饲养方式对藏猪结肠消化酶活性、菌群结构及短链脂肪酸含量的影响
作者:
基金项目:

西藏自治区自然科学基金(XZ202101ZR0020G);西藏自治区重点研发计划(XZ202001ZY0039N)


Effects of different feeding methods on digestive enzyme activity, microflora structure, and short chain fatty acids in colon of Tibetan pigs
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】为探究饲养方式对藏猪结肠消化酶活性、菌群结构和短链脂肪酸含量的影响。【方法】研究分别选取5头相同月龄的放养藏猪和舍饲藏猪。屠宰采集结肠粪便样品,分别利用酶联免疫吸附法(enzyme linked immunosorbent assay, ELISA)试剂盒、高通量测序技术和气相色谱仪测定放养藏猪和舍饲藏猪结肠消化酶活性、菌群结构和短链脂肪酸含量。【结果】同一月龄下,放养藏猪的日增重显著低于舍饲藏猪(P<0.05)。放养藏猪结肠中纤维素酶和半纤维素酶的活性均显著高于舍饲藏猪(P<0.05);2种饲养方式藏猪结肠的6种α多样性指数均无显著差异(P>0.05),且主成分分析(principal component analysis, PCA)得到放养藏猪和舍饲藏猪结肠菌群存在一定的相似性。在门和科分类水平上,相较于舍饲藏猪,放养藏猪结肠中疣微菌门、黄杆菌科、月形单胞菌科、浮霉状菌科和伊格尔兹氏菌科的相对丰度显著升高,而链球菌科、韦荣氏球菌科、假单胞菌科、红环菌科、红螺菌科、乳杆菌科、理研菌科和巴斯德氏菌科的相对丰度显著降低(P<0.05);在属和种分类水平上,共有7个菌属和4个菌种在两种饲养方式藏猪结肠中存在显著差异,依次为密螺旋菌属、瘤胃球菌属、伊格尔兹氏菌属、巨球型菌属、另枝菌属、假单胞菌属、链球菌属、普拉梭菌、埃氏巨球形菌、罗伊氏乳杆菌和普氏菌。短链脂肪酸研究表明,放养藏猪结肠中乙酸的含量显著高于舍饲藏猪(P<0.05)。【结论】在本试验条件下,饲养方式对藏猪结肠纤维素酶和半纤维素酶活性、菌群结构及乙酸含量均有影响。与舍饲藏猪相比,放养藏猪生长性能较差,但其对纤维素的降解能力更强。

    Abstract:

    [Objective] To explore the effects of feeding methods on the digestive enzyme activity, microflora structure, and short chain fatty acids in the colon of Tibetan pigs. [Methods] Five free-ranging Tibetan pigs and 5 captive Tibetan pigs with the same age were randomly selected. The pigs were slaughtered for the collection of colonic feces samples. The digestive enzyme activity, microflora structure, and content of short chain fatty acids in the samples were determined by enzyme linked immunosorbent assay (ELISA), high-throughput sequencing, and gas chromatography, respectively. [Results] The free-ranging Tibetan pigs had lower average daily gain and higher activities of cellulase and hemicellulase in the colon than the captive Tibetan pigs (P<0.05). The alpha diversity indexes of colon microflora had no significant difference (P>0.05) and the principal component analysis showed similarity in the microflora structure between the two groups of pigs. At the phylum and family levels, the colon of the free-ranging Tibetan pigs had higher relative abundance of Verrucomicrobia, Flavobacteriaceae, Selenomonadaceae, Planctomycetaceae, and Eggerthellaceae and lower relative abundance of Streptococcaceae, Veillonellaceae, Pseudomonadaceae, Rhodocyclaceae, Rhodospirillaceae, Lactobacillaceae, Rikenellaceae, and Pasteurellaceae than that of the captive Tibetan pigs (P<0.05). At the genus and species levels, 7 genera and 4 species showed significant differences in the relative abundance between the pigs fed with the two methods, including Treponema, Ruminococcus, Eggerthella, Megasphaera, Alistipes, Pseudomonas, Streptococcus, Prevotella copri, Lactobacillus reuteri, Megasphaera elsdenii, and Faecalibacterium prausnitzii. The content of acetic acid in the colon of free-ranging Tibetan pigs was higher in that in the colon of captive Tibetan pigs (P<0.05). [Conclusion] Feeding methods affect the activities of cellulase and hemicellulase, microflora structure, and acetic acid content in the colon of Tibetan pigs. The free-ranging grazing Tibetan pigs showed poorer growth performance and stronger cellulose-degrading ability than the captive Tibetan pigs.

    参考文献
    [1] ZHOU SS, LUO RB, GONG G, WANG YF, GESANG ZM, WANG K, XU ZF, SUOLANG SZ. Characterization of metagenome-assembled genomes and carbohydrate-degrading genes in the gut microbiota of Tibetan pig[J]. Frontiers in Microbiology, 2020, 11:595066.
    [2] 李江凌, 陈晓晖, 刘锐, 王秋实, 曾凯, 廖党金, 高荣, 吕学斌. 藏猪耐粗饲特性及其生化机理研究[J]. 中国猪业, 2015, 10(2):70-72. LI JL, CHEN XH, LIU R, WANG QS, ZENG K, LIAO DJ, GAO R, LV XB. Study on coarse feeding tolerance characteristics and biochemical mechanism of Tibetan pigs[J]. China Swine Industry, 2015, 10(2):70-72(in Chinese).
    [3] 贺寒冰, 尹洛蓉, 杨肖, 李江凌, 白光明, 刘瑞, 曾凯, 吕学斌, 高荣. 藏猪和长白猪对口蹄疫疫苗的免疫应答特性比较研究[J]. 四川动物, 2011, 30(4):517-521. HE HB, YIN LR, YANG X, LI JL, BAI GM, LIU R, ZENG K, LV XB, GAO R. Comparative studies on the immune responses of Tibet and Landrace piglets to FMD vaccine[J]. Sichuan Journal of Zoology, 2011, 30(4):517-521(in Chinese).
    [4] 商振达, 张颖, 刘锁珠, 董冰. 营养素改善藏母猪繁殖性能的可能性分析[J]. 动物营养学报, 2021, 33(3):1249-1256. SHANG ZD, ZHANG Y, LIU SZ, DONG B. Probability of improving reproductive performance of Tibetan sows by nutrients[J]. Chinese Journal of Animal Nutrition, 2021, 33(3):1249-1256(in Chinese).
    [5] KIM HB, BOREWICZ K, WHITE BA, SINGER RS, SREEVATSAN S, TU ZJ, ISAACSON RE. Microbial shifts in the swine distal gut in response to the treatment with antimicrobial growth promoter, tylosin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(38):15485-15490.
    [6] CHEN YM, HELM ET, GABLER N, HOSTETTER JM, BURROUGH ER. Alterations in intestinal innate mucosal immunity of weaned pigs during porcine epidemic diarrhea virus infection[J]. Veterinary Pathology, 2020, 57(5):642-652.
    [7] YOUNES H, COUDRAY C, BELLANGER J, DEMIGNÉ C, RAYSSIGUIER Y, RÉMÉSY C. Effects of two fermentable carbohydrates (inulin and resistant starch) and their combination on calcium and magnesium balance in rats[J]. British Journal of Nutrition, 2001, 86(4):479-485.
    [8] YANG WP, XIN HY, CAO FJ, HOU JX, MA L, BAO LJ, WANG FY, YU ZT, CAO BY. The significance of the diversity and composition of the cecal microbiota of the Tibetan swine[J]. Annals of Microbiology, 2018, 68(4):185-194.
    [9] 刘松珍, 张雁, 张名位, 孙远明, 魏振承. 肠道短链脂肪酸产生机制及生理功能的研究进展[J]. 广东农业科学, 2013, 40(11):99-103. LIU SZ, ZHANG Y, ZHANG MW, SUN YM, WEI ZC. Research progress on producing mechanism and physiological functions of intestinal short chain fatty acids[J]. Guangdong Agricultural Sciences, 2013, 40(11):99-103(in Chinese).
    [10] CONG J, ZHOU P, ZHANG RY. Intestinal microbiota-derived short chain fatty acids in host health and disease[J]. Nutrients, 2022, 14(9):1977.
    [11] MA JY, PIAO XS, MAHFUZ S, LONG SF, WANG J. The interaction among gut microbes, the intestinal barrier and short chain fatty acids[J]. Animal Nutrition, 2022, 9:159-174.
    [12] XIANG ZG, ZHU H, YANG BC, FAN H, GUO JG, LIU JN, KONG Q, TENG QF, SHANG HQ, SU L, QIN C. A glance at the gut microbiota of five experimental animal species through fecal samples[J]. Scientific Reports, 2020, 10:16628.
    [13] DING SJ, CHENG YT, ABUL KALAM AZAD M, DONG HB, HE J, HUANG P, KONG XF. Dietary fiber alters immunity and intestinal barrier function of different breeds of growing pigs[J]. Frontiers in Immunology, 2023,14:1104837.
    [14] 商振达, 商鹏, 刘锁珠, 谭占坤, 王宏辉, 孔庆辉. 藏猪小肠形态、消化酶及微生物多样性研究[J]. 微生物学报, 2021, 61(3):655-666. SHANG ZD, SHANG P, LIU SZ, TAN ZK, WANG HH, KONG QH. Intestinal morphology, digestive enzymes and bacterial diversity of Tibetan pigs[J]. Acta Microbiologica Sinica, 2021, 61(3):655-666(in Chinese).
    [15] 惠铄智, 蒙洪娇, 蔡维北, 孔祥杰, 杨一, 姜海龙. 不同饲养方式对松辽黑猪生长性能及肠道消化酶活性的影响[J]. 黑龙江畜牧兽医(下半月), 2017(4):67-69. HUI SZ, MENG HJ, CAI WB, KONG XJ, YANG Y, JIANG HL. Effects of different feeding methods on growth performance and intestinal digestive enzyme activities of Songliao black pigs[J]. Heilongjiang Animal Science and Veterinary Medicine (last half month), 2017(4):67-69(in Chinese).
    [16] 马桂琳, 刘汉丽, 张红霞, 杨江海, 张潭瑛, 毛红霞, 丁考仁青. 不同饲养方式下合作猪的生长性能[J]. 畜牧与兽医, 2013, 45(3):37-38. MA GL, LIU HL, ZHANG HX, YANG JH, ZHANG TY, MAO HX, DING KRQ. Growth performance of cooperative pigs under different feeding methods[J]. Animal Husbandry & Veterinary Medicine, 2013, 45(3):37-38(in Chinese).
    [17] 周广驰, 魏艳华, 李莹, 王素红. 不同饲养方式对鲁莱黑猪生产性能及肌红蛋白含量影响的研究[J]. 黑龙江畜牧兽医, 2022(16):60-65, 135. ZHOU GC, WEI YH, LI Y, WANG SH. Effects of different feeding methods on production performance and myoglobin content in Lulai black pigs[J]. Heilongjiang Animal Science and Veterinary Medicine, 2022(16):60-65, 135(in Chinese).
    [18] PU G, HOU LM, DU TR, ZHOU WD, LIU CX, NIU PP, WU CW, BAO WB, HUANG RH, LI PH. Increased proportion of fiber-degrading microbes and enhanced cecum development jointly promote host to digest appropriate high-fiber diets[J]. mSystems, 2023, 8(1):e0093722.
    [19] BAN-TOKUDA T, MAEKAWA S, MIWA T, OHKAWARA S, MATSUI H. Changes in faecal bacteria during fattening in finishing swine[J]. Anaerobe, 2017, 47:188-193.
    [20] CUI C, SHEN CJ, JIA G, WANG KN. Effect of dietary Bacillus subtilis on proportion of Bacteroidetes and Firmicutes in swine intestine and lipid metabolism[J]. Genetics and Molecular Research:GMR, 2013, 12(2):1766-1776.
    [21] 杨慧. 猪肠道微生物组对脂肪沉积和饲料利用率的影响[D]. 南昌:江西农业大学博士学位论文, 2016.YANG H. The effects of porcine gut microbiome on fat deposition and feed efficiency[D]. Nanchang:Doctoral Dissertation of Jiangxi Agricultural University, 2016(in Chinese).
    [22] BÁRCENA C, VALDÉS-MAS R, MAYORAL P, GARABAYA C, DURAND S, RODRÍGUEZ F, TERESA FERNÁNDEZ-GARCÍA M, SALAZAR N, NOGACKA AM, GARATACHEA N, BOSSUT N, APRAHAMIAN F, LUCIA A, KROEMER G, FREIJE JMP, QUIRÓS PM, LÓPEZ-OTÍN C. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice[J]. Nature Medicine, 2019, 25(8):1234-1242.
    [23] 张君胜, 徐盼, 陶勇, 倪黎纲, 周春宝, 蔡佳炜, 朱淑斌. 不同生长性能苏姜猪保育猪肠道菌群差异分析[J]. 微生物学通报, 2020, 47(12):4240-4249. ZHANG JS, XU P, TAO Y, NI LG, ZHOU CB, CAI JW, ZHU SB. Analysis on the difference of intestinal microflora of Sujiang piglets with different growth performance[J]. Microbiology China, 2020, 47(12):4240-4249(in Chinese).
    [24] 任敏敏, 杨华, 项云, 章啸君, 徐娥, 申露露, 肖英平. 饲粮纤维水平对金华猪生长性能、盲肠菌群结构和短链脂肪酸含量的影响[J]. 动物营养学报, 2020, 32(6):2575-2585. REN MM, YANG H, XIANG Y, ZHANG XJ, XU E, SHEN LL, XIAO YP. Effects of dietary fiber levels on growth performance, microbial community structure and short-chain fatty acid content in cecum of Jinhua pigs[J]. Chinese Journal of Animal Nutrition, 2020, 32(6):2575-2585(in Chinese).
    [25] FAN YT, XIA GL, JIN YQ, WANG HR. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4[J]. Journal of Applied Microbiology, 2022, 132(4):2661-2672.
    [26] LAMENDELLA R, DOMINGO JW, GHOSH S, MARTINSON J, OERTHER DB. Comparative fecal metagenomics unveils unique functional capacity of the swine gut[J]. BMC Microbiology, 2011, 11:103.
    [27] CHRISTOPHERSON MR, DAWSON JA, STEVENSON DM, CUNNINGHAM AC, BRAMHACHARYA S, WEIMER PJ, KENDZIORSKI C, SUEN G. Unique aspects of fiber degradation by the ruminal ethanologen Ruminococcus albus 7 revealed by physiological and transcriptomic analysis[J]. BMC Genomics, 2014, 15(1):1-13.
    [28] PARKER BJ, WEARSCH PA, VELOO ACM, RODRIGUEZ-PALACIOS A. The genus Alistipes:gut bacteria with emerging implications to inflammation, cancer, and mental health[J]. Frontiers in Immunology, 2020, 11:906.
    [29] WOOD SJ, KUZEL TM, SHAFIKHANI SH. Pseudomonas aeruginosa:infections, animal modeling, and therapeutics[J]. Cells, 2023, 12(1):199.
    [30] 宦海霞, 黄莉莉, 张科. 猪链球菌多样性及其致病因子研究进展[J]. 中国畜牧兽医, 2014, 41(2):218-223. HUAN HX, HUANG LL, ZHANG K. Advance on diversity and virulent factors of Streptococcus suis[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(2):218-223(in Chinese).
    [31] FENG J, TANG H, LI M, PANG XY, WANG LH, ZHANG MH, ZHAO YF, ZHANG XJ, SHEN J. The abundance of fecal Faecalibacterium prausnitzii in relation to obesity and gender in Chinese adults[J]. Archives of Microbiology, 2014, 196(1):73-77.
    [32] LINARES-PASTÉN JA, HERO JS, PISA JH, TEIXEIRA C, NYMAN M, ADLERCREUTZ P, ALEJANDRA MARTINEZ M, KARLSSON EN. Novel xylan-degrading enzymes from polysaccharide utilizing loci of Prevotella copri DSM 18205[J]. Glycobiology, 2021, 31(10):1330-1349.
    [33] NAKPHAICHIT M, THANOMWONGWATTANA S, PHRAEPHAISARN C, SAKAMOTO N, KEAWSOMPONG S, NAKAYAMA J, NITISINPRASERT S. The effect of including Lactobacillus reuteri KUB-AC5 during post-hatch feeding on the growth and ileum microbiota of broiler chickens[J]. Poultry Science, 2011, 90(12):2753-2765.
    [34] CHEN LM, SHEN YZ, WANG C, DING LY, ZHAO FF, WANG MZ, FU JY, WANG HR. Megasphaera elsdenii lactate degradation pattern shifts in rumen acidosis models[J]. Frontiers in Microbiology, 2019, 10:162.
    [35] WILLIAMS BA, VERSTEGEN MWA, TAMMINGA S. Fermentation in the large intestine of single-stomached animals and its relationship to animal health[J]. Nutrition Research Reviews, 2001, 14(2):207.
    [36] PU G, LI PH, DU TR, NIU Q, FAN LJ, WANG H, LIU H, LI KJ, NIU PP, WU CW, ZHOU WD, HUANG RH. Adding appropriate fiber in diet increases diversity and metabolic capacity of distal gut microbiota without altering fiber digestibility and growth rate of finishing pig[J]. Frontiers in Microbiology, 2020, 11:533.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王燕红,张蓓宁,刘锁珠,谭占坤,商鹏,商振达. 饲养方式对藏猪结肠消化酶活性、菌群结构及短链脂肪酸含量的影响[J]. 微生物学报, 2023, 63(12): 4659-4670

复制
分享
文章指标
  • 点击次数:184
  • 下载次数: 595
  • HTML阅读次数: 474
  • 引用次数: 0
历史
  • 收稿日期:2023-04-21
  • 录用日期:2023-07-17
  • 在线发布日期: 2023-11-29
  • 出版日期: 2023-12-04
文章二维码