鲍曼不动杆菌VI型分泌系统功能蛋白的研究及应用新进展
作者:
基金项目:

病原微生物生物安全全国重点实验室自主研究课题(SKLPBS2228)


Advances in functional proteins of type VI secretion system of Acinetobacter baumannii
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [92]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    细菌VI型分泌系统(type VI secretion system,T6SS)作为一个动态多蛋白复合体,各元件之间分工明确,转运各种效应蛋白作用于竞争细菌获得自我生长优势。鲍曼不动杆菌(Acinetobacter baumannii,Ab)通过T6SS介导细菌在微生物群落中的竞争能力,影响其耐药进化、宿主侵袭感染等过程。其中,缬氨酸-甘氨酸-精氨酸G蛋白三聚体(valine-glycine repeat protein G,VgrG)、脯氨酸-丙氨酸-丙氨酸-精氨酸重复序列蛋白(proline-alanine-alanine-arginine,PAAR)、溶血素共调节蛋白(hemolysin-coregulated protein,Hcp)和效应-免疫(effector-immunity,E-I)对发挥着关键作用。有关T6SS的研究总结虽然很多,但是鲜有文章系统概述其临床应用前景,因为这对T6SS功能蛋白的鉴定、特性、转运机制等基础研究的进展提出了挑战。本文通过综述鲍曼不动杆菌中T6SS的分布、主要功能蛋白的特性及转运机制的研究进展,结合T6SS的应用案例,提供其应用的可行性证据。以期进一步推动鲍曼不动杆菌VI型分泌系统基因和功能的研究,为开发新型抗感染疫苗、筛选合适的靶点抑制剂及生产工程化药物递送工具提供新的思路。

    Abstract:

    The type VI secretion system (T6SS) as a dynamic multi-protein complex has a clear division of labor among its components, transporting effector proteins to compete for bacterial growth. Studies have shown that T6SS mediates the competitiveness of Acinetobacter baumannii in the microbial community and affects the drug resistance evolution and invasion in the host. Particularly, the valine-glycine repeat protein G (VgrG), the proline-alanine- alanine-arginine (PAAR), the hemolysin-coregulated protein (Hcp), and the effector-immunity (E-I) pair play a key role. Although T6SS has been extensively studied, there are few articles about its clinical application prospects, as this poses challenges to the identification, characterization, transport mechanism revealing, and other basic research on their functional proteins. We reviewed the research progress in the distribution, functional protein characteristics, and transport mechanism of T6SS in A. baumannii and provided evidence for its application based on the application cases of T6SS. This review aims to promote the research on the genes and functions of T6SS in A. baumannii and provide new targets and ideas for developing new anti-infective vaccines, screening suitable inhibitors, and producing engineered drug delivery tools.

    参考文献
    [1] BALKHAIR A, SAADI KA, ADAWI BA. Epidemiology and mortality outcome of carbapenem-and colistin-resistant Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa bloodstream infections[J]. IJID Regions, 2023, 7:1-5.
    [2] LEE CR, LEE JH, PARK M, PARK KS, BAE IK, KIM YB, CHA CJ, JEONG BC, LEE SH. Biology of Acinetobacter baumannii:pathogenesis, antibiotic resistance mechanisms, and prospective treatment options[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7:55.
    [3] NING NZ, LIU X, BAO CM, CHEN SM, CUI EB, ZHANG JL, HUANG J, CHEN FH, LI T, QU F, WANG H. Molecular epidemiology of blaOXA-23-producing carbapenem-resistant Acinetobacter baumannii in a single institution over a 65-month period in North China[J]. BMC Infectious Diseases, 2017, 17(1):1-8.
    [4] LI T, LI Z, CHEN FH, LIU X, NING NZ, HUANG J, WANG H. Eukaryotic-like kinase expression in enterohemorrhagic Escherichia coli:potential for enhancing host aggressive inflammatory response[J]. The Journal of Infectious Diseases, 2017, 216(9):1150-1158.
    [5] ZHANG JF, GUAN JH, WANG M, LI G, DJORDJEVIC M, TAI C, WANG H, DENG ZX, CHEN ZY, OU HY. SecReT6 update:a comprehensive resource of bacterial type VI secretion systems[J]. Science China Life Sciences, 2023, 66(3):626-634.
    [6] HACHANI A, WOOD TE, FILLOUX A. Type VI secretion and anti-host effectors[J]. Current Opinion in Microbiology, 2016, 29:81-93.
    [7] MEIR A, MACÉ K, VEGUNTA Y, WILLIAMS SM, WAKSMAN G. Substrate recruitment mechanism by Gram-negative type III, IV, and VI bacterial injectisomes[J]. Trends in Microbiology, 2023, 31(9):916-932.
    [8] WANG J, BRODMANN M, BASLER M. Assembly and subcellular localization of bacterial type VI secretion systems[J]. Annual Review of Microbiology, 2019, 73:621-638.
    [9] JURĖNAS D, JOURNET L. Activity, delivery, and diversity of type VI secretion effectors[J]. Molecular Microbiology, 2021, 115(3):383-394.
    [10] SINGH RP, KUMARI K. Bacterial type VI secretion system (T6SS):an evolved molecular weapon with diverse functionality[J]. Biotechnology Letters, 2023, 45(3):309-331.
    [11] YANG XB, LONG MX, SHEN XH. Effector-immunity pairs provide the T6SS nanomachine its offensive and defensive capabilities[J]. Molecules, 2018, 23(5):1009.
    [12] CHERRAK Y, FLAUGNATTI N, DURAND E, JOURNET L, CASCALES E. Structure and activity of the type VI secretion system[M]//MARIA S, ERIC C, PETER JC. Protein Secretion in Bacteria. New York:John Wiley & Sons, Ltd, 2019:329-342.
    [13] KIM J, LEE JY, LEE H, CHOI JY, KIM DH, WI YM, PECK KR, KO KS. Microbiological features and clinical impact of the type VI secretion system (T6SS) in Acinetobacter baumannii isolates causing bacteremia[J]. Virulence, 2017, 8(7):1378-1389.
    [14] 喻凯航, 陈栎江, 方人驰, 毕文姿, 张秀彩, 张艺之, 周铁丽, 曹建明. Ⅵ型分泌系统在鲍曼不动杆菌致病及耐药性中的作用[J]. 中华传染病杂志, 2020, 38(4):231-236. YU KH, CHEN LJ, FANG RC, BI WZ, ZHANG XC, ZHANG YZ, ZHOU TL, CAO JM. The role of type VI secretory system in the pathogenesis and drug resistance of Acinetobacter baumannii[J]. Chinese Journal of Infectious Diseases, 2020, 38(4):231-236(in Chinese).
    [15] LIN YS, ZHAO DY, HUANG N, LIU SX, ZHENG JY, CAO JM, ZENG WL, ZHENG XK, WANG LB, ZHOU TL, SUN Y. Clinical impact of the type VI secretion system on clinical characteristics, virulence and prognosis of Acinetobacter baumannii during bloodstream infection[J]. Microbial Pathogenesis, 2023, 182:106252.
    [16] DONG JF, LIU CW, WANG P, LI L, ZOU QH. The type VI secretion system in Acinetobacter baumannii clinical isolates and its roles in antimicrobial resistance acquisition[J]. Microbial Pathogenesis, 2022, 169:105668.
    [17] KONGTHAI P, THUMMEEPAK R, LEUNGTONGKAM U, POOARLAI R, KITTI T, THANWISAI A, CHANTRATITA N, MILLARD AD, SITTHISAK S. Insight into molecular epidemiology, antimicrobial resistance, and virulence genes of extensively drug-resistant Acinetobacter baumannii in Thailand[J]. Microbial Drug Resistance, 2021, 27(3):350-359.
    [18] WEBER BS, LY PM, IRWIN JN, PUKATZKI S, FELDMAN MF. A multidrug resistance plasmid contains the molecular switch for type VI secretion in Acinetobacter baumannii[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(30):9442-9447.
    [19] di VENANZIO G, MOON KH, WEBER BS, LOPEZ J, LY PM, POTTER RF, DANTAS G, FELDMAN MF. Multidrug-resistant plasmids repress chromosomally encoded T6SS to enable their dissemination[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(4):1378-1383.
    [20] HU YY, LIU CX, LIU P, WU ZY, ZHANG YD, XIONG XS, LI XY. Regulation of gene expression of hcp, a core gene of the type VI secretion system in Acinetobacter baumannii causing respiratory tract infection[J]. Journal of Medical Microbiology, 2018, 67(7):945-951.
    [21] REPIZO GD, GAGNÉ S, FOUCAULT-GRUNENWALD ML, BORGES V, CHARPENTIER X, LIMANSKY AS, GOMES JP, VIALE AM, SALCEDO SP. Differential role of the T6SS in Acinetobacter baumannii virulence[J]. PLoS One, 2015, 10(9):e0138265.
    [22] UNNI R, PINTOR KL, DIEPOLD A, UNTERWEGER D. Presence and absence of type VI secretion systems in bacteria[J]. Microbiology, 2022, 168(4):001151.
    [23] MEUMANN EM, ANSTEY NM, CURRIE BJ, PIERA KA, KENYON JJ, HALL RM, DAVIS JS, SAROVICH DS. Genomic epidemiology of severe community-onset Acinetobacter baumannii infection[J]. Microbial Genomics, 2019, 5(3):e000258.
    [24] WRIGHT MS, HAFT DH, HARKINS DM, PEREZ F, HUJER KM, BAJAKSOUZIAN S, BENARD MF, JACOBS MR, BONOMO RA, ADAMS MD. New insights into dissemination and variation of the health care-associated pathogen Acinetobacter baumannii from genomic analysis[J]. mBio, 2014, 5(1):e00963-13.
    [25] STOREY D, McNALLY A, ÅSTRAND M, SA-PESSOA GRACA SANTOS J, RODRIGUEZ-ESCUDERO I, ELMORE B, PALACIOS L, MARSHALL H, HOBLEY L, MOLINA M, CID VJ, SALMINEN TA, BENGOECHEA JA. Klebsiella pneumoniae type VI secretion system-mediated microbial competition is PhoPQ controlled and reactive oxygen species dependent[J]. PLoS Pathogens, 2020, 16(3):e1007969.
    [26] WEBER BS, MIYATA ST, IWASHKIW JA, MORTENSEN BL, SKAAR EP, PUKATZKI S, FELDMAN MF. Genomic and functional analysis of the type VI secretion system in Acinetobacter[J]. PLoS One, 2013, 8(1):e55142.
    [27] LI L, WANG YN, JIA HB, WANG P, DONG JF, DENG J, LU FM, ZOU QH. The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly[J]. Scientific Reports, 2019, 9:9438.
    [28] WEBER BS, HENNON SW, WRIGHT MS, SCOTT NE, de BERARDINIS V, FOSTER LJ, AYALA JA, ADAMS MD, FELDMAN MF. Genetic dissection of the type VI secretion system in Acinetobacter and identification of a novel peptidoglycan hydrolase, TagX, required for its biogenesis[J]. mBio, 2016, 7(5):e01253-16.
    [29] EIJKELKAMP BA, STROEHER UH, HASSAN KA, PAULSEN IT, BROWN MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii[J]. BMC Genomics, 2014, 15(1):1-12.
    [30] RUHE ZC, LOW DA, HAYES CS. Polymorphic toxins and their immunity proteins:diversity, evolution, and mechanisms of delivery[J]. Annual Review of Microbiology, 2020, 74:497-520.
    [31] COOPER RM, TSIMRING L, HASTY J. Inter-species population dynamics enhance microbial horizontal gene transfer and spread of antibiotic resistance[J]. eLife, 2017, 6:25950.
    [32] COULTHURST S. The type VI secretion system:a versatile bacterial weapon[J]. Microbiology (Reading, England), 2019, 165(5):503-515.
    [33] CARRUTHERS MD, NICHOLSON PA, TRACY EN, MUNSON RS Jr. Acinetobacter baumannii utilizes a type VI secretion system for bacterial competition[J]. PLoS One, 2013, 8(3):e59388.
    [34] BASLER M. Type VI secretion system:secretion by a contractile nanomachine[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2015, 370(1679):20150021.
    [35] NAZAROV S, SCHNEIDER JP, BRACKMANN M, GOLDIE KN, STAHLBERG H, BASLER M. Cryo-EM reconstruction of type VI secretion system baseplate and sheath distal end[J]. The EMBO Journal, 2018, 37(4):e97103.
    [36] FEI NY, JI WQ, YANG LL, YU CY, QIAO P, YAN JP, GUAN W, YANG YW, ZHAO TC. Hcp of the type VI secretion system (T6SS) in Acidovorax citrulli group II strain Aac5 has a dual role as a core structural protein and an effector protein in colonization, growth ability, competition, biofilm formation, and ferric iron absorption[J]. International Journal of Molecular Sciences, 2022, 23(17):9632.
    [37] TANG L, YUE S, LI GY, LI J, WANG XR, LI SF, MO ZL. Expression, secretion and bactericidal activity of type VI secretion system in Vibrio anguillarum[J]. Archives of Microbiology, 2016, 198(8):751-760.
    [38] MANERA K, CARO F, LI H, PEI TT, HERSCH SJ, MEKALANOS JJ, DONG TG. Sensing of intracellular Hcp levels controls T6SS expression in Vibrio cholerae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(25):e2104813118.
    [39] PAN P, WANG XL, CHEN Y, CHEN Q, YANG YX, WEI CX, CHENG TT, WAN HT, YU DJ. Effect of hcp iron ion regulation on the interaction between Acinetobacter baumannii with human pulmonary alveolar epithelial cells and biofilm formation[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12:761604.
    [40] WHITNEY JC, BECK CM, GOO YA, RUSSELL AB, HARDING BN, de LEON JA, CUNNINGHAM DA, TRAN BQ, LOW DA, GOODLETT DR, HAYES CS, MOUGOUS JD. Genetically distinct pathways guide effector export through the type VI secretion system[J]. Molecular Microbiology, 2014, 92(3):529-542.
    [41] MANERA K, KAMAL F, BURKINSHAW B, DONG TG. Essential functions of chaperones and adaptors of protein secretion systems in Gram-negative bacteria[J]. The FEBS Journal, 2022, 289(16):4704-4717.
    [42] LIANG XY, MOORE R, WILTON M, WONG MJQ, LAM L, DONG TG. Identification of divergent type VI secretion effectors using a conserved chaperone domain[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(29):9106-9111.
    [43] CIANFANELLI FR, ALCOFORADO DINIZ J, GUO MM, de CESARE V, TROST M, COULTHURST SJ. VgrG and PAAR proteins define distinct versions of a functional type VI secretion system[J]. PLoS Pathogens, 2016, 12(6):e1005735.
    [44] BONDAGE DD, LIN JS, MA LS, KUO CH, LAI EM. VgrG C terminus confers the type VI effector transport specificity and is required for binding with PAAR and adaptor-effector complex[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(27):E3931-E3940.
    [45] LIU Y, ZHANG Z, WANG F, LI DD, LI YZ. Identification of type VI secretion system toxic effectors using adaptors as markers[J]. Computational and Structural Biotechnology Journal, 2020, 18:3723-3733.
    [46] MA JL, PAN ZH, HUANG JH, SUN M, LU CP, YAO HC. The Hcp proteins fused with diverse extended-toxin domains represent a novel pattern of antibacterial effectors in type VI secretion systems[J]. Virulence, 2017, 8(7):1189-1202.
    [47] SILVERMAN JM, AGNELLO DM, ZHENG HJ, ANDREWS BT, LI M, CATALANO CE, GONEN T, MOUGOUS JD. Haemolysin coregulated protein is an exported receptor and chaperone of type VI secretion substrates[J]. Molecular Cell, 2013, 51(5):584-593.
    [48] HOWARD SA, FURNISS RCD, BONINI D, AMIN H, PARACUELLOS P, ZLOTKIN D, COSTA TRD, LEVY A, MAVRIDOU DAI, FILLOUX A. The breadth and molecular basis of hcp-driven type VI secretion system effector delivery[J]. mBio, 2021, 12(3):e0026221.
    [49] LEWIS JM, DEVESON LUCAS D, HARPER M, BOYCE JD. Systematic identification and analysis of Acinetobacter baumannii type VI secretion system effector and immunity components[J]. Frontiers in Microbiology, 2019, 10:2440.
    [50] WANG JF, ZHOU ZH, HE F, RUAN Z, JIANG Y, HUA XT, YU YS. The role of the type VI secretion system vgrG gene in the virulence and antimicrobial resistance of Acinetobacter baumannii ATCC 19606[J]. PLoS One, 2018, 13(2):e0192288.
    [51] FITZSIMONS TC, LEWIS JM, WRIGHT A, KLEIFELD O, SCHITTENHELM RB, POWELL D, HARPER M, BOYCE JD. Identification of novel Acinetobacter baumannii type VI secretion system antibacterial effector and immunity pairs[J]. Infection and Immunity, 2018, 86(8):e00297-18.
    [52] LEIMAN PG, BASLER M, RAMAGOPAL UA, BONANNO JB, SAUDER JM, PUKATZKI S, BURLEY SK, ALMO SC, MEKALANOS JJ. Type VI secretion apparatus and phage tail-associated protein complexes share a common evolutionary origin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(11):4154-4159.
    [53] WOOD TE, HOWARD SA, WETTSTADT S, FILLOUX A. PAAR proteins act as the ‘sorting hat’ of the type VI secretion system[J]. Microbiology (Reading, England), 2019, 165(11):1203-1218.
    [54] LOPEZ J, LY PM, FELDMAN MF. The tip of the VgrG spike is essential to functional type VI secretion system assembly in Acinetobacter baumannii[J]. mBio, 2020, 11(1):e02761-19.
    [55] PUKATZKI S, MA AT, REVEL AT, STURTEVANT D, MEKALANOS JJ. Type VI secretion system translocates a phage tail spike-like protein into target cells where it cross-links actin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(39):15508-15513.
    [56] FLAUGNATTI N, RAPISARDA C, REY M, BEAUVOIS SG, NGUYEN VA, CANAAN S, DURAND E, CHAMOT-ROOKE J, CASCALES E, FRONZES R, JOURNET L. Structural basis for loading and inhibition of a bacterial T6SS phospholipase effector by the VgrG spike[J]. The EMBO Journal, 2020, 39(11):e104129.
    [57] HACHANI A, ALLSOPP LP, ODUKO Y, FILLOUX A. The VgrG proteins are "à la carte" delivery systems for bacterial type VI effectors[J]. The Journal of Biological Chemistry, 2014, 289(25):17872-17884.
    [58] RUHE ZC, LOW DA, HAYES CS. Bacterial contact-dependent growth inhibition[J]. Trends in Microbiology, 2013, 21(5):230-237.
    [59] FILLOUX A. A weapon for bacterial warfare[J]. Nature, 2013, 500(7462):284-285.
    [60] SHNEIDER MM, BUTH SA, HO BT, BASLER M, MEKALANOS JJ, LEIMAN PG. PAAR-repeat proteins sharpen and diversify the type VI secretion system spike[J]. Nature, 2013, 500(7462):350-353.
    [61] LIANG XY, ZHENG HY, ZHAO YJ, ZHANG YQ, PEI TT, CUI Y, TANG MX, XU P, DONG T. VgrG spike dictates PAAR requirement for the assembly of the type VI secretion system[J]. Journal of Bacteriology, 2023, 205(2):e00356-22.
    [62] KAMAL F, LIANG XY, MANERA K, PEI TT, KIM H, LAM LG, PUN A, HERSCH SJ, DONG TG. Differential cellular response to translocated toxic effectors and physical penetration by the type VI secretion system[J]. Cell Reports, 2020, 31(11):107766.
    [63] KLEIN TA, AHMAD S, WHITNEY JC. Contact-dependent interbacterial antagonism mediated by protein secretion machines[J]. Trends in Microbiology, 2020, 28(5):387-400.
    [64] LUO JJ, CHU X, JIE J, SUN Y, GUAN QT, LI D, LUO ZQ, SONG L. Acinetobacter baumannii kills fungi via a type VI DNase effector[J]. mBio, 2023, 14(1):e0342022.
    [65] LOPEZ J, LE NH, MOON KH, SALOMON D, BOSIS E, FELDMAN MF. Formylglycine-generating enzyme-like proteins constitute a novel family of widespread type VI secretion system immunity proteins[J]. Journal of Bacteriology, 2021, 203(21):e00281-21.
    [66] LE NH, PINEDO V, LOPEZ J, CAVA F, FELDMAN MF. Killing of Gram-negative and Gram-positive bacteria by a bifunctional cell wall-targeting T6SS effector[J]. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118(40):e2106555118.
    [67] WATTAM AR, DAVIS JJ, ASSAF R, BOISVERT S, BRETTIN T, BUN C, CONRAD N, DIETRICH EM, DISZ T, GABBARD JL, GERDES S, HENRY CS, KENYON RW, MACHI D, MAO CH, NORDBERG EK, OLSEN GJ, MURPHY-OLSON DE, OLSON R, OVERBEEK R, et al. Improvements to PATRIC, the all-bacterial bioinformatics database and analysis resource center[J]. Nucleic Acids Research, 2017, 45(D1):D535-D542.
    [68] WU CF, LIEN YW, BONDAGE D, LIN JS, PILHOFER M, SHIH YL, CHANG JH, LAI EM. Effector loading onto the VgrG carrier activates type VI secretion system assembly[J]. EMBO Reports, 2020, 21(1):e47961.
    [69] RINGEL PD, HU D, BASLER M. The role of type VI secretion system effectors in target cell lysis and subsequent horizontal gene transfer[J]. Cell Reports, 2017, 21(13):3927-3940.
    [70] AHMAD S, WANG BY, WALKER MD, TRAN HK R, STOGIOS PJ, SAVCHENKO A, GRANT RA, McARTHUR AG, LAUB MT, WHITNEY JC. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575(7784):674-678.
    [71] ROSS BD, VERSTER AJ, RADEY MC, SCHMIDTKE DT, POPE CE, HOFFMAN LR, HAJJAR AM, PETERSON SB, BORENSTEIN E, MOUGOUS JD. Human gut bacteria contain acquired interbacterial defence systems[J]. Nature, 2019, 575(7781):224-228.
    [72] TING SY, BOSCH DE, MANGIAMELI SM, RADEY MC, HUANG S, PARK YJ, KELLY KA, FILIP SK, GOO YA, ENG JK, ALLAIRE M, VEESLER D, WIGGINS PA, PETERSON SB, MOUGOUS JD. Bifunctional immunity proteins protect bacteria against FtsZ-targeting ADP-ribosylating toxins[J]. Cell, 2018, 175(5):1380-1392.e14.
    [73] JENSEN SJ, RUHE ZC, WILLIAMS AF, NHAN DQ, GARZA-SÁNCHEZ F, LOW DA, HAYES CS. Paradoxical activation of a type VI secretion system phospholipase effector by its cognate immunity protein[J]. Journal of Bacteriology, 2023, 205(6):e00113-23.
    [74] SINGH R, CAPALASH N, SHARMA P. Vaccine development to control the rising scourge of antibiotic-resistant Acinetobacter baumannii:a systematic review[J]. 3 Biotech, 2022, 12(3):1-14.
    [75] MORAIS V, TEXEIRA E, SUAREZ N. Next-generation whole-cell pneumococcal vaccine[J]. Vaccines, 2019, 7(4):151.
    [76] KULKARNI JA, WITZIGMANN D, THOMSON SB, CHEN S, LEAVITT BR, CULLIS PR, van der MEEL R. The current landscape of nucleic acid therapeutics[J]. Nature Nanotechnology, 2021, 16(6):630-643.
    [77] McCONNELL MJ, DOMÍNGUEZ-HERRERA J, SMANI Y, LÓPEZ-ROJAS R, DOCOBO-PÉREZ F, PACHÓN J. Vaccination with outer membrane complexes elicits rapid protective immunity to multidrug-resistant Acinetobacter baumannii[J]. Infection and Immunity, 2011, 79(1):518-526.
    [78] FRANCIS MJ. Recent advances in vaccine technologies[J]. The Veterinary Clinics of North America Small Animal Practice, 2018, 48(2):231-241.
    [79] HAJISSA K, ZAKARIA R, SUPPIAN R, MOHAMED Z. Epitope-based vaccine as a universal vaccination strategy against Toxoplasma gondii infection:a mini-review[J]. Journal of Advanced Veterinary and Animal Research, 2019, 6(2):174-182.
    [80] PAZOKI M, DARVISH ALIPOUR ASTANEH S, RAMEZANALIZADEH F, JAHANGIRI A, RASOOLI I. Immunoprotectivity of valine-glycine repeat protein G, a potent mediator of pathogenicity, against Acinetobacter baumannii[J]. Molecular Immunology, 2021, 135:276-284.
    [81] ALIPOURI S, RASOOLI I, GHAINI MH, JAHANGIRI A, DARVISH ALIPOUR ASTANEH S, RAMEZANALIZADEH F. Immunity induced by valine-glycine repeat protein G imparts histoprotection of vital body organs against Acinetobacter baumannii[J]. Journal of Genetic Engineering and Biotechnology, 2022, 20(1):1-9.
    [82] YANG N, JIN X, ZHU CH, GAO FL, WENG ZQ, DU XR, FENG GZ. Subunit vaccines for Acinetobacter baumannii[J]. Frontiers in Immunology, 2023, 13:1088130.
    [83] HU Y, ZHANG XQ, DENG SS, YUE CW, JIA X, LYU YH. Non-antibiotic prevention and treatment against Acinetobacter baumannii infection:are vaccines and adjuvants effective strategies?[J]. Frontiers in Microbiology, 2023, 14:1049917.
    [84] GORAIN C, KHAN A, SINGH A, MONDAL S, MALLICK AI. Bioengineering of LAB vector expressing haemolysin co-regulated protein (Hcp):a strategic approach to control gut colonization of Campylobacter jejuni in a murine model[J]. Gut Pathogens, 2021, 13(1):1-16.
    [85] WETTSTADT S, FILLOUX A. Manipulating the type VI secretion system spike to shuttle passenger proteins[J]. PLoS One, 2020, 15(2):e0228941.
    [86] TING SY, MARTÍNEZ-GARCÍA E, HUANG S, BERTOLLI SK, KELLY KA, CUTLER KJ, SU ED, ZHI H, TANG Q, RADEY MC, RAFFATELLU M, PETERSON SB, de LORENZO V, MOUGOUS JD. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells[J]. Cell Host & Microbe, 2020, 28(2):313-321.e6.
    [87] HERSCH SJ, LAM L, DONG TG. Engineered type six secretion systems deliver active exogenous effectors and cre recombinase[J]. mBio, 2021, 12(4):e0111521.
    [88] UNTERWEGER D, KOSTIUK B, ÖTJENGERDES R, WILTON A, DIAZ-SATIZABAL L, PUKATZKI S. Chimeric adaptor proteins translocate diverse type VI secretion system effectors in Vibrio cholerae[J]. The EMBO Journal, 2015, 34(16):2198-2210.
    [89] HERSCH SJ, WATANABE N, STIETZ MS, MANERA K, KAMAL F, BURKINSHAW B, LAM L, PUN A, LI MX, SAVCHENKO A, DONG TG. Envelope stress responses defend against type six secretion system attacks independently of immunity proteins[J]. Nature Microbiology, 2020, 5(5):706-714.
    [90] PUKATZKI S, MA AT, STURTEVANT D, KRASTINS B, SARRACINO D, NELSON WC, HEIDELBERG JF, MEKALANOS JJ. Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(5):1528-1533.
    [91] KREITZ J, FRIEDRICH MJ, GURU A, LASH B, SAITO M, MACRAE RK, ZHANG F. Programmable protein delivery with a bacterial contractile injection system[J]. Nature, 2023, 616(7956):357-364.
    [92] BÖCK D, MEDEIROS JM, TSAO HF, PENZ T, WEISS GL, AISTLEITNER K, HORN M, PILHOFER M. In situ architecture, function, and evolution of a contractile injection system[J]. Science, 2017, 357(6352):713-717.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王海蓉,宁年智,王慧. 鲍曼不动杆菌VI型分泌系统功能蛋白的研究及应用新进展[J]. 微生物学报, 2024, 64(2): 391-407

复制
分享
文章指标
  • 点击次数:520
  • 下载次数: 1480
  • HTML阅读次数: 923
  • 引用次数: 0
历史
  • 收稿日期:2023-08-06
  • 最后修改日期:2023-09-18
  • 在线发布日期: 2024-01-31
  • 出版日期: 2024-02-04
文章二维码