响应面法优化爪哇虫草菌的培养条件及其对斜纹夜蛾的毒力和保护酶活性影响
作者:
基金项目:

四川省区域创新合作项目(2021YFQ0022); 云南省中青年学术和技术带头人后备人才项目(202205AC160077);云南农业大学第十五届科技创新创业基金(2022ZKY587)


Response surface methodology-based optimization of culture conditions of Cordyceps javanica with effects on virulence and protective enzyme activity of Spodoptera litura
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】优化爪哇虫草菌Bd01的固态发酵培养条件,测定分生孢子对斜纹夜蛾3龄幼虫的毒力,研究被爪哇虫草菌侵染后寄主体内的保护酶活性变化。【方法】采用单因素试验确定爪哇虫草菌Bd01最佳的固态培养基及培养条件,利用Box-Behnken响应面法优化发酵参数,采用浸渍法测定分生孢子对斜纹夜蛾3龄幼虫的毒力,同时利用分光光度计法测定斜纹夜蛾3龄幼虫体内酶活性变化。【结果】以产孢量为指标,通过响应曲面法优化的爪哇虫草菌Bd01最佳产孢条件为:培养基营养成分含量为30.24 g/L,pH值为7.55,光照时长为12.06 h,在该条件下,培养基的产孢量为2.78×108孢子/mL。浓度为1×108孢子/mL的爪哇虫草菌孢子液对斜纹夜蛾3龄幼虫具有一定毒力,处理7 d时致死中浓度(LT50)为3.11 d,致死中时(LC50)为4.68×105孢子/mL,校正死亡率为88.68%。处理后未死亡的斜纹夜蛾幼虫体内保护酶活性与对照组相比发生显著变化。【结论】优化后的培养基能够显著增加爪哇虫草菌的产孢量;爪哇虫草菌对斜纹夜蛾幼虫的致死率和致死效率与浓度呈正相关;斜纹夜蛾幼虫体内的保护酶可能在抵抗爪哇虫草菌侵染的过程中起关键作用。

    Abstract:

    [Objective] To optimize the soliD-state fermentation conditions of Cordyceps javanica Bd01, determine the virulence of the conidia to the 3rd-instar larvae of Spodoptera litura, and study the changes of protective enzyme activities in S. litura after infection by C. javanica. [Methods] The optimum soliD-state medium and culture conditions of C. javanica Bd01 were first determined by single factor experiments and then optimized by Box-Behnken response surface method. The virulence of the conidia to the 3rd-instar larvae of S. litura was determined by the immersion method, and the changes of enzyme activities in the larvae were determined by a spectrophotometer. [Results] With the spore yield as an indicator, the sporulation conditions of C. javanica were optimized as medium nutrient content of 30.24 g/L, pH 7.55, and light duration of 12.06 h. Under these conditions, the spore yield reached 2.78×108 spores/mL. The conidial suspension of C. javanica at the concentration of 1×108 spores/mL was virulent to the 3rd-instar larvae of S. litura. After seven days of treatment, the LT50, LC50, and corrected mortality rate were 3.11 d, 4.68×105 spores/mL, and 88.68%, respectively. The activities of protective enzymes in the survived larvae of S. litura after treatment were significantly different from those in the control group. [Conclusion] The optimized culture medium can significantly increase the spore production of C. javanica. The lethal rate and lethal efficiency of C. javanica to S. litura larvae were dependent on the concentration. The protective enzymes in S. litura larvae may play a key role in the defense against the infection of C. javanica.

    参考文献
    [1] 陈代利, 梁永江, 李喜旺. 烟草斜纹夜蛾的发生与综合防治[J]. 安徽农业科学, 2013, 41(16):7153-7155, 7179. CHEN DL, LIANG YJ, LI XW. Occurrence regularity and comprehensive prevention methods of Spodoptera litura Fabricius in tobacco[J]. Journal of Anhui Agricultural Sciences, 2013, 41(16):7153-7155, 7179(in Chinese).
    [2] 秦厚国, 汪笃栋, 丁建, 黄荣华, 叶正襄. 斜纹夜蛾寄主植物名录[J]. 江西农业学报, 2006, 18(5):51-58. QIN HG, WANG DD, DING J, HUANG RH, YE ZX. Host plants of Spodoptera litura[J]. Acta Agriculturae Jiangxi, 2006, 18(5):51-58(in Chinese).
    [3] 浦冠勤, 姜德义, 王军. 警惕斜纹夜蛾的发生与危害[J]. 中国蚕业, 2008, 29(4):51-53. PU GQ, JIANG DY, WANG J. Beware of the occurrence and harm of Spodoptera litura[J]. China Sericulture, 2008, 29(4):51-53(in Chinese).
    [4] WANG ZC, LIU SS, LU KJ, XU XY, ZHANG TY. Concentration, characterization and risk assessment of polycyclic aromatic hydrocarbons and organochlorine pesticides in soils from the Corn Belt of Northeast China[J]. European Journal of Soil Science, 2020, 71(4):654-666.
    [5] JARA EA, WINTER CK. Safety levels for organophosphate pesticide residues on fruits, vegetables, and nuts[J]. International Journal of Food Contamination, 2019, 6(1):1-8.
    [6] 曹明章, 朱卫锋, 李存焕. 适于草坪斜纹夜蛾防治的绿色农药室内筛选[J]. 草业科学, 2013, 30(3):461-464. CAO MZ, ZHU WF, LI CH. Laboratory screening of green pesticides for controlling of turf pest Prodenia litura[J]. Pratacultural Science, 2013, 30(3):461-464(in Chinese).
    [7] 蒋希峰. 虫生真菌杀虫增效途径研究进展[J]. 黑龙江农业科学, 2022, 2(2):95-99. JIANG XF. Research progress on entomogenous fungi insecticidal synergistic ways[J]. Heilongjiang Agricultural Sciences, 2022, 2(2):95-99(in Chinese).
    [8] JAMUNARANI GS, RAMANAGOUDA SH, VENKATESHALU B, JAYAPPA J, RAGHAVENDRA G, RUDRESH DL, KULKARNI MS, MAHANTESHA BNN, GOPALI JB. Isolation and evaluation of indigenous endophytic entomopathogenic fungus, Beauveria bassiana UHSB-END1(Hypocreales:Cordycipitaceae), against Spodoptera litura Fabricius[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1):1-15.
    [9] BATOOL Z, RIAZ MA, SAYED S, MAJEED MZ, AHMED S, ULLAH S. In vitro synergy of entomopathogenic fungi and differential-chemistry insecticides against armyworm Spodoptera litura Fabricius (Lepidoptera:Noctuidae)[J]. International Journal of Tropical Insect Science, 2022, 42(2):1997-2006.
    [10] FITRIANA Y, SUHARJO R, SWIBAWA IG, SEMENGUK B, PASARIBU LT, HARTAMAN M, RWANDINI RA, INDRIYATI I, PURNOMO P, SOLIKHIN S. Aspergillus oryzae and Beauveria bassiana as entomopathogenic fungi of Spodoptera litura Fabricius (Lepidoptera:Noctuidae) infesting corn in Lampung, Indonesia[J]. Egyptian Journal of Biological Pest Control, 2021, 31(1):1-12.
    [11] 胥志民. 莱氏绿僵菌及毒素对园林害虫斜纹夜蛾的致病性研究[D]. 聊城:聊城大学硕士学位论文, 2019. XU ZM. The pathogenicity of Metarhizium rileyi and toxinagainst the garden pest Spodoptera liutura[D]. Liaocheng:Master's Thesis of Liaocheng University, 2019(in Chinese).
    [12] 李洁, 李洁, 于乾龙, 郑桂玲, 张彬, 李长友. 鳞翅目昆虫抗病毒免疫反应的研究进展[J]. 环境昆虫学报, 2021, 43(5):1079-1094. LI J, LI J, YU QL, ZHENG GL, ZHANG B, LI CY. Advance research on antiviral immunity response in lepidopteran insects[J]. Journal of Environmental Entomology, 2021, 43(5):1079-1094(in Chinese).
    [13] DING JN, ZHENG HH, CHI DF. Effects of a pathogenic Beauveria bassiana (Hypocreales:Cordycipitaceae) strain on detoxifying and protective enzyme activities in Xylotrechus rusticus (Coleoptera:Cerambycidae) larvae[J]. Florida Entomologist, 2015, 98(4):1148-1156.
    [14] 曹兵伟. 爪哇虫草菌Ij01[J]. 农药科学与管理, 2021, 42(11):72-73. CAO BW. Isaria javanica Ij01[J]. Pesticide Science and Administration, 2021, 42(11):72-73(in Chinese).
    [15] KEPLER RM, LUANGSA-ARD JJ, HYWEL-JONES NL, QUANDT CA, SUNG GH, REHNER SA, AIME MC, HENKEL TW, SANJUAN T, ZARE R, CHEN MJ, LI ZZ, ROSSMAN AY, SPATAFORA JW, SHRESTHA B. A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales)[J]. IMA Fungus, 2017, 8(2):335-353.
    [16] OU D, ZHANG LH, GUO CF, CHEN XS, ALI S, QIU BL. Identification of a new Cordyceps javanica fungus isolate and its toxicity evaluation against Asian citrus psyllid[J]. MicrobiologyOpen, 2019, 8(6):e760.
    [17] WU SH, TOEWS MD, CASTRILLO LA, BARMAN AK, COTTRELL TE, SHAPIRO-ILAN DI. Identification and virulence of Cordyceps javanica strain wf GA17 isolated from a natural fungal population in sweetpotato whiteflies (Hemiptera:Aleyrodidae)[J]. Environmental Entomology, 2021, 50(5):1127-1136.
    [18] 刘全俊, 易璟, 吴国星, 高熹, 贾奔, 唐萍, 何明川, 石昆霭, 曾舒泉, 李金梁, 秦小萍. 一株咖啡灭字脊虎天牛幼虫虫生真菌鉴定、培养及致病力研究[J]. 西部林业科学, 2022, 51(5):89-96. LIU QJ, YI J, WU GX, GAO X, JIA B, TANG P, HE MC, SHI KA, ZENG SQ, LI JL, QIN XP. The identification, cultivation and pathogenicity of an entomogenous fungus in larvae of Xylotrechus quadripes Chevrolat[J]. Journal of West China Forestry Science, 2022, 51(5):89-96(in Chinese).
    [19] 张胜兰, 邹晓, 商胜华, 于晓飞, 杨茂发. 响应面法优化蝉棒束孢SLGY-2产孢条件[J]. 环境昆虫学报, 2020, 42(4):1019-1027. ZHANG SL, ZOU X, SHANG SH, YU XF, YANG MF. Optimization sporulation condition for Cordyceps cicadae SLGY-2 by response surface method[J]. Journal of Environmental Entomology, 2020, 42(4):1019-1027(in Chinese).
    [20] 张胜兰, 刘健锋, 邹晓, 杨茂发, 商胜华. 蝉花SLGY-2对斜纹夜蛾生长发育及体内保护酶活性的影响[J]. 山地农业生物学报, 2020, 39(4):30-36. ZHANG SL, LIU JF, ZOU X, YANG MF, SHANG SH. Effects of Isaria cicadae SLGY-2 on the development and protective enzyme activities in vivo of Spodoptera litura[J]. Journal of Mountain Agriculture and Biology, 2020, 39(4):30-36(in Chinese).
    [21] 杨可, 司文, 林海, 林方锐, 袁静, 陈杰. 利用响应面分析法优化贝莱斯芽孢杆菌TCS001的发酵条件[J]. 农药学学报, 2019, 21(4):444-452. YANG K, SI W, LIN H, LIN FR, YUAN J, CHEN J. Fermentation condition optimization of Bacillus velezensis TCS001 using response surface methodology[J]. Chinese Journal of Pesticide Science, 2019, 21(4):444-452(in Chinese).
    [22] 邹东霞, 史国英, 廖旺姣, 蒋学建, 吴耀军, 蓝霞. 不同营养成分对桉蝙蛾高毒力球孢白僵菌生长的影响[J]. 西部林业科学, 2016, 45(4):158-161. ZOU DX, SHI GY, LIAO WJ, JIANG XJ, WU YJ, LAN X. The influence of nutrients on the growth of high toxicity Beauveria bassiana of Endoclyta signifer Walke[J]. Journal of West China Forestry Science, 2016, 45(4):158-161(in Chinese).
    [23] 陈明, 穆凯热姆·阿卜来提, 刘政, 王晓东. 响应面法优化链霉菌LG-9发酵条件及对棉花黄萎病菌的抑菌作用[J]. 湖北农业科学, 2018, 57(8):71-76. CHEN M, MUKARAM A, LIU Z, WANG XD. Optimization of fermentation conditions for anti-streptomyces LG-9 using response surface methodology and its inhibiton on Verticillium dahlia[J]. Hubei Agricultural Sciences, 2018, 57(8):71-76(in Chinese).
    [24] 夏邦华, 赵健, 宫娉, 韩小斌, 彭玉龙, 刘凯, 汪城墙, 丁延芹, 杜秉海. 基于响应面分析法优化解淀粉芽孢杆菌DSYZ发酵条件[J]. 山东农业大学学报(自然科学版), 2021, 52(2):241-246. XIA BH, ZHAO J, GONG P, HAN XB, PENG YL, LIU K, WANG CQ, DING YQ, DU BH. Optimal fermentation conditions for Bacillus amyloliquefaciens DSYZ based on response surface methodology[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2021, 52(2):241-246(in Chinese).
    [25] 孙军德, 吴月, 李海群, 乔雪, 姜治民. 基于响应面分析法的不吸水链霉菌001菌株液体发酵条件优化[J]. 沈阳农业大学学报, 2015, 46(4):481-485. SUN JD, WU Y, LI HQ, QIAO X, JIANG ZM. Optimization of culture conditions using response surface methodology for biomass production of Streptomyces ahygroscopicus 001 strain[J]. Journal of Shenyang Agricultural University, 2015, 46(4):481-485(in Chinese).
    [26] 薛锐, 付玉飞, 杨光源, 彭跃进, 杜广祖, 陈斌. 响应面设计优化莱氏绿僵菌SZCY固体发酵培养条件及致病力测定[J]. 微生物学通报, 2023, 50(2):514-525. XUE R, FU YF, YANG GY, PENG YJ, DU GZ, CHEN B. Optimization of the solid-state fermentation conditions of Metarhizium rileyi SZCY by response surface methodology and determination of the virulence[J]. Microbiology China, 2023, 50(2):514-525(in Chinese).
    [27] 蒋冬花, 郭鑫, 马静静, 王炫栋, 杨孙玉悦. 拮抗水稻白叶枯病菌菌核曲霉As-68菌株培养基配方和发酵条件的响应面优化[J]. 浙江师范大学学报(自然科学版), 2021, 44(2):188-196. JIANG DH, GUO X, MA JJ, WANG XD, YANG SYY. Response surface optimization of medium formula and fermentation conditions for antagonistic strain As-68 against Xanthomonas oryzae pv. oryzae[J]. Journal of Zhejiang Normal University (Natural Science Edition), 2021, 44(2):188-196(in Chinese).
    [28] 周立, 张慎, 陈琳, 袁芳, 周向平, 黄石旺, 李佳颖. 斜纹夜蛾高致病力菌株的筛选及四种杀虫剂的毒力测定[J]. 黑龙江农业科学, 2022(4):44-50. ZHOU L, ZHANG S, CHEN L, YUAN F, ZHOU XP, HUANG SW, LI JY. Screening of highly virulent strains of Spodoptera litura and virulence determination of four insecticides[J]. Heilongjiang Agricultural Sciences, 2022(4):44-50(in Chinese).
    [29] 陈自宏, 徐玲, 何謦成, 肖文祥, 柳青, 李芳. 滇西不同地区绿僵菌对斜纹夜蛾的毒力[J]. 云南农业大学学报(自然科学), 2020, 35(3):430-435. CHEN ZH, XU L, HE QC, XIAO WX, LIU Q, LI F. The virulence of Metarhizium to Spodoptera litura in different areas of western Yunnan[J]. Journal of Yunnan Agricultural University (Natural Science), 2020, 35(3):430-435(in Chinese).
    [30] 郭利群, 郭亚力. 蜡蚧轮枝菌对斜纹夜蛾幼虫的毒力测定[J]. 农业研究与应用, 2015(4):6-10. GUO LQ, GUO YL. Toxicity determination of Verticillium lecanii against Spodoptera litura[J]. Agricultural Research and Application, 2015(4):6-10(in Chinese).
    [31] 郭亚力, 田学军, 罗思, 李秀晗. 球孢白僵菌对斜纹夜蛾幼虫的致病性研究[J]. 江苏农业科学, 2012, 40(2):100-101. GUO YL, TIAN XJ, LUO S, LI XH. Pathogenicity of Beauveria bassiana to Spodoptera litura larvae[J]. Jiangsu Agricultural Sciences, 2012, 40(2):100-101(in Chinese).
    [32] 张挺峰, 王睿, 刘长仲. 昆虫病原真菌长孢蜡蚧菌TF-2菌株对豌豆蚜的侵染过程和致病力[J]. 昆虫学报, 2020, 63(6):744-750. ZHANG TF, WANG R, LIU CZ. Infection process and pathogenicity of entomopathogenic fungus Lecanicillium longisporum strain TF-2 to Acyrthosiphon pisum (Hemiptera:Aphididae)[J]. Acta Entomologica Sinica, 2020, 63(6):744-750(in Chinese).
    [33] 蒋春艳. 金龟子绿僵菌对黄曲条跳甲体内保护酶活性的影响[J]. 植物保护, 2022, 48(5):129-133, 157. JIANG CY. Effects of infection by Metarhizium anisopliae on the activities of protective enzymes in Phyllotreta striolata[J]. Plant Protection, 2022, 48(5):129-133, 157(in Chinese).
    [34] 张琛, 陈思博, 吴晨源, 张步遥, 张瑛, 滕斌, 胡本进. 粘虫高毒力白僵菌菌株筛选及其感菌后虫体内保护酶活性的变化[J]. 核农学报, 2020, 34(12):2701-2707. ZHANG C, CHEN SB, WU CY, ZHANG BY, ZHANG Y, TENG B, HU BJ. Screening of Beauveria bassiana strains with high virulence against armyworm and activities of protective enzymes in the larvae infected by fungi[J]. Journal of Nuclear Agricultural Sciences, 2020, 34(12):2701-2707(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汤永玉,吴国星,李冉,杨燕通,王思洁,梁晨,张曼,高熹. 响应面法优化爪哇虫草菌的培养条件及其对斜纹夜蛾的毒力和保护酶活性影响[J]. 微生物学报, 2023, 63(12): 4555-4573

复制
分享
文章指标
  • 点击次数:256
  • 下载次数: 821
  • HTML阅读次数: 585
  • 引用次数: 0
历史
  • 收稿日期:2023-04-05
  • 录用日期:2023-08-22
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码