添加毛叶苕子对红壤旱地土壤真菌群落的影响
作者:
基金项目:

国家自然科学基金(31801989);安徽省优秀青年科研项目(2022AH030015);江西省农业关键核心技术攻关项目(JXNK202307-01)


Application of hairy vetch (Vicia villosa Roth L.) affects fungal community in upland red soil
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [62]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】长期高强度的连作及大量化肥施用导致红壤旱地退化和土传植物病原菌累积。真菌是农业生态系统中与土壤健康密切相关的微生物。本文通过研究土壤真菌群落的变化,探究施用毛叶苕子对红壤旱地农业生态系统的影响。【方法】采用定量聚合酶链式反应和高通量测序技术,研究红壤旱地真菌群落对单施矿质肥(mineral nitrogen,phosphorus and potassium fertilization,NPK)与矿质肥配施毛叶苕子(mineral nitrogen,phosphorus and potassium fertilization with hairy vetch,NPKG) 2种施肥措施的响应。【结果】与对照NPK相比,NPKG显著提高土壤肥力、花生产量和土壤真菌丰度,降低土壤pH和土壤真菌多样性。不同处理显著改变土壤真菌群落组成。与对照NPK相比,NPKG处理土壤腐生营养型真菌相对丰度显著提高37.42%,花生尾孢菌(Cercospora arachidicola)和可可毛色二孢菌(Lasiodiplodia theobromae) 2种花生病原菌相对丰度分别降低89.11%和88.10%。【结论】施用毛叶苕子显著提高了红壤旱地肥力,降低了花生土传病害风险,提高了花生作物产量。因此,施用毛叶苕子有利于我国南方红壤旱地的可持续发展。

    Abstract:

    [Objective] The long-term intense continuous cropping and abuse of mineral fertilizers result in the degradation of upland red soil and the accumulation of soil-borne plant pathogens. Fungi are the microorganisms closely related to soil health in agroecosystems. We investigated the changes of soil fungal community to explore the effects of hairy vetch (Vicia villosa Roth L.) application on the agroecosystem with upland red soil. [Methods] We employed quantitative polymerase chain reaction (qPCR) and high-throughput sequencing (Illumina MiSeq) to investigate the responses of fungal communities to mineral fertilizer (hereinafter referred to as NPK) alone and mineral fertilizer combined with hairy vetch (hereinafter referred to as NPKG) in upland red soil. [Results] Compared with NPK, NPKG increased the soil fertility, peanut yield, and fungal abundance and decreased soil pH and soil fungal diversity. Different treatments significantly altered the soil fungal community composition. Compared with NPK, NPKG increased the relative abundance of saprophytic fungi by 37.42% and decreased the relative abundance of Cercospora arachidicola and Lasidiplodia theobromae by 89.11% and 88.10%, respectively. [Conclusion] The application of hairy vetch significantly increased soil fertility, reduced the risk of peanut exposure to soil-borne diseases, and increased peanut yield in the upland red soil. Therefore, the application of hairy vetch was conducive to the sustainable development of upland red soil in southern China.

    参考文献
    [1] BARRIOS E. Soil biota, ecosystem services and land productivity[J]. Ecological Economics, 2007, 64(2):269-285.
    [2] PURAHONG W, WUBET T, LENTENDU G, SCHLOTER M, PECYNA MJ, KAPTURSKA D, HOFRICHTER M, KRÜGER D, BUSCOT F. Life in leaf litter:novel insights into community dynamics of bacteria and fungi during litter decomposition[J]. Molecular Ecology, 2016, 25(16):4059-4074.
    [3] 孙倩, 吴宏亮, 陈阜, 康建宏. 宁夏中部干旱带不同作物根际土壤真菌群落多样性及群落结构[J]. 微生物学通报, 2019, 46(11):2963-2972. SUN Q, WU HL, CHEN F, KANG JH. Fungal community diversity and structure in rhizosphere soil of different crops in the arid zone of central Ningxia[J]. Microbiology China, 2019, 46(11):2963-2972(in Chinese).
    [4] VANDENKOORNHUYSE P, QUAISER A, DUHAMEL M, LE van A, DUFRESNE A. The importance of the microbiome of the plant holobiont[J]. New Phytologist, 2015, 206(4):1196-1206.
    [5] 郭璞, 邢鹏杰, 宋佳, 吴玲玲, 李彬琦, 司滟汲, 李玉, 冀瑞卿. 蒙古栎根系与根区土壤真菌群落组成及与环境因子的关系[J]. 菌物研究, 2022, 20(3):173-182. GUO P, XING PJ, SONG J, WU LL, LI BQ, SI YJ, LI Y, JI RQ. Fungal community in roots and the root zone of Quercus mongolica and the correlations with the environmental factors[J]. Journal of Fungal Research, 2022, 20(3):173-182(in Chinese).
    [6] 钟丽伟, 谭鸿升, 陈泽斌, 钟宇, 刘佳妮, 魏薇. 根际微生物防治土传病害的研究进展[J]. 昆明学院学报, 2022, 44(3):75-82. ZHONG LW, TAN HS, CHEN ZB, ZHONG Y, LIU JN, WEI W. Advances in rhizosphere microbial control of soil-borne plant diseases[J]. Journal of Kunming University, 2022, 44(3):75-82(in Chinese).
    [7] LI CH, YAN K, TANG LS, JIA ZJ, LI Y. Change in deep soil microbial communities due to long-term fertilization[J]. Soil Biology and Biochemistry, 2014, 75:264-272.
    [8] BINDRABAN PS, DIMKPA C, NAGARAJAN L, ROY A, RABBINGE R. Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants[J]. Biology and Fertility of Soils, 2015, 51(8):897-911.
    [9] 李晓欣, 胡春胜, 程一松. 不同施肥处理对作物产量及土壤中硝态氮累积的影响[J]. 干旱地区农业研究, 2003, 21(3):38-42. LI XX, HU CS, CHENG YS. Effects of different fertilizers on crop yields and nitrate accumulation[J]. Agricultural Research in the Arid Areas, 2003, 21(3):38-42(in Chinese).
    [10] FAN FL, LI ZJ, WAKELIN SA, YU WT, LIANG YC. Mineral fertilizer alters cellulolytic community structure and suppresses soil cellobiohydrolase activity in a long-term fertilization experiment[J]. Soil Biology and Biochemistry, 2012, 55:70-77.
    [11] 高小朋, 贺晓龙, 任桂梅, 齐向英. 化肥不合理施用带来的危害探析[J]. 农技服务, 2011, 28(9):1289-1290, 1366. GAO XP, HE XL, REN GM, QI XY. The harm of fertilizer for unreasonable application[J]. Agricultural Technology Service, 2011, 28(9):1289-1290, 1366(in Chinese).
    [12] 于冰, 宋阿琳, 李冬初, 王伯仁, 范分良. 长期施用有机和无机肥对红壤微生物群落特征及功能的影响[J]. 中国土壤与肥料, 2017(6):58-65. YU B, SONG AL, LI DC, WANG BR, FAN FL. Influences of long-term application of organic and inorganic fertilizers on the structure and function of microbial community in red soil[J]. Soils and Fertilizers Sciences in China, 2017(6):58-65(in Chinese).
    [13] 张达斌, 姚鹏伟, 李婧, 赵娜, 王峥, 鱼昌为, 曹群虎, 曹卫东, 高亚军. 豆科绿肥及施氮量对旱地麦田土壤主要肥力性状的影响[J]. 生态学报, 2013, 33(7):2272-2281. ZHANG DB, YAO PW, LI J, ZHAO N, WANG Z, YU CW, CAO QH, CAO WD, GAO YJ. Effects of two years' incorporation of leguminous green manure on soil properties of a wheat field in dryland conditions[J]. Acta Ecologica Sinica, 2013, 33(7):2272-2281(in Chinese).
    [14] 张久东, 包兴国, 王婷, 胡志桥, 曹卫东, 杨文玉, 舒秋萍, 李全福, 王健. 增施绿肥与降低氮肥对小麦产量和土壤肥力的影响[J]. 核农学报, 2011, 25(5):998-1003. ZHANG JD, BAO XG, WANG T, HU ZQ, CAO WD, YANG WY, SHU QP, LI QF, WANG J. Effect of green manure utilization and reduced N fertilizer on wheat yield and soil fertility[J]. Journal of Nuclear Agricultural Sciences, 2011, 25(5):998-1003(in Chinese).
    [15] BLANCO-CANQUI H, SCHLEGEL AJ. Implications of inorganic fertilization of irrigated corn on soil properties:lessons learned after 50 years[J]. Journal of Environmental Quality, 2013, 42(3):861-871.
    [16] 徐慧芳, 李淑娟, 李娜, 黄国勤. 南方红壤丘陵区旱地多熟种植的发展现状与研究进展[J]. 生态科学, 2022, 41(1):213-221. XU HF, LI SJ, LI N, HUANG GQ. Development situation and recent advance of multiple cropping in upland red soils under hilly regions of south China[J]. Ecological Science, 2022, 41(1):213-221(in Chinese).
    [17] 赵其国, 黄国勤, 马艳芹. 中国南方红壤生态系统面临的问题及对策[J]. 生态学报, 2013, 33(24):7615-7622. ZHAO QG, HUANG GQ, MA YQ. The problems in red soil ecosystem in southern of China and its countermeasures[J]. Acta Ecologica Sinica, 2013, 33(24):7615-7622(in Chinese).
    [18] 王蕾, 王艳玲, 李欢, 石嘉琦, 周亦靖. 长期施肥下红壤旱地磷素有效性影响因子的冗余分析[J]. 中国土壤与肥料, 2021(1):17-25. WANG L, WANG YL, LI H, SHI JQ, ZHOU YJ. Redundancy analysis of influencing factors of phosphorus availability in red soil upland under long-term fertilization[J]. Soils and Fertilizers Sciences in China, 2021(1):17-25(in Chinese).
    [19] 刘毅, 伍先明, 方先兰, 黎为兵, 李祖莹, 曾维莉. 江西花生低产原因分析及高产栽培技术对策[J]. 江西农业学报, 2009, 21(8):38-39, 43. LIU Y, WU XM, FANG XL, LI WB, LI ZY, ZENG WL. Cause analysis of low yield of peanut in Jiangxi Province and countermeasures of high yield cultivation techniques[J]. Acta Agriculturae Jiangxi, 2009, 21(8):38-39, 43(in Chinese).
    [20] 王飞, 何春梅, 李清华, 林诚. 外源钙水平与花生下针期不同土壤水分对植株生理特性的影响[J]. 植物营养与肥料学报, 2013, 19(3):623-631. WANG F, HE CM, LI QH, LIN C. Effects of exogenous calcium and soil moisture at acicula forming stage of peanut on some physiological characteristics of plants[J]. Plant Nutrition and Fertilizer Science, 2013, 19(3):623-631(in Chinese).
    [21] CHEN BS, DU KQ, SUN C, VIMALANATHAN A, LIANG XL, LI Y, WANG BH, LU XM, LI LJ, SHAO YQ. Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives[J]. The ISME Journal, 2018, 12(9):2252-2262.
    [22] CAPORASO JG, KUCZYNSKI J, STOMBAUGH J, BITTINGER K, BUSHMAN FD, COSTELLO EK, FIERER N, PEÑA AG, GOODRICH JK, GORDON JI, HUTTLEY GA, KELLEY ST, KNIGHTS D, KOENIG JE, LEY RE, LOZUPONE CA, McDONALD D, MUEGGE BD, PIRRUNG M, REEDER J, et al. QIIME allows analysis of high-throughput community sequencing data[J]. Nature Methods, 2010, 7(5):335-336.
    [23] XIANG XJ, GIBBONS SM, LI H, SHEN HH, FANG JY, CHU HY. Shrub encroachment is associated with changes in soil bacterial community composition in a temperate grassland ecosystem[J]. Plant and Soil, 2018, 425(1):539-551.
    [24] SEGATA N, IZARD J, WALDRON L, GEVERS D, MIROPOLSKY L, GARRETT WS, HUTTENHOWER C. Metagenomic biomarker discovery and explanation[J]. Genome Biology, 2011, 12(6):R60.
    [25] NGUYEN NH, SONG ZW, BATES ST, BRANCO S, TEDERSOO L, MENKE J, SCHILLING JS, KENNEDY PG. FUNGuild:an open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20:241-248.
    [26] BASTIAN M, HEYMANN S, JACOMY M. Gephi:an open source software for exploring and manipulating networks[J]. Proceedings of the International AAAI Conference on Web and Social Media, 2009, 3(1):361-362.
    [27] 牛雅琼, 吴兴洪, 冉斌, 朱青, 张钦, 王文华. 豆科绿肥翻压对猕猴桃产质量和土壤肥力的影响[J]. 北方园艺, 2020(5):87-94. NIU YQ, WU XH, RAN B, ZHU Q, ZHANG Q, WANG WH. Effects of turning leguminous green manure on yield quality and soil fertility of kiwifruit[J]. Northern Horticulture, 2020(5):87-94(in Chinese).
    [28] CASTRO LL, WHALEN JK. Ion exchange membranes are sensitive indicators of ammonium and nitrate released from green manures with low C/N ratios[J]. European Journal of Soil Biology, 2016, 77:4-8.
    [29] 周志明, 张立平, 曹卫东, 黄元仿. 冬绿肥-春玉米农田生态系统服务功能价值评估[J]. 生态环境学报, 2016, 25(4):597-604. ZHOU ZM, ZHANG LP, CAO WD, HUANG YF. Appraisal of agro-ecosystem services in winter green manure-spring maize[J]. Ecology and Environmental Sciences, 2016, 25(4):597-604(in Chinese).
    [30] 胡怡凡, 刘佳坪, 王子楷, 郭琳钰, 赵普生, 郭涛. 轮作提高土壤磷生物有效性改善后茬作物磷素营养[J]. 植物营养与肥料学报, 2021, 27(8):1305-1310. HU YF, LIU JP, WANG ZK, GUO LY, ZHAO PS, GUO T. Rotation increases soil phosphorous bioavailability and improves phosphorous nutrition of the latter crop in rotation[J]. Plant Nutrition and Fertilizer Science, 2021, 27(8):1305-1310(in Chinese).
    [31] DOLLING PJ. Effect of lupins and location on soil acidification rates[J]. Australian Journal of Experimental Agriculture, 1995, 35(6):753-763.
    [32] MAO J, XU RK, LI JY, LI XH. Dicyandiamide enhances liming potential of two legume materials when incubated with an acid ultisol[J]. Soil Biology and Biochemistry, 2010, 42(9):1632-1635.
    [33] COVENTRY D, FARHOODI A, XU RK. Managing soil acidification through crop rotations in southern Australia[J]. Handbook of Soil Acidity, 2003, 94:407.
    [34] LIU D, LIU GH, CHEN L, WANG JT, ZHANG LM. Soil pH determines fungal diversity along an elevation gradient in southwestern China[J]. Science China Life Sciences, 2018, 61(6):718-726.
    [35] ZHANG XM, LIU W, ZHANG GM, JIANG L, HAN XG. Mechanisms of soil acidification reducing bacterial diversity[J]. Soil Biology and Biochemistry, 2015, 81:275-281.
    [36] MARTINY JBH, BOHANNAN BJM, BROWN JH, COLWELL RK, FUHRMAN JA, GREEN JL, HORNER-DEVINE MC, KANE M, KRUMINS JA, KUSKE CR, MORIN PJ, NAEEM S, ØVREÅS L, REYSENBACH AL, SMITH VH, STALEY JT. Microbial biogeography:putting microorganisms on the map[J]. Nature Reviews Microbiology, 2006, 4(2):102-112.
    [37] HANSON CA, FUHRMAN JA, HORNER-DEVINE MC, MARTINY JBH. Beyond biogeographic patterns:processes shaping the microbial landscape[J]. Nature Reviews Microbiology, 2012, 10(7):497-506.
    [38] LOUCA S, POLZ MF, MAZEL F, ALBRIGHT MBN, HUBER JA, O'CONNOR MI, ACKERMANN M, HAHN AS, SRIVASTAVA DS, CROWE SA, DOEBELI M, PARFREY LW. Function and functional redundancy in microbial systems[J]. Nature Ecology & Evolution, 2018, 2(6):936-943.
    [39] FREW A, ANTUNES PM, CAMERON DD, HARTLEY SE, JOHNSON SN, RILLIG MC, BENNETT AE. Plant herbivore protection by arbuscular mycorrhizas:a role for fungal diversity?[J]. New Phytologist, 2022, 233(3):1022-1031.
    [40] GARLAND G, EDLINGER A, BANERJEE S, DEGRUNE F, GARCíA-PALACIOS P, PESCADOR DS, HERZOG C, ROMDHANE S, SAGHAI A, SPOR A, WAGG C, HALLIN S, MAESTRE FT, PHILIPPOT L, RILLIG MC, van der HEIJDEN MGA. Crop cover is more important than rotational diversity for soil multifunctionality and cereal yields in European cropping systems[J]. Nature Food, 2021, 2(1):28-37.
    [41] WANG T, DUAN Y, LIU GD, SHANG XW, LIU LF, ZHANG KX, LI JQ, ZOU ZW, ZHU XJ, FANG WP. Tea plantation intercropping green manure enhances soil functional microbial abundance and multifunctionality resistance to drying-rewetting cycles[J]. Science of the Total Environment, 2022, 810:151282.
    [42] WAGG C, SCHLAEPPI K, BANERJEE S, KURAMAE EE, van der HEIJDEN MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning[J]. Nature Communications, 2019, 10:4841.
    [43] GAO ZY, HU YY, HAN MK, XU JJ, WANG X, LIU LF, TANG ZH, JIAO WJ, JIN R, LIU M, GUAN ZJ, MA ZM. Effects of continuous cropping of sweet potatoes on the bacterial community structure in rhizospheric soil[J]. BMC Microbiology, 2021, 21(1):1-13.
    [44] MA AZ, ZHUANG XL, WU JM, CUI MM, LV D, LIU CZ, ZHUANG GQ. Ascomycota members dominate fungal communities during straw residue decomposition in arable soil[J]. PLoS One, 2013, 8(6):e66146.
    [45] WEBER CF, VILGALYS R, KUSKE CR. Changes in fungal community composition in response to elevated atmospheric CO2 and nitrogen fertilization varies with soil horizon[J]. Frontiers in Microbiology, 2013, 4:78.
    [46] BLACKWOOD CB, WALDROP MP, ZAK DR, SINSABAUGH RL. Molecular analysis of fungal communities and laccase genes in decomposing litter reveals differences among forest types but no impact of nitrogen deposition[J]. Environmental Microbiology, 2007, 9(5):1306-1316.
    [47] PHOSRI C, PÕLME S, TAYLOR AFS, KÕLJALG U, SUWANNASAI N, TEDERSOO L. Diversity and community composition of ectomycorrhizal fungi in a dry deciduous dipterocarp forest in Thailand[J]. Biodiversity and Conservation, 2012, 21(9):2287-2298.
    [48] NGUYEN HDT, NICKERSON NL, SEIFERT KA. Basidioascus and Geminibasidium:a new lineage of heat-resistant and xerotolerant Basidiomycetes[J]. Mycologia, 2013, 105(5):1231-1250.
    [49] 崔福绵, 那安, 马建华, 张树政. 不同真菌纤维素酶一些生物化学性质的比较[J]. 真菌学报, 1984(1):59-64. CUI FM, NA A, MA JH, ZHANG SZ. A comparison of some biochemical properties of cellulase from different fungi[J]. Mycosystema, 1984(1):59-64(in Chinese).
    [50] 杨金燕, 姜于兰, 杨亚曦, 曾琛, 王肸芃. 腐质霉属真菌分类的研究进展[J]. 贵州农业科学, 2015, 43(8):126-130. YANG JY, JIANG YL, YANG YX, ZENG C, WANG XP. Advances in taxonomy of Humicola genera[J]. Guizhou Agricultural Sciences, 2015, 43(8):126-130(in Chinese).
    [51] MA ZY, XIE Y, ZHU L, CHENG L, XIAO X, ZHOU C, WANG JF. Which of soil microbes is in positive correlation to yields of maize (Zea mays L.)?[J]. Plant, Soil and Environment, 2017, 63(12):574-580.
    [52] DENG JJ, ZHOU YB, ZHU WX, YIN Y. Effects of afforestation with Pinus sylvestris var. mongolica plantations combined with enclosure management on soil microbial community[J]. PeerJ, 2020, 8:e8857.
    [53] LIU JK, PHOOKAMSAK R, DOILOM M, WIKEE S, LI YM, ARIYAWANSHA H, BOONMEE S, CHOMNUNTI P, DAI DQ, BHAT JD, ROMERO AI, ZHUANG WY, MONKAI J, GARETH JONES EB, CHUKEATIROTE E, KO TWK, ZHAO YC, WANG Y, HYDE KD. Towards a natural classification of Botryosphaeriales[J]. Fungal Diversity, 2012, 57(1):149-210.
    [54] ZHANG Y, CROUS PW, SCHOCH CL, HYDE KD. Pleosporales[J]. Fungal Diversity, 2012, 53(1):1-221.
    [55] MEZA-MOLLER A, RENTERÍA-MARTÍNEZ ME, GUERRA-CAMACHO MA, ROMO-TAMAYO F, OCHOA-MEZA A, MORENO-SALAZAR SF. First report of root rot of watermelon caused by Ceratobasidium sp. in Sonora, Mexico[J]. Plant Disease, 2014, 98(6):847.
    [56] WU XZ, LI HL, WANG Y, ZHANG XB. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement[J]. Biocontrol Science and Technology, 2020, 30(4):351-369.
    [57] RAJU KS, CHANDRASEKHARA RAO C, RAJU CA. Genetic variability in Fusarium oxysporum isolates causing wilt of tobacco using RAPD markers[J]. Journal of Mycology and Plant Pathology, 2009, 39(1):141-143.
    [58] ORNER VA, CANTONWINE EG, WANG XM, ABOUELLEIL A, BOCHICCHIO J, NUSBAUM C, CULBREATH AK, ABDO Z, ARIAS RS. Draft genome sequence of Cercospora arachidicola, causal agent of early leaf spot in peanuts[J]. Genome Announcements, 2015, 3(6):e01281-15.
    [59] SALVATORE MM, ALVES A, ANDOLFI A. Secondary metabolites of Lasiodiplodia theobromae:distribution, chemical diversity, bioactivity, and implications of their occurrence[J]. Toxins, 2020, 12(7):457.
    [60] PHIPPS PM, PORTER DM. Collar rot of peanut caused by Lasiodiplodia theobromae[J]. Plant Disease, 1998, 82(11):1205-1209.
    [61] LONGA CMO, NICOLA L, ANTONIELLI L, MESCALCHIN E, ZANZOTTI R, TURCO E, PERTOT I. Soil microbiota respond to green manure in organic vineyards[J]. Journal of Applied Microbiology, 2017, 123(6):1547-1560.
    [62] 魏勇, 高嵩涓, 曹卫东, 段廷玉. 绿肥影响农田土传病害的研究进展[J]. 草地学报, 2021, 29(8):1605-1614. WEI Y, GAO SJ, CAO WD, DUAN TY. Research progress on the influence of green manures on soil-borne diseases in farmlands[J]. Acta Agrestia Sinica, 2021, 29(8):1605-1614(in Chinese).
    引证文献
引用本文

赵竟茹,晏蒙,吴远诺,刘天赐,李绍兵,冷珂,项兴佳,刘佳. 添加毛叶苕子对红壤旱地土壤真菌群落的影响[J]. 微生物学报, 2024, 64(2): 581-596

复制
相关视频

分享
文章指标
  • 点击次数:210
  • 下载次数: 818
  • HTML阅读次数: 391
  • 引用次数: 0
历史
  • 收稿日期:2023-07-18
  • 最后修改日期:2023-10-18
  • 在线发布日期: 2024-01-31
  • 出版日期: 2024-02-04
文章二维码