, LOESSNER MJ, VAVRICKA SR, FRIED M, SCHREIBER S, SCHUPPLER M, ROGLER G. Smoking cessation induces profound changes in the composition of the intestinal microbiota in humans[J]. PLoS One, 2013, 8(3):e59260.
    [42] SEN P, MOLINERO-PEREZ A, O'RIORDAN KJ, MCCAFFERTY CP, O'HALLORAN KD, CRYAN JF. Microbiota and sleep:awakening the gut feeling[J]. Trends in Molecular Medicine, 2021, 27(10):935-945.
    [43] ANGELUCCI F, CECHOVA K, AMLEROVA J, HORT J. Antibiotics, gut microbiota, and Alzheimer's disease[J]. Journal of Neuroinflammation, 2019, 16(1):108.
    [44] HAO HH, YAO JP, WU QH, WEI YJ, DAI MH, IQBAL Z, WANG X, WANG YL, HUANG LL, CHEN DM, TAO YF, LIU ZL, YUAN ZH. Microbiological toxicity of tilmicosin on human colonic microflora in chemostats[J]. Regulatory Toxicology and Pharmacology, 2015, 73(1):201-208.
    [45] HAO HH, ZHOU SX, CHENG GY, DAI MH, WANG X, LIU ZL, WANG YL, YUAN ZH. Effect of tulathromycin on colonization resistance, antimicrobial resistance, and virulence of human gut microbiota in chemostats[J]. Frontiers in Microbiology, 2016, 7:477.
    [46] HAO HH, GUO WG, IQBAL Z, CHENG GY, WANG X, DAI MH, HUANG LL, WANG YL, PENG DP, LIU ZL, YUAN ZH. Impact of cyadox on human colonic microflora in chemostat models[J]. Regulatory Toxicology and Pharmacology, 2013, 67(3):335-343.
    [47] MAIER LS, GOEMANS CV, WIRBEL J, KUHN M, EBERL C, PRUTEANU M, MÜLLER P, GARCIA- SANTAMARINA S, CACACE E, ZHANG BY, GEKELER C, BANERJEE T, ANDERSON EE, MILANESE A, LÖBER U, FORSLUND SK, PATIL KR, ZIMMERMANN M, STECHER B, ZELLER G, et al. Unravelling the collateral damage of antibiotics on gut bacteria[J]. Nature, 2021, 599(7883):120-124.
    [48] THANH DUY P, THI NGUYEN TN, VU THUY D, CHUNG THE H, ALCOCK F, BOINETT C, DAN THANH HN, THANH TUYEN H, THWAITES GE, RABAA MA, BAKER S. Commensal Escherichia coli are a reservoir for the transfer of XDR plasmids into epidemic fluoroquinolone-resistant Shigella sonnei[J]. Nature Microbiology, 2020, 5(2):256-264.
    [49] KIENESBERGER S, COSIC A, KITSERA M, RAFFL S, HIESINGER M, LEITNER E, HALWACHS B, GORKIEWICZ G, GLABONJAT RA, RABER G, LEMBACHER-FADUM C, BREINBAUER R, SCHILD S, ZECHNER EL. Enterotoxin tilimycin from gut-resident Klebsiella promotes mutational evolution and antibiotic resistance in mice[J]. Nature Microbiology, 2022, 7(11):1834-1848.
    [50] CABRAL DJ, PENUMUTCHU S, REINHART EM, ZHANG C, KORRY BJ, WURSTER JI, NILSON R, GUANG A, SANO WH, ROWAN-NASH AD, LI H, BELENKY P. Microbial metabolism modulates antibiotic susceptibility within the murine gut microbiome[J]. Cell Metabolism, 2019, 30(4):800-823.e7.
    [51] SHI DY, HAO H, WEI ZL, YANG D, YIN J, LI HB, CHEN ZS, YANG ZW, CHEN TJ, ZHOU SQ, WU HY, LI JW, JIN M. Combined exposure to non-antibiotic pharmaceutics and antibiotics in the gut synergistically promote the development of multi-drug-resistance in Escherichia coli[J]. Gut Microbes, 2022, 14(1):2018901.
    [52] ROBINSON M, HORN J. Clinical pharmacology of proton pump inhibitors:what the practising physician needs to know[J]. Drugs, 2003, 63(24):2739-2754.
    [53] MAFI JN, MAY FP, KAHN KL, CHONG M, CORONA E, YANG L, MONGARE MM, NAIR V, REYNOLDS C, GUPTA R, DAMBERG CL, ESRAILIAN E, SARKISIAN C. Low-value proton pump inhibitor prescriptions among older adults at a large academic health system[J]. Journal of the American Geriatrics Society, 2019, 67(12):2600-2604.
    [54] WILLEMS RPJ, van DIJK K, KET JCF, VANDENBROUCKE-GRAULS CMJE. Evaluation of the association between gastric acid suppression and risk of intestinal colonization with multidrug-resistant microorganisms[J]. JAMA Internal Medicine, 2020, 180(4):561-571.
    [55] WILLEMS RPJ, SCHUT MC, KAISER AM, GROOT TH, ABU-HANNA A, TWISK JWR, van DIJK K, VANDENBROUCKE-GRAULS CMJE. Association of proton pump inhibitor use with risk of acquiring drug-resistant enterobacterales[J]. JAMA Network Open, 2023, 6(2):e230470.
    [56] LIN CY, CHENG HT, KUO CJ, LEE YS, SUNG CM, KEIDAN M, RAO K, KAO JY, HSIEH SY. Proton pump inhibitor-induced gut dysbiosis increases mortality rates for patients with Clostridioides difficile infection[J]. Microbiology Spectrum, 2022, 10(4):e0048622.
    [57] HOJO M, ASAHARA T, NAGAHARA A, TAKEDA T, MATSUMOTO K, UEYAMA H, MATSUMOTO K, ASAOKA D, TAKAHASHI T, NOMOTO K, YAMASHIRO Y, WATANABE S. Gut microbiota composition before and after use of proton pump inhibitors[J]. Digestive Diseases and Sciences, 2018, 63(11):2940-2949.
    [58] REVELES KR, RYAN CN, CHAN L, COSIMI RA, HAYNES WL. Proton pump inhibitor use associated with changes in gut microbiota composition[J]. Gut, 2018, 67(7):1369-1370.
    [59] IMHANN F, BONDER MJ, VICH VILA A, FU JY, MUJAGIC Z, VORK L, TIGCHELAAR EF, JANKIPERSADSING SA, CENIT MC, HARMSEN HJM, DIJKSTRA G, FRANKE L, XAVIER RJ, JONKERS D, WIJMENGA C, WEERSMA RK, ZHERNAKOVA A. Proton pump inhibitors affect the gut microbiome[J]. Gut, 2016, 65(5):740-748.
    [60] JACKSON MA, GOODRICH JK, MAXAN ME, FREEDBERG DE, ABRAMS JA, POOLE AC, SUTTER JL, WELTER D, LEY RE, BELL JT, SPECTOR TD, STEVES CJ. Proton pump inhibitors alter the composition of the gut microbiota[J]. Gut, 2016, 65(5):749-756.
    [61] GOMMERS LMM, EDERVEEN THA, WIJST J, OVERMARS-BOS C, KORTMAN GAM, BOEKHORST J, BINDELS RJM, BAAIJ JHF, HOENDEROP JGJ. Low gut microbiota diversity and dietary magnesium intake are associated with the development of PPI-induced hypomagnesemia[J]. The FASEB Journal, 2019, 33(10):11235-11246.
    [62] FLORY J, LIPSKA K. Metformin in 2019[J]. JAMA, 2019, 321(19):1926-1927.
    [63] LaMOIA TE, SHULMAN GI. Cellular and molecular mechanisms of metformin action[J]. Endocrine Reviews, 2021, 42(1):77-96.
    [64] FENG J, WANG XH, YE XC, ARES I, LOPEZ- TORRES B, MARTÍNEZ M, MARTÍNEZ- LARRAÑAGA MR, WANG X, ANADÓN A, MARTÍNEZ MA. Mitochondria as an important target of metformin:the mechanism of action, toxic and side effects, and new therapeutic applications[J]. Pharmacological Research, 2022, 177:106114.
    [65] FORSLUND K, HILDEBRAND F, NIELSEN T, FALONY G, le CHATELIER E, SUNAGAWA S, PRIFTI E, VIEIRA-SILVA S, GUDMUNDSDOTTIR V, KROGH PEDERSEN H, ARUMUGAM M, KRISTIANSEN K, YVONNE VOIGT A, VESTERGAARD H, HERCOG R, IGOR COSTEA P, ROAT KULTIMA J, LI JH, JØRGENSEN T, LEVENEZ F, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota[J]. Nature, 2015, 528(7581):262-266.
    [66] SUN LL, XIE C, WANG G, WU Y, WU Q, WANG XM, LIU J, DENG YY, XIA JL, CHEN B, ZHANG SY, YUN CY, LIAN G, ZHANG XJ, ZHANG H, BISSON WH, SHI JM, GAO XX, GE PP, LIU CH, et al. Gut microbiota and intestinal FXR mediate the clinical benefits of metformin[J]. Nature Medicine, 2018, 24(12):1919-1929.
    [67] MUELLER NT, DIFFERDING MK, ZHANG MY, MARUTHUR NM, JURASCHEK SP, MILLER ER 3rd, APPEL LJ, YEH HC. Metformin affects gut microbiome composition and function and circulating short-chain fatty acids:a randomized trial[J]. Diabetes Care, 2021, 44(7):1462-1471.
    [68] BAUER PV, DUCA FA, WAISE TMZ, RASMUSSEN BA, ABRAHAM MA, DRANSE HJ, PURI A, O'BRIEN CA, LAM TKT. Metformin alters upper small intestinal microbiota that impact a glucose-SGLT1-sensing glucoregulatory pathway[J]. Cell Metabolism, 2018, 27(1):101-117.e5.
    [69] KULKARNI AS, GUBBI S, BARZILAI N. Benefits of metformin in attenuating the hallmarks of aging[J]. Cell Metabolism, 2020, 32(1):15-30.
    [70] MOHAMMED I, HOLLENBERG MD, DING H, TRIGGLE CR. A critical review of the evidence that metformin is a putative anti-aging drug that enhances healthspan and extends lifespan[J]. Frontiers in Endocrinology, 2021, 12:718942.
    [71] CABREIRO F, AU C, LEUNG KY, VERGARA-IRIGARAY N, COCHEMÉ HM, NOORI T, WEINKOVE D, SCHUSTER E, GREENE NDE, GEMS D. Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism[J]. Cell, 2013, 153(1):228-239.
    [72] BRYRUP T, THOMSEN CW, KERN T, ALLIN KH, BRANDSLUND I, JØRGENSEN NR, VESTERGAARD H, HANSEN T, HANSEN TH, PEDERSEN O, NIELSEN T. Metformin-induced changes of the gut microbiota in healthy young men:results of a non-blinded, one-armed intervention study[J]. Diabetologia, 2019, 62(6):1024-1035.
    [73] DIVICCARO S, GIATTI S, CIOFFI L, FALVO E, PIAZZA R, CARUSO D, MELCANGI RC. Paroxetine effects in adult male rat colon:focus on gut steroidogenesis and microbiota[J]. Psychoneuroendocrinology, 2022, 143:105828.
    [74] ZHANG WJ, QU W, WANG H, YAN H. Antidepressants fluoxetine and amitriptyline induce alterations in intestinal microbiota and gut microbiome function in rats exposed to chronic unpredictable mild stress[J]. Translational Psychiatry, 2021, 11:131.
    [75] SHEN Y, YANG X, LI GF, GAO JY, LIANG Y. The change of gut microbiota in MDD patients under SSRIs treatment[J]. Scientific Reports, 2021, 11:14918.
    [76] DENG XR, ZHANG CH, WANG PX, WEI W, SHI XY, WANG PP, YANG JP, WANG LM, TANG SS, FANG YY, LIU YL, CHEN YQ, ZHANG Y, YUAN Q, SHANG J, KAN Q, YANG HH, MAN H, WANG DY, YUAN HJ. Cardiovascular benefits of empagliflozin are associated with gut microbiota and plasma metabolites in type 2 diabetes[J]. The Journal of Clinical Endocrinology & Metabolism, 2022, 107(7):1888-1896.
    [77] ZHANG HY, TIAN JX, LIAN FM, LI M, LIU WK, ZHEN Z, LIAO JQ, TONG XL. Therapeutic mechanisms of traditional Chinese medicine to improve metabolic diseases via the gut microbiota[J]. Biomedicine & Pharmacotherapy, 2021, 133:110857.
    [78] GU W, WANG YF, ZENG LX, DONG JC, BI Q, YANG XX, CHE YY, HE S, YU J. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet[J]. Biomedicine & Pharmacotherapy, 2020, 125:109910.
    [79] WANG P, GAO JP, KE WX, WANG J, LI DT, LIU RL, JIA Y, WANG XH, CHEN X, CHEN F, HU XS. Resveratrol reduces obesity in high-fat diet-fed mice via modulating the composition and metabolic function of the gut microbiota[J]. Free Radical Biology & Medicine, 2020, 156:83-98.
    [80] FU J, LI JX, SUN YZ, LIU S, SONG FR, LIU ZY. In-depth investigation of the mechanisms of Schisandra chinensis polysaccharide mitigating Alzheimer's disease rat via gut microbiota and feces metabolomics[J]. International Journal of Biological Macromolecules, 2023, 232:123488.
    [81] LI MY, GUO WN, DONG YL, WANG WZ, TIAN CX, ZHANG ZL, YU T, ZHOU HF, GUI Y, XUE KM, LI JY, JIANG F, SARAPULTSEV A, WANG HF, ZHANG G, LUO SS, FAN H, HU DS. Beneficial effects of celastrol on immune balance by modulating gut microbiota in experimental ulcerative colitis mice[J]. Genomics, Proteomics & Bioinformatics, 2022, 20(2):288-303.
    [82] LI DT, FENG Y, TIAN ML, JI JF, HU XS, CHEN F. Gut microbiota-derived inosine from dietary barley leaf supplementation attenuates colitis through PPARγ signaling activation[J]. Microbiome, 2021, 9(1):83.
    [83] GINGELL R, BRIDGES JW, WILLIAMS RT. The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat[J]. Xenobiotica, 1971, 1(2):143-156.
    [84] SOUSA T, YADAV V, ZANN V, BORDE A, ABRAHAMSSON B, BASIT AW. On the colonic bacterial metabolism of azo-bonded prodrugs of 5-aminosalicylic acid[J]. Journal of Pharmaceutical Sciences, 2014, 103(10):3171-3175.
    [85] SHIM SB, KIM NJ, KIM DH.β-glucuronidase inhibitory activity and hepatoprotective effect of 18β-glycyrrhetinic acid from the rhizomes of Glycyrrhiza uralensis[J]. Planta Medica, 2000, 66(1):40-43.
    [86] LEE CH, PARK SW, KIM YS, KANG SS, KIM JA, LEE SH, LEE SM. Protective mechanism of glycyrrhizin on acute liver injury induced by carbon tetrachloride in mice[J]. Biological and Pharmaceutical Bulletin, 2007, 30(10):1898-1904.
    [87] AKAO T, HAYASHI T, KOBASHI K, KANAOKA M, KATO H, KOBAYASHI M, TAKEDA S, OYAMA T. Intestinal bacterial hydrolysis is indispensable to absorption of 18β-glycyrrhetic acid after oral administration of glycyrrhizin in rats[J]. Journal of Pharmacy and Pharmacology, 2011, 46(2):135-137.
    [88] KIM DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins[J]. Journal of Ginseng Research, 2018, 42(3):255-263.
    [89] GUTHRIE L, GUPTA S, DAILY J, KELLY L. Human microbiome signatures of differential colorectal cancer drug metabolism[J]. NPJ Biofilms and Microbiomes, 2017, 3:27.
    [90] ZHAO RS, COKER OO, WU JL, ZHOU YF, ZHAO LY, NAKATSU G, BIAN XQ, WEI H, CHAN AWH, SUNG JJY, CHAN FKL, EL-OMAR E, YU J. Aspirin reduces colorectal tumor development in mice and gut microbes reduce its bioavailability and chemopreventive effects[J]. Gastroenterology, 2020, 159(3):969-983.e4.
    [91] BALAICH J, ESTRELLA M, WU GJ, JEFFREY PD, BISWAS A, ZHAO LP, KORENNYKH A, DONIA MS. The human microbiome encodes resistance to the antidiabetic drug acarbose[J]. Nature, 2021, 600(7887):110-115.
    [92] YAN A, CULP E, PERRY J, LAU JT, MacNEIL LT, SURETTE MG, WRIGHT GD. Transformation of the anticancer drug doxorubicin in the human gut microbiome[J]. ACS Infectious Diseases, 2018, 4(1):68-76.
    [93] DELOMÉNIE C, FOUIX S, LONGUEMAUX S, BRAHIMI N, BIZET C, PICARD B, DENAMUR E, DUPRET JM. Identification and functional characterization of arylamine N-acetyltransferases in eubacteria:evidence for highly selective acetylation of 5-aminosalicylic acid[J]. Journal of Bacteriology, 2001, 183(11):3417-3427.
    [94] ZIMMERMANN M, ZIMMERMANN-KOGADEEVA M, WEGMANN R, GOODMAN AL. Separating host and microbiome contributions to drug pharmacokinetics and toxicity[J]. Science, 2019, 363(6427):eaat9931.
    [95] TAKENO S, SAKAI T. Involvement of the intestinal microflora in nitrazepam-induced teratogenicity in rats and its relationship to nitroreduction[J]. Teratology, 1991, 44(2):209-214.
    [96] HARRIS BE, MANNING BW, FEDERLE TW, DIASIO RB. Conversion of 5-fluorocytosine to 5-fluorouracil by human intestinal microflora[J]. Antimicrobial Agents and Chemotherapy, 1986, 29(1):44-48.
    [97] ROUTY B, le CHATELIER E, DEROSA L, DUONG CPM, ALOU MT, DAILLÈRE R, FLUCKIGER A, MESSAOUDENE M, RAUBER C, ROBERTI MP, FIDELLE M, FLAMENT C, POIRIER-COLAME V, OPOLON P, KLEIN C, IRIBARREN K, MONDRAGÓN L, JACQUELOT N, QU B, FERRERE G, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors[J]. Science, 2018, 359(6371):91-97.
    [98] SUN ZZ, LI XY, WANG S, SHEN L, JI HF. Bidirectional interactions between curcumin and gut microbiota in transgenic mice with Alzheimer's disease[J]. Applied Microbiology and Biotechnology, 2020, 104(8):3507-3515.
    [99] Di MEO F, MARGARUCCI S, GALDERISI U, CRISPI S, PELUSO G. Curcumin, gut microbiota, and neuroprotection[J]. Nutrients, 2019, 11(10):2426.
    [100] EDWARDS RL, LUIS PB, VARUZZA PV, JOSEPH AI, PRESLEY SH, CHATURVEDI R, SCHNEIDER C. The anti-inflammatory activity of curcumin is mediated by its oxidative metabolites[J]. The Journal of Biological Chemistry, 2017, 292(52):21243-21252.
    [101] ARTACHO A, ISAAC S, NAYAK R, FLOR-DURO A, ALEXANDER M, KOO I, MANASSON J, SMITH PB, ROSENTHAL P, HOMSI Y, GULKO P, PONS J, PUCHADES-CARRASCO L, IZMIRLY P, PATTERSON A, ABRAMSON SB, PINEDA- LUCENA A, TURNBAUGH PJ, UBEDA C, SCHER JU. The pretreatment gut microbiome is associated with lack of response to methotrexate in new-onset rheumatoid arthritis[J]. Arthritis & Rheumatology, 2021, 73(6):931-942.
    [102] SHANG JM, MA SR, ZANG CX, BAO XQ, WANG Y, ZHANG D. Gut microbiota mediates the absorption of FLZ, a new drug for Parkinson's disease treatment[J]. Acta Pharmaceutica Sinica B, 2021, 11(5):1213-1226.
    [103] REKDAL VM, BESS EN, BISANZ JE, TURNBAUGH PJ, BALSKUS EP. Discovery and inhibition of an interspecies gut bacterial pathway for Levodopa metabolism[J]. Science, 2019, 364(6445):eaau6323.
    [104] van KESSEL SP, FRYE AK, EL-GENDY AO, CASTEJON M, KESHAVARZIAN A, van DIJK G, EL AIDY S. Gut bacterial tyrosine decarboxylases restrict levels of levodopa in the treatment of Parkinson's disease[J]. Nature Communications, 2019, 10:310.
    [105] MEHTA RS, MAYERS JR, ZHANG YC, BHOSLE A, GLASSER NR, NGUYEN LH, MA WJ, BAE SN, BRANCK T, SONG K, SEBASTIAN L, PACHECO JA, SEO HS, CLISH C, DHE-PAGANON S, ANANTHAKRISHNAN AN, FRANZOSA EA, BALSKUS EP, CHAN AT, HUTTENHOWER C. Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease[J]. Nature Medicine, 2023, 29(3):700-709.
    [106] van KESSEL SP, de JONG HR, WINKEL SL, van LEEUWEN SS, NELEMANS SA, PERMENTIER H, KESHAVARZIAN A, EL AIDY S. Gut bacterial deamination of residual levodopa medication for Parkinson's disease[J]. BMC Biology, 2020, 18(1):137.
    [107] TIAN JZ, LI C, DONG ZX, YANG YP, XING J, YU PJ, XIN Y, XU FM, WANG LW, MU YH, GUO XY, SUN Q, ZHAO GP, GU Y, QIN GJ, JIANG WH. Inactivation of the antidiabetic drug acarbose by human intestinal microbial-mediated degradation[J]. Nature Metabolism, 2023, 5(5):896-909.
    [108] ZAHRAN SA, ALI-TAMMAM M, HASHEM AM, AZIZ RK, ALI AE. Azoreductase activity of dye-decolorizing bacteria isolated from the human gut microbiota[J]. Scientific Reports, 2019, 9:5508.
    [109] WILSON ID, NICHOLSON JK. Gut microbiome interactions with drug metabolism, efficacy, and toxicity[J]. Translational Research, 2017, 179:204-222.
    [110] CREEKMORE BC, GRAY JH, WALTON WG, BIERNAT KA, LITTLE MS, XU YM, LIU J, GHARAIBEH RZ, REDINBO MR. Mouse gut microbiome-encoded β-glucuronidases identified using metagenome analysis guided by protein structure[J]. mSystems, 2019, 4(4):e00452-e00419.
    [111] MENG JJ, ABU YF, ZHANG Y, ZHOU YY, XIE Y, YAN Y, TAO JY, RAMAKRISHNAN S, CHEN C, ROY S. Opioid-induced microbial dysbiosis disrupts irinotecan (CPT-11) metabolism and increases gastrointestinal toxicity in a murine model[J]. British Journal of Pharmacology, 2023, 180(10):1362-1378.
    [112] BJÖRKHOLM B, BOK CM, LUNDIN A, RAFTER J, HIBBERD ML, PETTERSSON S. Intestinal microbiota regulate xenobiotic metabolism in the liver[J]. PLoS One, 2009, 4(9):e6958.
    [113] ZEMANOVÁ N, ANZENBACHER P, ZAPLETALOVÁ I, JOUROVÁ L, HERMANOVÁ P, HUDCOVIC T, KOZÁKOVÁ H, VODIČKA M, PÁCHA J, ANZENBACHEROVÁ E. The role of the microbiome and psychosocial stress in the expression and activity of drug metabolizing enzymes in mice[J]. Scientific Reports, 2020, 10:8529.
    [114] KUNO T, HIRAYAMA-KUROGI M, ITO S, OHTSUKI S. Reduction in hepatic secondary bile acids caused by short-term antibiotic-induced dysbiosis decreases mouse serum glucose and triglyceride levels[J]. Scientific Reports, 2018, 8:1253.
    [115] JARMUSCH AK, VRBANAC A, MOMPER JD, MA JD, ALHAJA M, LIYANAGE M, KNIGHT R, DORRESTEIN PC, TSUNODA SM. Enhanced characterization of drug metabolism and the influence of the intestinal microbiome:a pharmacokinetic, microbiome, and untargeted metabolomics study[J]. Clinical and Translational Science, 2020, 13(5):972-984.
    [116] SELWYN FP, CHENG SL, KLAASSEN CD, CUI JY. Regulation of hepatic drug-metabolizing enzymes in germ-free mice by conventionalization and probiotics[J]. Drug Metabolism and Disposition, 2016, 44(2):262-274.
    [117] HU N, LIU X, MU QF, YU MM, WANG H, JIANG Y, CHEN R, WANG LY. The gut microbiota contributes to the modulation of intestinal CYP3A1 and P-gp in streptozotocin-induced type 1 diabetic rats[J]. European Journal of Pharmaceutical Sciences, 2021, 162:105833.
    [118] KLÜNEMANN M, ANDREJEV S, BLASCHE S, MATEUS A, PHAPALE P, DEVENDRAN S, VAPPIANI J, SIMON B, SCOTT TA, KAFKIA E, KONSTANTINIDIS D, ZIRNGIBL K, MASTRORILLI E, BANZHAF M, MACKMULL MT, HÖVELMANN F, NESME L, BROCHADO AR, MAIER LS, BOCK T, et al. Bioaccumulation of therapeutic drugs by human gut bacteria[J]. Nature, 2021, 597(7877):533-538.
    [119] COHEN Z, KELLY L. Bioaccumulation as a mechanism of microbiome/drug interactions[J]. Trends in Microbiology, 2022, 30(2):99-101.
    [120] JAVDAN B, LOPEZ JG, CHANKHAMJON P, LEE YC J, HULL R, WU QH, WANG XJ, CHATTERJEE S, DONIA MS. Personalized mapping of drug metabolism by the human gut microbiome[J]. Cell, 2020, 181(7):1661-1679.e22.
    [121] GONG G, ZHOU SS, LUO RB, GESANG ZM, SUOLANG SZ. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak fecal microbial community[J]. BMC Microbiology, 2020, 20(1):302.
    [122] TASSE L, BERCOVICI J, PIZZUT-SERIN S, ROBE P, TAP J, KLOPP C, CANTAREL BL, COUTINHO PM, HENRISSAT B, LECLERC M, DORÉ J, MONSAN P, REMAUD-SIMEON M, POTOCKI-VERONESE G. Functional metagenomics to mine the human gut microbiome for dietary fiber catabolic enzymes[J]. Genome Research, 2010, 20(11):1605-1612.
    [123] WESTERMANN AJ, VOGEL J. Cross-species RNA-seq for deciphering host-microbe interactions[J]. Nature Reviews Genetics, 2021, 22(6):361-378.
    [124] ZHOU ZC, TRAN PQ, BREISTER AM, LIU Y, KIEFT K, COWLEY ES, KARAOZ U, ANANTHARAMAN K. METABOLIC:high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks[J]. Microbiome, 2022, 10(1):33.
    [125] BILEN M, DUFOUR JC, LAGIER JC, CADORET F, DAOUD Z, DUBOURG G, RAOULT D. The contribution of culturomics to the repertoire of isolated human bacterial and archaeal species[J]. Microbiome, 2018, 6(1):94.
    [126] DUBOURG G, BARON S, CADORET F, COUDERC C, FOURNIER PE, LAGIER JC, RAOULT D. From culturomics to clinical microbiology and forward[J]. Emerging Infectious Diseases, 2018, 24(9):1683-1690.
    [127] WANG XF, HOWE S, WEI XY, DENG FL, TSAI T, CHAI JM, XIAO YP, YANG H, MAXWELL CV, LI Y, ZHAO JC. Comprehensive cultivation of the swine gut microbiome reveals high bacterial diversity and guides bacterial isolation in pigs[J]. mSystems, 2021, 6(4):e0047721.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张亦瑶,王俊豪,郝海红. 肠道微生物群与药物相互作用的研究进展[J]. 微生物学报, 2023, 63(12): 4536-4554

复制
分享
文章指标
  • 点击次数:736
  • 下载次数: 728
  • HTML阅读次数: 1694
  • 引用次数: 0
历史
  • 收稿日期:2023-05-12
  • 录用日期:2023-07-17
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码