响应面法优化黑曲霉固定化条件及其对土壤中溴氰菊酯的降解特性研究
作者:
基金项目:

国家自然科学基金(32001224, 41571049); 2022 年国家级大学生创新创业训练计划项目(202210345025)


Optimization of immobilization conditions of Aspergillus niger for degrading deltamethrin in soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [61]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】通过研究吸附包埋法固定黑曲霉(Aspergillus niger)的最佳制备工艺,初步探讨固定化黑曲霉对溴氰菊酯(deltamethrin, DM)及其中间产物3-苯氧基苯甲酸(3-phenoxybenzoic acid, 3-PBA)的降解机制,并将其应用于农业种植中以评价固定化黑曲霉的实际应用效果。【方法】以生物炭、海藻酸钠为固定化载体,通过单因素和响应面试验对固定化黑曲霉(immobilized Aspergillus niger)的制备工艺进行优化。同时,利用高效液相色谱法分析DM和3-PBA的含量变化。【结果】海藻酸钠浓度、生物炭浓度和菌液接种量为DM去除率的显著影响因子,当三者分别为25.27、1.28和125.28 g/L时,是黑曲霉固定化的最佳制备条件;在施加固定化黑曲霉后,土壤中DM半衰期由7.6 d缩短至5.2 d,黑曲霉对3-PBA也具有降解作用,在21 h达到最低浓度1.45 mg/kg;修复后的土壤可显著提高番茄种子发芽率,株高、根长等6个生长指标较DM单独处理组也有不同程度的恢复;在经固定化黑曲霉修复28 d后,污染土壤根系酶活和微生物数量均得到不同程度改善。【结论】通过对黑曲霉固定化方案的优化,可显著提高其对土壤中DM的去除率;固定化黑曲霉能加快DM降解速度,对3-PBA具有同步降解作用,且其能增强污染土壤中番茄对DM的耐受性。

    Abstract:

    [Objective] To optimize the embedding-based immobilization conditions of Aspergillus niger, preliminarily study the degradation mechanism of deltamethrin (DM) and its intermediate product 3-phenoxybenzoic acid (3-PBA) by immobilized A. niger, and further evaluate the performance of immobilized A. niger applied to agricultural cultivation. [Methods] With biochar-doped sodium alginate as an immobilized carrier, we employed single factor test and response surface methodology to optimize the immobilization conditions of A. niger. The content of DM and 3-PBA was determined by high performance liquid chromatography. [Results] Sodium alginate concentration, biochar concentration, and inoculum size were significant factors affecting DM removal rate, with the optimal values of 25.27, 1.28, and 125.28 g/L, respectively, for A. niger immobilization. After the application of immobilized A. niger, the half-life of DM in soil was shortened from 7.6 d to 5.2 d. Moreover, A. niger had a degradation effect on 3-PBA, which reached the lowest concentration of 1.45 mg/kg at the time point of 21 h. Impressively, the restoration with A. niger immobilization significantly improved the germination rate of tomato seeds, and recovered 6 growth indicators such as plant height and root length to varying degrees compared with the DM alone group. After 28 days of remediation by immobilized A. niger, both root enzyme activity and microbial number in the contaminated soil were improved to different degrees. [Conclusion] After optimization of the immobilization scheme of A. niger, the removal rate of DM in soil was significantly improved. The immobilization of A. niger can not only accelerate the degradation of DM and simultaneously degrade 3-PBA, but also enhance the tolerance of tomato to DM in the contaminated soil.

    参考文献
    [1] 刘亚莉, 王继忠, 彭书传, 陈天虎. 模拟巢湖流域氯菊酯的迁移转化和生态风险[J]. 环境科学, 2016, 37(12):4644-4650. LIU YL, WANG JZ, PENG SC, CHEN TH. Modeling the environmental behaviors and ecological risks of permethrin in Chaohu Lake[J]. Environmental Science, 2016, 37(12):4644-4650(in Chinese).
    [2] BRAGANÇA I, LEMOS PC, DELERUE-MATOS C, DOMINGUES VF. Pyrethroid pesticide metabolite, 3-PBA, in soils:method development and application to real agricultural soils[J]. Environmental Science and Pollution Research, 2019, 26(3):2987-2997.
    [3] CHALÁNYOVÁ M, HUTTA M, PAGÁČ M. On-line flow-through extraction-preconcentration-large volume injection-RP LC for trace determination of pyrethroids in Slovak soil[J]. Journal of Separation Science, 2010, 33(2):134-142.
    [4] SILVÉRIO FO, de ALVARENGA ES, MORENO SC, PICANÇO MC. Synthesis and insecticidal activity of new pyrethroids[J]. Pest Management Science, 2009, 65(8):900-905.
    [5] TANG WX, WANG D, WANG JQ, WU ZW, LI LY, HUANG ML, XU SH, YAN DY. Pyrethroid pesticide residues in the global environment:an overview[J]. Chemosphere, 2018, 191:990-1007.
    [6] ZHAO TY, HU KD, LI JL, ZHU YT, LIU AP, YAO K, LIU SL. Current insights into the microbial degradation for pyrethroids:strain safety, biochemical pathway, and genetic engineering[J]. Chemosphere, 2021, 279:130542.
    [7] TOPP E, AKHTAR MH. Mineralization of 3-phenoxybenzoate by a two-membered bacterial co-culture[J]. Canadian Journal of Microbiology, 1990, 36(7):495-499.
    [8] Wang WM. Experimental study on enhanced electrokinetic remediation of heavy metal-contaminated soil[J]. Agricultural Biotechnology, 2019, 8(6):86-89.
    [9] BIROLLI WG, BORGES EM, NITSCHKE M, ROMÃO LPC, PORTO ALM. Biodegradation pathway of the pyrethroid pesticide esfenvalerate by bacteria from different biomes[J]. Water, Air & Soil Pollution, 2016, 227(8):271.
    [10] 孙全敏, 马明昊, 迟雪梅, 迟乃玉, 张庆芳. 一株基于高通量测序降解亚硝酸盐芽孢杆菌的筛选[J]. 中国调味品, 2022, 47(7):31-35. SUN QM, MA MH, CHI XM, CHI NY, ZHANG QF. Screening of a nitrite-degrading Bacillus strain based on high-throughput sequencing[J]. China Condiment, 2022, 47(7):31-35(in Chinese).
    [11] MULLIGAN RA, REDMAN ZC, KEENER MR, BALL DB, TJEERDEMA RS. Photodegradation of clothianidin under simulated California rice field conditions[J]. Pest Management Science, 2016, 72(7):1322-1327.
    [12] ZHAO F, ZHANG H, YAN PP, CHEN YW, WU Q, FANG M, WU YN, GONG ZY. Synthesis of coimmobilized microorganisms for the removal of cadmium from cadmium-contaminated rice flour[J]. Food Science & Nutrition, 2021, 9(8):4509-4516.
    [13] DENG WQ, LIN DR, YAO K, YUAN HY, WANG ZL, LI JL, ZOU LK, HAN XF, ZHOU K, HE L, HU XJ, LIU SL. Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin[J]. Applied Microbiology and Biotechnology, 2015, 99(19):8187-8198.
    [14] SAYED MM, AFSHAR A. Selection of the most effective kinetic model of lactase hydrolysis by immobilized Aspergillus niger and free β-galactosidase[J]. Journal of Saudi Chemical Society, 2021, 25(12):101395.
    [15] 张红兵. 固定化微生物处理有机污染物[J]. 山西化工, 2007, 27(1):30-35. ZHANG HB. Treatment of organic pollutants by immobilized microbial cells[J]. Shanxi Chemical Industry, 2007, 27(1):30-35(in Chinese).
    [16] GUO JY, CHEN C, CHEN WJ, JIANG JY, CHEN B, CHEN B, ZHENG F. Effective immobilization of Bacillus subtilis in chitosan-sodium alginate composite carrier for ammonia removal from anaerobically digested swine wastewater[J]. Chemosphere, 2021, 284:131266.
    [17] 黄静, 梁密. 改性蛭石吸附-包埋法固定化脂肪酶的研究[J]. 食品与发酵工业, 2020, 46(14):103-107. HUANG J, LIANG M. Lipase immobilization by modified vermiculite adsorption-embedding method[J]. Food and Fermentation Industries, 2020, 46(14):103-107(in Chinese).
    [18] FEKI F, KLISUROVA D, ALI MASMOUDI M, CHOURA S, DENEV P, TRENDAFILOVA A, CHAMKHA M, SAYADI S. Optimization of microwave assisted extraction of simmondsins and polyphenols from Jojoba (Simmondsia chinensis) seed cake using Box-Behnken statistical design[J]. Food Chemistry, 2021, 356:129670.
    [19] 陈显玲, 张鹏, 农秀丽, 卢丽婷, 杨福川, 麦雪兰, 黄安甲, 苏龙. 响应面法优化海藻酸钠固定菊糖蔗糖酶的研究[J]. 饲料研究, 2022, 45(8):73-77. CHEN XL, ZHANG P, NONG XL, LU LT, YANG FC, MAI XL, HUANG AJ, SU L. Optimization of immobilizing conditions for inulosucrase with sodium alginate by response surface methodology[J]. Feed Research, 2022, 45(8):73-77(in Chinese).
    [20] 于波. 固定化黑曲霉对溴氰菊酯废水的修复[D]. 沈阳:沈阳化工大学硕士学位论文, 2018. YU B. Remediation of deltamethrin wastewater by immobilized Aspergillus niger[D]. Shenyang:Master's Thesis of Shenyang University of Chemical Technology, 2018(in Chinese).
    [21] 黄文源, 侯少锋, 龙友华, 李明, 吴小虎, 徐军, 刘新刚, 董丰收, 吴小毛, 郑永权. 溴氰菊酯降解菌的分离筛选与应用潜力评价[J]. 农药学学报, 2018, 20(5):643-651. HUANG WY, HOU SF, LONG YH, LI M, WU XH, XU J, LIU XG, DONG FS, WU XM, ZHENG YQ. Isolation, screening and application potential evaluation of deltamethrin-degrading microorganism[J]. Chinese Journal of Pesticide Science, 2018, 20(5):643-651(in Chinese).
    [22] XIE WJ, ZHOU JM, WANG HY, CHEN XQ. Effect of nitrogen on the degradation of cypermethrin and its metabolite 3-phenoxybenzoic acid in soil[J]. Pedosphere, 2008, 18(5):638-644.
    [23] GOLDMANN WM, AHOLA J, MANKINEN O, KANTOLA AM, KOMULAINEN S, TELKKI VV, TANSKANEN J,. Determination of phenolic hydroxyl groups in technical lignins by ionization difference ultraviolet spectrophotometry (∆ε-IDUS method)[J]. Periodica Polytechnica Chemical Engineering, 2017, 61(2):93-101.
    [24] EL-GHONEMY DH, ALI TH, HASSANEIN NM, ABDELLAH EM, FADEL M, AWAD GEA, ABDOU DAM. Thermo-alkali-stable lipase from a novel Aspergillus niger:statistical optimization, enzyme purification, immobilization and its application in biodiesel production[J]. Preparative Biochemistry & Biotechnology, 2021, 51(3):225-240.
    [25] SONG JY, IMANAKA HY, IMAMURA KY, KAJITANI KT, NAKANISHI KH. Development of a highly efficient indigo dyeing method using indican with an immobilized β-glucosidase from Aspergillus niger[J]. Journal of Bioscience and Bioengineering, 2010, 110(3):281-287.
    [26] 刘世军, 唐绒绒, 唐志书, 雷甜甜, 王锦, 刘垚润. 高效液相色谱法检测大枣中溴氰菊酯残留[J]. 陕西农业科学, 2019, 65(1):67-68. LIU SJ, TANG RR, TANG ZS, LEI TT, WANG J, LIU YR. Determination of deltamethrin residues in jujube by HPLC[J]. Shaanxi Journal of Agricultural Sciences, 2019, 65(1):67-68(in Chinese).
    [27] 张泽钰, 李茹莹. 固定化微生物对河水的脱氮效果研究[J]. 环境科学学报, 2020, 40(1):161-165. ZHANG ZY, LI RY. Study on the nitrogen removal in river water by immobilized microorganisms[J]. Acta Scientiae Circumstantiae, 2020, 40(1):161-165(in Chinese).
    [28] SUBARA D, JASWIR I, RASHID ALKHATIB MF, ALI NOORBATCHA I. Understanding the significance variables for fabrication of fish gelatin nanoparticles by Plackett-Burman design[J]. IOP Conference Series:Materials Science and Engineering, 2018, 290:012006.
    [29] WANG ZJ, ZHANG XJ, YANG SH, LIU ZT, ZHANG JS, LI ZH, CHEN XQ, ZHANG Y. Optimization of the ultrasound-assisted aqueous enzymatic extraction of Pinus koraiensis nuts oil by response surface methodology[J]. Natural Product Research, 2022, 42(4):1478-6419.
    [30] 谢文军, 周健民, 王火焰, 陈小琴. HPLC法测定土壤中3-苯氧基苯甲酸[J]. 农业环境科学学报, 2007, 26(2):608-611. XIE WJ, ZHOU JM, WANG HY, CHEN XQ. Determination of 3-phenoxybenzoic acid in soil using HPLC[J]. Journal of Agro-Environment Science, 2007, 26(2):608-611(in Chinese).
    [31] 张宝成, 杨春秀, 王静. 两种楤木根际土壤碳特征及酶活性[J]. 水土保持研究, 2021, 28(3):83-87. ZHANG BC, YANG CX, WANG J. Characteristics of carbon and enzyme activity of rhizosphere soil of two Aralia arborescens[J]. Research of Soil and Water Conservation, 2021, 28(3):83-87(in Chinese).
    [32] ZHANG Y, JIAO L, XU WQ, CHEN YF, WU Y, YAN HY, GU WL, ZHU CZ. Defect-rich and ultrathin nitrogen-doped carbon nanosheets with enhanced peroxidase-like activity for the detection of urease activity and fluoride ion[J]. Chinese Chemical Letters, 2022, 33(3):1317-1320.
    [33] SHI LE, TANG ZX, YI Y, CHEN JS, XIONG WY, YING GQ. Immobilization of nuclease p1 on chitosan micro-spheres[J]. Chemical and Biochemical Engineering Quarterly, 2011, 25(1):83-88.
    [34] WU QB, ZHU YL, LIU YZ. Evaluating model of frozen soil environment change under engineering actions[J]. Science in China Series D:Earth Sciences, 2002, 45(10):893-902.
    [35] 谢夏, 杨建兰, 刘新育. 土壤中细菌菌落总数的测定条件优化[J]. 中国农学通报, 2020, 36(11):92-95. XIE X, YANG JL, LIU XY. Optimizing the determination conditions of total bacterial colonies in soil[J]. Chinese Agricultural Science Bulletin, 2020, 36(11):92-95(in Chinese).
    [36] FILIPPOV M, TATARNIKOVA O, POZDNYAKOVA N, VOROBYOV V. Inflammation/bioenergetics- associated neurodegenerative pathologies and concomitant diseases:a role of mitochondria targeted catalase and xanthophylls[J]. Neural Regeneration Research, 2021, 16(2):223.
    [37] WOJCIECHOWSKA M, STEPNOWSKI P, GOŁĘBIOWSKI M. The impact of insecticides containing deltamethrin and cyfluthrin on the composition of surface compounds in the larvae, females and males of Tenebrio molitor[J]. Biomedical Chromatography, 2022, 36(5):14-29.
    [38] BUSTOS-TERRONES YA, ESTRADA-VÁZQUEZ R, RAMÍREZ-PEREDA B, BUSTOS-TERRONES V, RANGEL-PERAZA JG. Kinetics of a fixed bed reactor with immobilized microorganisms for the removal of organic matter and phosphorous[J]. Water Environment Research, 2020, 92(11):1956-1965.
    [39] 张靖雯, 肖盈, 陈佳志. 复合固定化菌株L5降解高效氯氰菊酯的特性研究[J]. 广东化工, 2021, 48(22):116-118. ZHANG JW, XIAO Y, CHEN JZ. Study on the degradation of beta-cypermethrin by composite immobilized strain L5[J]. Guangdong Chemical Industry, 2021, 48(22):116-118(in Chinese).
    [40] DING HL, LUO XG, ZHANG XN, YANG H. Alginate-immobilized Aspergillus niger:characterization and biosorption removal of thorium ions from radioactive wastewater[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2019, 562:186-195.
    [41] REN BQ, WANG JY, ZHANG WJ, KAN K, ZHAO LY, SONG XX, CUI CW. Removal of Cr(VI) from solution by free and immobilised spores of Aspergillus niger[J]. Micro & Nano Letters, 2017, 12(9):615-617.
    [42] DING DX, TAN X, HU N, LI GY, WANG YD, TAN Y. Removal and recovery of uranium (VI) from aqueous solutions by immobilized Aspergillus niger powder beads[J]. Bioprocess and Biosystems Engineering, 2012, 35(9):1567-1576.
    [43] 喻清, 丁德馨, 李登科, 余园平, 罗艺, 王启方, 胡南. 固定化黑曲霉活性炭吸附铀的机理[J]. 中国有色金属学报, 2016, 26(4):936-945. YU Q, DING DX, LI DK, YU YP, LUO Y, WANG QF, HU N. Adsorption mechanism of uranium of immobilizing Aspergillus niger activated carbon[J]. The Chinese Journal of Nonferrous Metals, 2016, 26(4):936-945(in Chinese).
    [44] JIAO J, GAI QY, WEI W, ZHANG YP, NIU LL, FU YJ, Wang X. Remarkable enhancement of flavonoid production in a co-cultivation system of Isatis tinctoria L. hairy root cultures and immobilized Aspergillus niger[J]. Industrial Crops and Products, 2018, 112:252-261.
    [45] 许超群, 万云宝, 张小龙, 龚大春, 田毅红, 郭金玲. 吸附交联法固定化黑曲霉β-葡萄糖苷酶[J]. 中国酿造, 2016, 35(4):83-87. XU CQ, WAN YB, ZHANG XL, GONG DC, TIAN YH, GUO JL. Immobilization of β-glucosidase from Aspergillus niger by adsorption and crosslinking method[J]. China Brewing, 2016, 35(4):83-87(in Chinese).
    [46] 潘利华, 罗建平, 姜绍通. 固定化黑曲霉β-葡萄糖苷酶制备染料木素活性苷元的研究[J]. 生物工程学报, 2007, 23(6):1060-1064. PAN LH, LUO JP, JIANG ST. Study on isoflavone active aglycone preparation by immobilized β-glucosidase from Aspergillus niger[J]. Chinese Journal of Biotechnology, 2007, 23(6):1060-1064(in Chinese).
    [47] XU SS, ZHANG QL, BAI DM, CAI LN, LU T, YAO SJ. Removal process and mechanism of hexavalent chromium by adsorption-coupled reduction with marine-derived Aspergillus niger mycelial pellets[J]. Chinese Journal of Chemical Engineering, 2022, 49:198-204.
    [48] ZHANG K, WU XL, LUO HB, WANG W, YANG SQ, CHEN J, CHEN W, CHEN J, MO Y, LI L. Biochemical pathways and enhanced degradation of dioctyl phthalate (DEHP) by sodium alginate immobilization in MBR system[J]. Water Science and Technology, 2021, 83(3):664-677.
    [49] CHEN LH, ZHAO SJ, YANG YM, LI L, WANG DM. Study on degradation of oily wastewater by immobilized microorganisms with biodegradable polyacrylamide and sodium alginate mixture[J]. ACS Omega, 2019, 4(12):15149-15157.
    [50] LI X, WANG YX, LUO T, MA YS, WANG B, HUANG QY. Remediation potential of immobilized bacterial strain with biochar as carrier in petroleum hydrocarbon and Ni co-contaminated soil[J]. Environmental Technology, 2022, 43(7):1068-1081.
    [51] QIAO L, WEN DH, WANG JL. Biodegradation of pyridine by Paracoccus sp. KT-5 immobilized on bamboo-based activated carbon[J]. Bioresource Technology, 2010, 101(14):5229-5234.
    [52] OGBONNAYA U, SEMPLE K. Impact of biochar on organic contaminants in soil:a tool for mitigating risk?[J]. Agronomy, 2013, 3(2):349-375.
    [53] 乔禹欣. 双氟磺草胺在环境中的行为及降解机制的研究[D]. 哈尔滨:东北农业大学硕士学位论文, 2019. QIAO YX. Study on the behavior and degradation mechanism of florasulam in the environment[D]. Harbin:Master's Thesis of Northeast Agricultural University, 2019(in Chinese).
    [54] 宋国春, 李瑞娟, 刘同金, 杨万海, 于建垒. 溴氰菊酯在油麦菜和土壤中的残留动态及安全使用评价[J]. 山东农业科学, 2016, 48(12):146-150. SONG GC, LI RJ, LIU TJ, YANG WH, YU JL. Residual dynamics and safety evaluation of deltamethrin in leaf lettuce and soil[J]. Shandong Agricultural Sciences, 2016, 48(12):146-150(in Chinese).
    [55] MORGAN MK. Children's exposures to pyrethroid insecticides at home:a review of data collected in published exposure measurement studies conducted in the United States[J]. International Journal of Environmental Research and Public Health, 2012, 9(8):2964-2985.
    [56] 邓维琴, 刘书亮, 姚开. 微生物降解3-苯氧基苯甲酸的研究进展[J]. 微生物学报, 2015, 55(9):1081-1088. DENG WQ, LIU SL, YAO K. Microbial degradation of 3-phenoxybenzoic acid-a review[J]. Acta Microbiologica Sinica, 2015, 55(9):1081-1088(in Chinese).
    [57] 袁怀瑜, 刘书亮, 王志龙, 赵楠, 赖文. 3-苯氧基苯甲酸降解真菌的筛选及其降解特性[J]. 食品科学, 2013, 34(7):152-156. YUAN HY, LIU SL, WANG ZL, ZHAO N, LAI W. Isolation and identification of a 3-phenoxybenzoic acid-degrading fungus and its degradation characteristics[J]. Food Science, 2013, 34(7):152-156(in Chinese).
    [58] 张哲. 枯草芽孢杆菌YB1和黑曲霉YF1菌株对烟嘧磺隆的降解作用研究[D]. 保定:河北农业大学博士学位论文, 2019. ZHANG Z. Study on the degradation of nicosulfuron by Bacillus subtilis YB1 and Aspergillus niger YF1[D]. Baoding:Doctoral Dissertation of Hebei Agricultural University, 2019(in Chinese).
    [59] 靳玉婷, 李先藩, 蔡影, 胡宏祥, 刘运峰, 付思伟, 张博睿. 秸秆还田配施化肥对稻-油轮作土壤酶活性及微生物群落结构的影响[J]. 环境科学, 2021, 42(8):3985-3996. JIN YT, LI XF, CAI Y, HU HX, LIU YF, FU SW, ZHANG BR. Effects of straw return to field with chemical fertilizer on soil enzyme activity and microbial community structure of rice-oil rotation[J]. Environmental Science, 2021, 42(8):3985-3996(in Chinese).
    [60] 李青云, 周茂钟, 刘幽燕, 唐爱星, 覃益民, 梁思婷, 韦滢军. 固定化铜绿假单胞菌GF31对氯氰菊酯降解的强化作用[J]. 化工学报, 2013, 64(6):2219-2226. LI QY, ZHOU MZ, LIU YY, TANG AX, QIN YM, LIANG ST, WEI YJ. Bioaugmentation strategy to enhance cypermethrin degradation by immobilized Pseudomonas aeruginosa GF31[J]. CIESC Journal, 2013, 64(6):2219-2226(in Chinese).
    [61] 边照辉. 番茄根系分泌物对根际微生物和线虫生防菌生长的影响[D]. 昆明:云南大学硕士学位论文, 2019. BIAN ZH. Effects of tomato root exudates on the growth of rhizosphere microorganisms and nematode biocontrol bacteria[D]. Kunming:Master's Thesis of Yunnan University, 2019(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张晓菲,倪晓菁,张子仪,彭博权,周舒扬,阮心依,方幽文,梁馨月,周天逸,王倩,刘鹏. 响应面法优化黑曲霉固定化条件及其对土壤中溴氰菊酯的降解特性研究[J]. 微生物学报, 2023, 63(12): 4574-4593

复制
分享
文章指标
  • 点击次数:212
  • 下载次数: 682
  • HTML阅读次数: 508
  • 引用次数: 0
历史
  • 收稿日期:2023-04-12
  • 录用日期:2023-07-05
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码