(p)ppGpp——“魔斑”核苷酸在细菌中的研究进展
作者:
基金项目:

国家自然科学基金(32372628,31901930,U21A20223);浙江省自然科学基金(LGN22C140006);浙江省属高校基本科研业务费(2022YW17);浙江省“三农九方”科技协作计划(2023SNJF034);浙江省“尖兵”“领雁”研发攻关计划(2023C02030,2022C02047)


(p)ppGpp-“magic point” nucleotide in bacteria
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [68]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    鸟苷四磷酸(guanosine tetraphosphate,ppGpp)/鸟苷五磷酸(guanosine pentaphosphate,pppGpp)是细菌严谨反应的信号分子,其合成和水解由Rel/SpoT同系物(RelA/SpoT homologue,RSH)家族的蛋白质合成和水解活性控制。(p)ppGpp介导的严谨反应能够提高细菌对营养匮乏的适应能力和抗生素抗性。近年来发现(p)ppGpp与细菌生长和细胞分裂、抗生素合成等都密切相关,是细胞内重要的全局调控因子。(p)ppGpp在细菌细胞中有许多靶点,使其可以调节DNA复制、转录、细胞周期、核糖体生物合成以及抗生素合成基因簇的表达。然而,(p)ppGpp如何控制转录和其他代谢过程取决于细菌种类,并在不同的微生物中通过不同的机制调节相同的过程。因此,本文通过综述(p)ppGpp的合成/水解酶的种类和调节机制,(p)ppGpp对微生物代谢调控机制、对细胞周期的影响机制,以及(p)ppGpp对抗生素合成和耐受性的调控机制,为细菌耐药性研究和细胞生理学研究奠定基础。

    Abstract:

    Guanosine tetraphosphate (ppGpp)/guanosine pentaphosphate (pppGpp) is a signaling molecule in the bacterial stringent response, whose synthesis and hydrolysis are controlled by the synthesis and hydrolysis activities of proteins in the RelA/SpoT homologue (RSH) family. The (p)ppGpp-mediated stringent response enhanced bacterial adaptation to nutrient deprivation and antibiotic resistance. In recent years, (p)ppGpp has been found to associate with bacterial growth, cell division, and antibiotic synthesis, which was an important global regulator in the bacteria. (p)ppGpp has many target sites in the cell, which allow it to regulate DNA replication, transcription, cell cycle, ribosome biosynthesis, and the expression of antibiotic synthesis gene clusters. However, how (p)ppGpp controls transcription and other metabolic processes depends on the bacterial species, and (p)ppGpp regulates the same processes in different bacteria species through different mechanisms. Therefore, this manuscript reviewed the types of (p)ppGpp synthetic and hydrolytic enzymes, the mechanisms of (p)ppGpp regulation on microbial metabolism and the cell cycle, as well as the regulation mechanisms of antibiotic synthesis and tolerance, which lays the foundation for bacterial resistance and cell physiology researches.

    参考文献
    [1] STEINCHEN W, ZEGARRA V, BANGE G. (p)ppGpp:magic modulators of bacterial physiology and metabolism[J]. Frontiers in Microbiology, 2020, 11:2072.
    [2] Petchiappan A, Gottesman S. How does the alarmone ppGpp change bacterial cell metabolism? From genome-wide approaches to structure to physiology[J]. Molecular Cell, 2020, 80(1):1-2.
    [3] IRVING SE, CHOUDHURY NR, CORRIGAN RM. The stringent response and physiological roles of (pp)pGpp in bacteria[J]. Nature Reviews Microbiology, 2021, 19(4):256-271.
    [4] VOGELEER P, LÉTISSE F. Dynamic metabolic response to (p)ppGpp accumulation in Pseudomonas putida[J]. Frontiers in Microbiology, 2022, 13:872749.
    [5] Wolz C, Geiger T, Goerke C. The synthesis and function of the alarmone (p)ppGpp in Firmicutes[J]. International Journal of Medical Microbiology, 2010, 300(2/3):142-147.
    [6] KRIEL A, BITTNER AN, KIM SH, LIU KQ, TEHRANCHI AK, ZOU WY, RENDON S, CHEN R, TU BP, WANG JD. Direct regulation of GTP homeostasis by (p)ppGpp:a critical component of viability and stress resistance[J]. Molecular Cell, 2012, 48(2):231-241.
    [7] BANGE G, BRODERSEN DE, LIUZZI A, STEINCHEN W. Two P or not two P:understanding regulation by the bacterial second messengers (p)ppGpp[J]. Annual Review of Microbiology, 2021, 75:383-406.
    [8] TRAXLER MF, ZACHARIA VM, MARQUARDT S, SUMMERS SM, NGUYEN HT, STARK SE, CONWAY T. Discretely calibrated regulatory loops controlled by ppGpp partition gene induction across the ‘feast to famine’ gradient in Escherichia coli[J]. Molecular Microbiology, 2011, 79(4):830-845.
    [9] PAUSCH P, ABDELSHAHID M, STEINCHEN W, SCHÄFER H, GRATANI FL, FREIBERT SA, WOLZ C, TURGAY K, WILSON DN, BANGE G. Structural basis for regulation of the opposing (p)ppGpp synthetase and hydrolase within the stringent response orchestrator Rel[J]. Cell Reports, 2020, 32(11):108157.
    [10] GACA AO, COLOMER-WINTER C, LEMOS JA. Many means to a common end:the intricacies of (p)ppGpp metabolism and its control of bacterial homeostasis[J]. Journal of Bacteriology, 2015, 197(7):1146-1156.
    [11] DAS B, BHADRA RK. (p)ppGpp metabolism and antimicrobial resistance in bacterial pathogens[J]. Frontiers in Microbiology, 2020, 11:563944.
    [12] SRIVATSAN A, HAN Y, PENG JL, TEHRANCHI AK, GIBBS R, WANG JD, CHEN R. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies[J]. PLoS Genetics, 2008, 4(8):e1000139.
    [13] SONG Y, ZHANG XL, ZHANG ZX, SHENTU XP, YU XP. Physiology and transcriptional analysis of ppGpp-related regulatory effects in Streptomyces diastatochromogenes 1628[J]. Microbiology Spectrum, 2023, 11(1):e0120022.
    [14] ATKINSON GC, TENSON T, HAURYLIUK V. The RelA/SpoT homolog (RSH) superfamily:distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life[J]. PLoS One, 2011, 6(8):e23479.
    [15] ELIZABETH CHAU NY, AHMAD S, WHITNEY JC, COOMBES BK. Emerging and divergent roles of pyrophosphorylated nucleotides in bacterial physiology and pathogenesis[J]. PLoS Pathogens, 2021, 17(5):e1009532.
    [16] BAI KH, YAN HY, CHEN X, LYU QY, JIANG N, LI JQ, LUO LX. The role of RelA and SpoT on ppGpp production, stress response, growth regulation, and pathogenicity in Xanthomonas campestris pv. campestris[J]. Microbiology Spectrum, 2021, 9(3):e0205721.
    [17] HASELTINE WA, BLOCK R, GILBERT W, WEBER K. MSI and MSII made on ribosome in idling step of protein synthesis[J]. Nature, 1972, 238(5364):381-384.
    [18] HAURYLIUK V, ATKINSON GC, MURAKAMI KS, TENSON T, GERDES K. Recent functional insights into the role of (p)ppGpp in bacterial physiology[J]. Nature Reviews Microbiology, 2015, 13(5):298-309.
    [19] SEYFZADEH M, KEENER J, NOMURA M. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23):11004-11008.
    [20] XIAO H, KALMAN M, IKEHARA K, ZEMEL S, GLASER G, CASHEL M. Residual guanosine 3',5'-bispyrophosphate synthetic activity of relA null mutants can be eliminated by spoT null mutations[J]. Journal of Biological Chemistry, 1991, 266(9):5980-5990.
    [21] SINHA AK, WINTHER KS. The RelA hydrolase domain acts as a molecular switch for (p)ppGpp synthesis[J]. Communications Biology, 2021, 4:434.
    [22] RUWE M, KALINOWSKI J, PERSICKE M. Identification and functional characterization of small alarmone synthetases in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2017, 8:1601.
    [23] WENDRICH TM, BLAHA G, WILSON DN, MARAHIEL MA, NIERHAUS KH. Dissection of the mechanism for the stringent factor RelA[J]. Molecular Cell, 2002, 10(4):779-788.
    [24] LI WT, BOUVERET E, ZHANG Y, LIU KQ, WANG JD, WEISSHAAR JC. Effects of amino acid starvation on RelA diffusive behavior in live Escherichia coli[J]. Molecular Microbiology, 2016, 99(3):571-585.
    [25] RUWE M, RÜCKERT C, KALINOWSKI J, PERSICKE M. Functional characterization of a small alarmone hydrolase in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2018, 9:916.
    [26] WANG BY, DAI P, DING D, DEL ROSARIO A, GRANT RA, PENTELUTE BL, LAUB MT. Affinity-based capture and identification of protein effectors of the growth regulator ppGpp[J]. Nature Chemical Biology, 2019, 15(2):141-150.
    [27] KITZENBERG DA, LEE JS, MILLS KB, KIM JS, LIU L, VÁZQUEZ-TORRES A, COLGAN SP, KAO DJ. Adenosine awakens metabolism to enhance growth-independent killing of tolerant and persister bacteria across multiple classes of antibiotics[J]. mBio, 2022, 13(3):e0048022.
    [28] HOGG T, MECHOLD U, MALKE H, CASHEL M, HILGENFELD R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response[J]. Cell, 2004, 117(1):57-68.
    [29] RICHTER D. Uncharged tRNA inhibits guanosine 3',5'-bis(diphosphate) 3'-pyrophosphohydrolase [ppGppase], the spoT gene product, from Escherichia coli[J]. Molecular and General Genetics MGG, 1980, 178(2):325-327.
    [30] SANYAL R, VIMALA A, HARINARAYANAN R. Studies on the regulation of (p)ppGpp metabolism and its perturbation through the over-expression of nudix hydrolases in Escherichia coli[J]. Frontiers in Microbiology, 2020, 11:562804.
    [31] TAMMAN H, ERNITS K, ROGHANIAN M, AINELO A, JULIUS C, PERRIER A, TALAVERA A, AINELO H, DUGAUQUIER R, ZEDEK S, THUREAU A, PÉREZ J, LIMA-MENDEZ G, HALLEZ R, ATKINSON GC, HAURYLIUK V, GARCIA-PINO A. Structure of SpoT reveals evolutionary tuning of catalysis via conformational constraint[J]. Nature Chemical Biology, 2023, 19(3):334-345.
    [32] Zuo YH, Wang YM, Steitz TA. The mechanism of E. coli RNA polymerase regulation by ppGpp is suggested by the structure of their complex[J]. Molecular Cell, 2013, 50(3):430-436.
    [33] YANG DZ, KONG Y, SUN W, KONG W, SHI YX. A dopamine-responsive signal transduction controls transcription of Salmonella enterica serovar typhimurium virulence genes[J]. mBio, 2019, 10(2):e02772-e02718.
    [34] KOLMSEE T, DELIC D, AGYENIM T, CALLES C, WAGNER R. Differential stringent control of Escherichia coli rRNA promoters:effects of ppGpp, DksA and the initiating nucleotides[J]. Microbiology (Reading, England), 2011, 157(Pt 10):2871-2879.
    [35] ROSS W, SANCHEZ-VAZQUEZ P, CHEN AY, LEE JH, BURGOS HL, GOURSE RL. ppGpp binding to a site at the RNAP-DksA interface accounts for its dramatic effects on transcription initiation during the stringent response[J]. Molecular Cell, 2016, 62(6):811-823.
    [36] KUNDRA S, COLOMER-WINTER C, LEMOS JA. Survival of the fittest:the relationship of (p)ppGpp with bacterial virulence[J]. Frontiers in Microbiology, 2020, 11:601417.
    [37] Geiger T, Wolz C. Intersection of the stringent response and the CodY regulon in low GC Gram-positive bacteria[J]. International Journal of Medical Microbiology, 2014, 304(2):150-155.
    [38] Mu HY, Han F, Wang Q, Wang Yl, Dai XF, Zhu ML. Recent functional insights into the magic role of (p)ppGpp in growth control[J]. Computational and Structural Biotechnology Journal, 2023, 21:168-175.
    [39] CLARK DJ. The regulation of DNA replication and cell division in E. coli B-r[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1968, 33:823-838.
    [40] Zhang Q, Zhang Zc, Shi Hl. Cell size is coordinated with cell cycle by regulating initiator protein DnaA in E. coli[J]. Biophysical Journal, 2020, 119(12):2537-2557.
    [41] NAZIR A, HARINARAYANAN R. (p)ppGpp and the bacterial cell cycle[J]. Journal of Biosciences, 2016, 41(2):277-282.
    [42] BELLIVEAU NM, CHURE G, HUESCHEN CL, GARCIA HG, KONDEV J, FISHER DS, THERIOT JA, PHILLIPS R. Fundamental limits on the rate of bacterial growth and their influence on proteomic composition[J]. Cell Systems, 2021, 12(9):924-944.e2.
    [43] Dai Xf, Zhu Ml. Coupling of ribosome synthesis and translational capacity with cell growth[J]. Trends in Biochemical Sciences, 2020, 45(8):681-692.
    [44] TRAVIS BA, SCHUMACHER MA. Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp[J]. Molecular Microbiology, 2022, 117(2):252-260.
    [45] SI FW, LI DY, COX SE, SAULS JT, AZIZI O, SOU C, SCHWARTZ AB, ERICKSTAD MJ, JUN YG, LI XT, JUN S. Invariance of initiation mass and predictability of cell size in Escherichia coli[J]. Current Biology, 2017, 27(9):1278-1287.
    [46] Cooper S, Helmstetter CE. Chromosome replication and the division cycle of Escherichia coli B/r[J]. Journal of Molecular Biology, 1968, 31(3):519-540.
    [47] LØBNER-OLESEN A, SKARSTAD K, HANSEN FG, von MEYENBURG K, BOYE E. The DnaA protein determines the initiation mass of Escherichia coli K-12[J]. Cell, 1989, 57(5):881-889.
    [48] POTRYKUS K, MURPHY H, PHILIPPE N, CASHEL M. ppGpp is the major source of growth rate control in E. coli[J]. Environmental Microbiology, 2011, 13(3):563-575.
    [49] KRAEMER JA, SANDERLIN AG, LAUB MT. The stringent response inhibits DNA replication initiation in E. coli by modulating supercoiling of oriC[J]. mBio, 2019, 10(4):e01330-e01319.
    [50] GIRAMMA CN, DEFOER MB, WANG JD. The alarmone (p)ppGpp regulates primer extension by bacterial primase[J]. Journal of Molecular Biology, 2021, 433(19):167189.
    [51] MONACHINO E, JERGIC S, LEWIS JS, XU ZQ, LO ATY, O'SHEA VL, BERGER JM, DIXON NE, van OIJEN AM. A primase-induced conformational switch controls the stability of the bacterial replisome[J]. Molecular Cell, 2020, 79(1):140-154.e7.
    [52] VINELLA D, JOSELEAU-PETIT D, THÉVENET D, BOULOC P, D'ARI R. Penicillin-binding protein 2 inactivation in Escherichia coli results in cell division inhibition, which is relieved by FtsZ overexpression[J]. Journal of Bacteriology, 1993, 175(20):6704-6710.
    [53] Nazir A, Harinarayanan R. Inactivation of cell division protein FtsZ by SulA makes lon indispensable for the viability of a ppGpp0 strain of Escherichia coli[J]. Journal of Bacteriology, 2015, 198(4):688-700.
    [54] BRYSON D, HETTLE AG, BORASTON AB, HOBBS JK. Clinical mutations that partially activate the stringent response confer multidrug tolerance in Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(3):e02103-e02119.
    [55] RODIONOV DG, ISHIGURO EE. Direct correlation between overproduction of guanosine 3',5'-bispyrophosphate (ppGpp) and penicillin tolerance in Escherichia coli[J]. Journal of Bacteriology, 1995, 177(15):4224-4229.
    [56] KOSKINIEMI S, PRÄNTING M, GULLBERG E, NÄSVALL J, ANDERSSON DI. Activation of cryptic aminoglycoside resistance in Salmonella enterica[J]. Molecular Microbiology, 2011, 80(6):1464-1478.
    [57] AEDO S, TOMASZ A. Role of the stringent stress response in the antibiotic resistance phenotype of methicillin-resistant Staphylococcus aureus[J]. Antimicrobial Agents and Chemotherapy, 2016, 60(4):2311-2317.
    [58] BHAWINI A, PANDEY P, DUBEY AP, ZEHRA A, NATH G, MISHRA MN. RelQ mediates the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus[J]. Frontiers in Microbiology, 2019, 10:339.
    [59] NOLAN AC, ZEDEN MS, KVIATKOVSKI I, CAMPBELL C, URWIN L, CORRIGAN RM, GRÜNDLING A, O'GARA JP. Purine nucleosides interfere with c-di-AMP levels and act as adjuvants to re-sensitize MRSA to β-lactam antibiotics[J]. mBio, 2023, 14(1):e0247822.
    [60] KIM N, SON JH, KIM K, KIM HJ, SHIN M, LEE JC. DksA modulates antimicrobial susceptibility of Acinetobacter baumannii[J]. Antibiotics (Basel, Switzerland), 2021, 10(12):1472.
    [61] SONG Y, ZHANG ZX, ZHANG XL, YAO JY, YU XP, SHENTU XP. Genome shuffling mutant of Streptomyces diastatochromogenes for substantial improvement of toyocamycin production[J]. Fermentation, 2022, 8(10):535.
    [62] FAN JX, SONG Y, TANG G, OCHI K, SHENTU XP, YU XP. Substantial improvement of tetraene macrolide production in Streptomyces diastatochromogenes by cumulative drug resistance mutations[J]. PLoS One, 2020, 15(5):e0232927.
    [63] OCHI K. Metabolic initiation of differentiation and secondary metabolism by Streptomyces griseus:significance of the stringent response (ppGpp) and GTP content in relation to A factor[J]. Journal of Bacteriology, 1987, 169(8):3608-3616.
    [64] CHAKRABURTTY R, BIBB M. The ppGpp synthetase gene (relA) of Streptomyces coelicolor A3(2) plays a conditional role in antibiotic production and morphological differentiation[J]. Journal of Bacteriology, 1997, 179(18):5854-5861.
    [65] SIVAPRAGASAM S, GROVE A. The link between purine metabolism and production of antibiotics in Streptomyces[J]. Antibiotics, 2019, 8(2):76.
    [66] WANG GJ, HOSAKA T, OCHI K. Dramatic activation of antibiotic production in Streptomyces coelicolor by cumulative drug resistance mutations[J]. Applied and Environmental Microbiology, 2008, 74(9):2834-2840.
    [67] GOMEZ-ESCRIBANO JP, MARTÍN JF, HESKETH A, BIBB MJ, LIRAS P. Streptomyces clavuligerus relA-null mutants overproduce clavulanic acid and cephamycin C:negative regulation of secondary metabolism by (p)ppGpp[J]. Microbiology (Reading, England), 2008, 154(Pt 3):744-755.
    [68] Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. Cellular perception of growth rate and the mechanistic origin of bacterial growth law[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(20):e2201585119.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

宋阳,王译婕,王瑞,申屠旭萍,俞晓平. (p)ppGpp——“魔斑”核苷酸在细菌中的研究进展[J]. 微生物学报, 2024, 64(2): 378-390

复制
分享
文章指标
  • 点击次数:868
  • 下载次数: 1499
  • HTML阅读次数: 819
  • 引用次数: 0
历史
  • 收稿日期:2023-07-19
  • 最后修改日期:2023-10-09
  • 在线发布日期: 2024-01-31
  • 出版日期: 2024-02-04
文章二维码