单增李斯特菌LPXTG蛋白Lmo0880在感染致病中的作用
作者:
  • 林柯辰

    林柯辰

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 李豪杰

    李豪杰

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 赵秀玲

    赵秀玲

    宁波检验检疫科学技术研究院 宁波海关技术中心, 浙江 宁波 315000
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 周思

    周思

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 廖俊慧

    廖俊慧

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 王子念

    王子念

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 金戈旋

    金戈旋

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 朱富鑫

    朱富鑫

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 徐加利

    徐加利

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 孙静

    孙静

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 宋厚辉

    宋厚辉

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 邓思敏

    邓思敏

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 程昌勇

    程昌勇

    浙江农林大学动物科技学院·动物医学院 浙江省畜禽绿色生态健康养殖应用技术研究重点实验室 动物健康互联网检测技术浙江省工程研究中心 浙江省动物医学与健康管理国际科技合作基地 中澳动物健康大数据分析联合实验室, 浙江 杭州 311300
    在期刊界中查找
    在百度中查找
    在本站中查找
基金项目:

国家自然科学基金(32002317,32302961);浙江省自然科学基金(Q21C180006,LY23C180002);宁波市自然科学基金(202003N4178)


Role of LPXTG-anchored protein Lmo0880 in Listeria monocytogenes infection
Author:
  • LIN Kechen

    LIN Kechen

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Haojie

    LI Haojie

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHAO Xiuling

    ZHAO Xiuling

    Technical Center of Ningbo Customs, Ningbo Academy of Quarantine & Inspection Science and Technology, Ningbo 315000, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Si

    ZHOU Si

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIAO Junhui

    LIAO Junhui

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Zinian

    WANG Zinian

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • JIN Gexuan

    JIN Gexuan

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Fuxin

    ZHU Fuxin

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Jiali

    XU Jiali

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SUN Jing

    SUN Jing

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • SONG Houhui

    SONG Houhui

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DENG Simin

    DENG Simin

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CHENG Changyong

    CHENG Changyong

    Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [55]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】通过构建单核细胞增生李斯特菌(单增李斯特菌) LPXTG蛋白Lmo0880的基因缺失菌株和回补菌株,探究Lmo0880在细菌生长、细胞感染和宿主感染等方面发挥的作用。【方法】利用同源重组原理构建lmo0880的基因缺失株及回补株,比较野生株、缺失株和回补株在生长能力、细胞黏附与侵袭和胞内增殖能力等方面的差异,从而鉴定Lmo0880在单增李斯特菌感染宿主中的作用。【结果】缺失lmo0880基因后,单增李斯特菌在生长能力上无明显变化;对细胞的黏附能力无显著差异,但对细胞侵袭能力、胞内增殖能力、小鼠致病力和小鼠组织定殖能力显著降低。【结论】本研究阐明了单增李斯特菌LPXTG蛋白Lmo0880在细胞侵袭、胞内增殖和组织定殖等方面发挥的重要作用。

    Abstract:

    【Objective】 To generate Listeria monocytogenes strains with lmo0880 deleted and complemented strains, so as to investigate the roles of Lmo0880 in bacterial infection in a host. 【Methods】 The lmo0880-deleted strain was generated by homologous recombination, and the complementary strain was constructed by introducing an integrative plasmid carrying lmo0880 into the lmo0880-deleted strain. The growth, adhesion, invasion, and intracellular proliferation were compared between the lmo0880-deleted strain, complementary strain, and the wild type. 【Results】 The deletion of lmo0880 did not significantly impact bacterial growth or adhesion. However, it led to notable decreases in cell invasion, proliferation, and colonization in the liver and spleen, ultimately diminishing the pathogenicity in mice. 【Conclusion】 The LPXTG-anchored protein Lmo0880 plays a crucial role in bacterial invasion, proliferation, and colonization in a host. These findings provide a solid foundation for deeply understanding the pathogen-host interaction during L. monocytogenes infection.

    参考文献
    [1] KOOPMANS MM, BROUWER MC, VÁZQUEZ-BOLAND JA, van de BEEK D. Human listeriosis[J]. Clinical Microbiology Reviews, 2023, 36(1):e0006019.
    [2] RADOSHEVICH L, COSSART P. Listeria monocytogenes:towards a complete picture of its physiology and pathogenesis[J]. Nature Reviews Microbiology, 2018, 16(1):32-46.
    [3] PIZARRO-CERDÁ J, COSSART P. Listeria monocytogenes:cell biology of invasion and intracellular growth[J]. Microbiology Spectrum, 2018, 6(6):GPP3-0013-2018.
    [4] JOHANSSON J, FREITAG NE. Regulation of Listeria monocytogenes virulence[J]. Microbiology Spectrum, 2019, 7(4):GPP3-0064-2019.
    [5] MILOHANIC E, JONQUIÈRES R, COSSART P, BERCHE P, GAILLARD JL. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotic cells via its cell wall anchor[J]. Molecular Microbiology, 2001, 39(5):1212-1224.
    [6] SUAREZ M, GONZALEZ-ZORN B, VEGA Y, CHICO-CALERO I, VAZQUEZ-BOLAND JA. A role for ActA in epithelial cell invasion by Listeria monocytogenes[J]. Cellular Microbiology, 2001, 3(12):853-864.
    [7] DRAMSI S, BOURDICHON F, CABANES D, LECUIT M, FSIHI H, COSSART P. FbpA, a novel multifunctional Listeria monocytogenes virulence factor[J]. Molecular Microbiology, 2004, 53(2):639-649.
    [8] WAMPLER JL, KIM KP, JARADAT Z, BHUNIA AK. Heat shock protein 60 acts as a receptor for the Listeria adhesion protein in Caco-2 cells[J]. Infection and Immunity, 2004, 72(2):931-936.
    [9] GAILLARD JL, BERCHE P, FREHEL C, GOUIN E, COSSART P. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from Gram-positive cocci[J]. Cell, 1991, 65(7):1127-1141.
    [10] CABANES D, SOUSA S, CEBRIÁ A, LECUIT M, GARCÍA-DEL PORTILLO F, COSSART P. Gp96 is a receptor for a novel Listeria monocytogenes virulence factor, Vip, a surface protein[J]. The EMBO Journal, 2005, 24(15):2827-2838.
    [11] CABANES D, DUSSURGET O, DEHOUX P, COSSART P. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence[J]. Molecular Microbiology, 2004, 51(6):1601-1614.
    [12] SCHNUPF P, PORTNOY DA. Listeriolysin O:a phagosome-specific lysin[J]. Microbes and Infection, 2007, 9(10):1176-1187.
    [13] VAZQUEZ-BOLAND JA, KOCKS C, DRAMSI S, OHAYON H, GEOFFROY C, MENGAUD J, COSSART P. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread[J]. Infection and Immunity, 1992, 60(1):219-230.
    [14] WEI ZY, ZENEWICZ LA, GOLDFINE H. Listeria monocytogenes phosphatidylinositol-specific phospholipase C has evolved for virulence by greatly reduced activity on GPI anchors[J]. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(36):12927-12931.
    [15] KOCKS C, GOUIN E, TABOURET M, BERCHE P, OHAYON H, COSSART P. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein[J]. Cell, 1992, 68(3):521-531.
    [16] LAMBRECHTS A, GEVAERT K, COSSART P, VANDEKERCKHOVE J, van TROYS M. Listeria comet tails:the actin-based motility machinery at work[J]. Trends in Cell Biology, 2008, 18(5):220-227.
    [17] BIERNE H, GARANDEAU C, PUCCIARELLI MG, SABET C, NEWTON S, GARCIA-DEL PORTILLO F, COSSART P, CHARBIT A. Sortase B, a new class of sortase in Listeria monocytogenes[J]. Journal of Bacteriology, 2004, 186(7):1972-1982.
    [18] BIERNE H, MAZMANIAN SK, TROST M, PUCCIARELLI MG, LIU G, DEHOUX P, JÄNSCH L, PORTILLO FGD, SCHNEEWIND O, COSSART P. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence[J]. Molecular Microbiology, 2002, 43(4):869-881.
    [19] MARISCOTTI JF, PORTILLO FGD, PUCCIARELLI MG. The Listeria monocytogenes sortase-B recognizes varied amino acids at position 2 of the sorting motif[J]. Journal of Biological Chemistry, 2009, 284(10):6140-6146.
    [20] CABANES D, DEHOUX P, DUSSURGET O, FRANGEUL L, COSSART P. Surface proteins and the pathogenic potential of Listeria monocytogenes[J]. Trends in Microbiology, 2002, 10(5):238-245.
    [21] BIERNE H, COSSART P. Listeria monocytogenes surface proteins:from genome predictions to function[J]. Microbiology and Molecular Biology Reviews, 2007, 71(2):377-397.
    [22] LINGNAU A, DOMANN E, HUDEL M, BOCK M, NICHTERLEIN T, WEHLAND J, CHAKRABORTY T. Expression of the Listeria monocytogenes EGD inlA and inlB genes, whose products mediate bacterial entry into tissue culture cell lines, by PrfA-dependent and-independent mechanisms[J]. Infection and Immunity, 1995, 63(10):3896-3903.
    [23] REIS O, SOUSA S, CAMEJO A, VILLIERS V, GOUIN E, COSSART P, CABANES D. LapB, a novel Listeria monocytogenes LPXTG surface adhesin, required for entry into eukaryotic cells and virulence[J]. Journal of Infectious Diseases, 2010, 202(4):551-562.
    [24] DOUMITH M, CAZALET C, SIMOES N, FRANGEUL L, JACQUET C, KUNST F, MARTIN P, COSSART P, GLASER P, BUCHRIESER C. New aspects regarding evolution and virulence of Listeria monocytogenes revealed by comparative genomics and DNA arrays[J]. Infection and Immunity, 2004, 72(2):1072-1083.
    [25] HAIN T, GHAI R, BILLION A, KUENNE CT, STEINWEG C, IZAR B, MOHAMED W, ABU MRAHEIL M, DOMANN E, SCHAFFRATH S, KÄRST U, GOESMANN A, OEHM S, PÜHLER A, MERKL R, VORWERK S, GLASER P, GARRIDO P, RUSNIOK C, BUCHRIESER C, et al. Comparative genomics and transcriptomics of lineages I, II, and III strains of Listeria monocytogenes[J]. BMC Genomics, 2012, 13(1):1-17.
    [26] BERCHE P, GAILLARD JL, RICHARD S. Invasiveness and intracellular growth of Listeria monocytogenes[J]. Infection, 1988, 16(suppl_2):S145-S148.
    [27] SWANSON JA. The role of the activated macrophage in clearing Listeria monocytogenes infection[J]. Frontiers in Bioscience, 2007, 12:2683-2692.
    [28] SILK BJ, DATE KA, JACKSON KA, POUILLOT R, HOLT KG, GRAVES LM, ONG KL, HURD S, MEYER R, MARCUS R, SHIFERAW B, NORTON DM, MEDUS C, ZANSKY SM, CRONQUIST AB, HENAO OL, JONES TF, VUGIA DJ, FARLEY MM, MAHON BE. Invasive listeriosis in the foodborne diseases active surveillance network (FoodNet), 2004-2009:further targeted prevention needed for higher-risk groups[J]. Clinical Infectious Diseases, 2012, 54(suppl_5):S396-S404.
    [29] SWAMINATHAN B, GERNER-SMIDT P. The epidemiology of human listeriosis[J]. Microbes and Infection, 2007, 9(10):1236-1243.
    [30] LÖFLING J, VIMBERG V, BATTIG P, HENRIQUES-NORMARK B. Cellular interactions by LPxTG-anchored pneumococcal adhesins and their streptococcal homologues[J]. Cellular Microbiology, 2011, 13(2):186-197.
    [31] MAZMANIAN SK, TON-THAT H, SCHNEEWIND O. Sortase-catalysed anchoring of surface proteins to the cell wall of Staphylococcus aureus[J]. Molecular Microbiology, 2001, 40(5):1049-1057.
    [32] SCHNEEWIND O, MISSIAKAS DM. Staphylococcal protein secretion and envelope assembly[J]. Microbiology Spectrum, 2019, 7(4):GPP3-0070-2019.
    [33] HENDRICKX APA, WILLEMS RJL, BONTEN MJM, van SCHAIK W. LPxTG surface proteins of enterococci[J]. Trends in Microbiology, 2009, 17(9):423-430.
    [34] GARANDEAU C, RÉGLIER-POUPET H, DUBAIL I, BERETTI JL, BERCHE P, CHARBIT A. The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence[J]. Infection and Immunity, 2002, 70(3):1382-1390.
    [35] MARISCOTTI JF, QUEREDA JJ, PUCCIARELLI MG. Contribution of sortase A to the regulation of Listeria monocytogenes LPXTG surface proteins[J]. International Microbiology, 2012, 15(1):43-51.
    [36] LECUIT M, VANDORMAEL-POURNIN S, LEFORT J, HUERRE M, GOUNON P, DUPUY C, BABINET C, COSSART P. A transgenic model for listeriosis:role of internalin in crossing the intestinal barrier[J]. Science, 2001, 292(5522):1722-1725.
    [37] LECUIT M, NELSON DM, SMITH SD, KHUN H, HUERRE M, VACHER-LAVENU MC, GORDON JI, COSSART P. Targeting and crossing of the human maternofetal barrier by Listeria monocytogenes:role of internalin interaction with trophoblast E-cadherin[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16):6152-6157.
    [38] DISSON O, GRAYO S, HUILLET E, NIKITAS G, LANGA-VIVES F, DUSSURGET O, RAGON M, le MONNIER A, BABINET C, COSSART P, LECUIT M. Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis[J]. Nature, 2008, 455(7216):1114-1118.
    [39] SABET C, TOLEDO-ARANA A, PERSONNIC N, LECUIT M, DUBRAC S, POUPEL O, GOUIN E, NAHORI MA, COSSART P, BIERNE H. The Listeria monocytogenes virulence factor InlJ is specifically expressed in vivo and behaves as an adhesin[J]. Infection and Immunity, 2008, 76(4):1368-1378.
    [40] MARISCOTTI JF, QUEREDA JJ, GARCÍA-DEL PORTILLO F, PUCCIARELLI MG. The Listeria monocytogenes LPXTG surface protein Lmo1413 is an invasin with capacity to bind mucin[J]. International Journal of Medical Microbiology, 2014, 304(3-4):393-404.
    [41] BATEMAN A, RAWLINGS ND. The CHAP domain:a large family of amidases including GSP amidase and peptidoglycan hydrolases[J]. Trends in Biochemical Sciences, 2003, 28(5):234-237.
    [42] BIRKELAND NK. Cloning, molecular characterization, and expression of the genes encoding the lytic functions of lactococcal bacteriophage phi LC3:a dual lysis system of modular design[J]. Canadian Journal of Microbiology, 1994, 40(8):658-665.
    [43] BALZARINI J. Large-molecular-weight carbohydrate-binding agents as HIV entry inhibitors targeting glycoprotein gp120[J]. Current Opinion in HIV and AIDS, 2006, 1(5):355-360.
    [44] MIYA A, ALBERT P, SHINYA T, DESAKI Y, ICHIMURA K, SHIRASU K, NARUSAKA Y, KAWAKAMI N, KAKU H, SHIBUYA N. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(49):19613-19618.
    [45] BOLTON MD, van ESSE HP, VOSSEN JH, de JONGE R, STERGIOPOULOS I, STULEMEIJER IJE, van den BERG GCM, BORRÁS-HIDALGO O, DEKKER HL, de KOSTER CG, de WIT PJGM, JOOSTEN MHAJ, THOMMA BPHJ. The novel Cladosporium fulvum lysin motif effector Ecp6 is a virulence factor with orthologues in other fungal species[J]. Molecular Microbiology, 2008, 69(1):119-136.
    [46] de JONGE R, PETER van ESSE H, KOMBRINK A, SHINYA T, DESAKI Y, BOURS R, van der KROL S, SHIBUYA N, JOOSTEN MHAJ, THOMMA BPHJ. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants[J]. Science, 2010, 329(5994):953-955.
    [47] RABINOVICH GA, TOSCANO MA. Turning 'sweet' on immunity:galectin-glycan interactions in immune tolerance and inflammation[J]. Nature Reviews Immunology, 2009, 9(5):338-352.
    [48] VISWESWARAN GRR, DIJKSTRA BW, KOK J. Murein and pseudomurein cell wall binding domains of bacteria and archaea-a comparative view[J]. Applied Microbiology and Biotechnology, 2011, 92(5):921-928.
    [49] STEEN A, BUIST G, LEENHOUTS KJ, EL KHATTABI M, GRIJPSTRA F, ZOMER AL, VENEMA G, KUIPERS OP, KOK J. Cell wall attachment of a widely distributed peptidoglycan binding domain is hindered by cell wall constituents[J]. Journal of Biological Chemistry, 2003, 278(26):23874-23881.
    [50] ECKERT C, LECERF M, DUBOST L, ARTHUR M, MESNAGE S. Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis[J]. Journal of Bacteriology, 2006, 188(24):8513-8519.
    [51] TARAHOMJOO S, KATAKURA Y, SHIOYA S. Expression of C-terminal repeat region of peptidoglycan hydrolase of Lactococcus lactis IL1403 in methylotrophic yeast Pichia pastoris[J]. Journal of Bioscience and Bioengineering, 2008, 105(2):134-139.
    [52] CARROLL SA, HAIN T, TECHNOW U, DARJI A, PASHALIDIS P, JOSEPH SW, CHAKRABORTY T. Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation[J]. Journal of Bacteriology, 2003, 185(23):6801-6808.
    [53] PILGRIM S, KOLB-MÄURER A, GENTSCHEV I, GOEBEL W, KUHN M. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility[J]. Infection and Immunity, 2003, 71(6):3473-3484.
    [54] SCHMIDT RL, FILAK HC, LEMON JD, POTTER TA, LENZ LL. A LysM and SH3-domain containing region of the Listeria monocytogenes p60 protein stimulates accessory cells to promote activation of host NK cells[J]. PLoS Pathogens, 2011, 7(11):e1002368.
    [55] KRAWCZYK-BALSKA A, KORSAK D, POPOWSKA M. The surface protein Lmo1941 with LysM domain influences cell wall structure and susceptibility of Listeria monocytogenes to cephalosporins[J]. FEMS Microbiology Letters, 2014, 357(2):175-183.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

林柯辰,李豪杰,赵秀玲,周思,廖俊慧,王子念,金戈旋,朱富鑫,徐加利,孙静,宋厚辉,邓思敏,程昌勇. 单增李斯特菌LPXTG蛋白Lmo0880在感染致病中的作用[J]. 微生物学报, 2024, 64(3): 893-906

复制
分享
文章指标
  • 点击次数:247
  • 下载次数: 651
  • HTML阅读次数: 384
  • 引用次数: 0
历史
  • 收稿日期:2023-09-21
  • 最后修改日期:2023-12-15
  • 在线发布日期: 2024-03-18
  • 出版日期: 2024-03-04
文章二维码