运动、肠道菌群和2型糖尿病关系的研究进展
作者:
基金项目:

国家社会科学基金(21BTY092);西南大学研究生科研创新项目(SWUS24037)


Research advances in the relationship among exercise, gut microbiota, and type 2 diabetes mellitus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [104]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    2型糖尿病(type 2 diabetes mellitus,T2DM)是一种常见的代谢性疾病,然而其发病机制尚未有定论。研究发现,肠道菌群与T2DM密切相关,T2DM导致某种特定的肠道菌群结构和代谢特征,从而导致疾病发生发展。运动是T2DM防治的有效手段,可逆转因T2DM而引发的肠道菌群紊乱,调节肠道代谢物,从而改善T2DM。然而,运动对T2DM患者肠道菌群的影响仍存在许多问题亟须解决。此外,运动调控T2DM患者肠道菌群可与人体众多脏器关联,可通过多条肠道-肠外器官轴通路对T2DM产生效益。鉴于此,本文基于运动、肠道菌群和T2DM之间的关系,对T2DM肠道菌群特征以及运动对T2DM肠道菌群影响,并从肠道-器官轴角度对运动调控肠道菌群改善T2DM的机制进行综述,以期为进一步明确运动、肠道菌群和T2DM的关系提供参考。

    Abstract:

    Type 2 diabetes mellitus (T2DM) is a prevalent metabolic disease, yet its pathogenesis remains inconclusive. Recent studies have revealed a close relationship between the gut microbiota and T2DM, and specific gut microbiota structures and metabolic characteristics are associated with the onset and progression of T2DM. Exercise is an effective intervention for the prevention and management of T2DM, capable of reversing the dysbiosis induced by T2DM and regulating gut metabolites. However, the effects of exercise on the gut microbiota in T2DM patients still present many unresolved issues. Furthermore, the regulation of gut microbiota by exercise in T2DM patients is closely linked to multiple organs and can exert alleviation effects on T2DM via various gut-organ axis pathways. This paper reviews the characteristics of gut microbiota in T2DM and the effects of exercise on the gut microbiota in T2DM, with a particular focus on the mechanisms by which exercise regulates the gut microbiota to ameliorate T2DM via the gut-organ axis. This review aims to provide a reference for elucidating the relationship between exercise, gut microbiota, and T2DM.

    参考文献
    [1] 《中国老年型糖尿病防治临床指南》编写组. 中国老年2型糖尿病防治临床指南(2022年版)[J]. 中国糖尿病杂志, 2022, 30(1): 2-51. Compilation Group of Clinical Guidelines for the Prevention and Treatment of Type 2 Diabetes in the Elderly in China. Clinical guidelines for the prevention and treatment of type 2 diabetes in the elderly in China (2022 edition)[J]. Chinese Journal of Diabetes, 2022, 30(1): 2-51(in Chinese).
    [2] YAN YQ, WU TT, ZHANG M, LI CF, LIU Q, LI F. Prevalence, awareness and control of type 2 diabetes mellitus and risk factors in Chinese elderly population[J]. BMC Public Health, 2022, 22(1): 1382.
    [3] TARGHER G, COREY KE, BYRNE CD, RODEN M. The complex link between NAFLD and type 2 diabetes mellitus—mechanisms and treatments[J]. Nature Reviews Gastroenterology & Hepatology, 2021, 18: 599-612.
    [4] RUZE R, LIU TT, ZOU X, SONG JL, CHEN Y, XU RY, YIN XP, XU Q. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments[J]. Frontiers in Endocrinology, 2023, 14: 1161521.
    [5] POLIDORI I, MARULLO L, IALONGO C, TOMASSETTI F, COLOMBO R, di GAUDIO F, CALUGI G, MARRONE G, NOCE A, BERNARDINI S, BROCCOLO F, PIERI M. Characterization of gut microbiota composition in type 2 diabetes patients: a population-based study[J]. International Journal of Environmental Research and Public Health, 2022, 19(23): 15913.
    [6] QUE YY, CAO M, HE JQ, ZHANG Q, CHEN QY, YAN CS, LIN AQ, YANG LX, WU ZZ, ZHU D, CHEN FW, CHEN ZR, XIAO CX, HOU KJ, ZHANG BZ. Gut bacterial characteristics of patients with type 2 diabetes mellitus and the application potential[J]. Frontiers in Immunology, 2021, 12: 722206.
    [7] 胡颖俊, 陈思敏, 闫文睿, 冀乐, 郑红星, 祁珊珊. 肠道微生物群在糖尿病肾病防治中的研究进展[J]. 微生物学通报, 2023, 50(8): 3659-3670. HU YJ, CHEN SM, YAN WR, JI L, ZHENG HX, QI SS. Intestinal microbiome in the prevention and treatment of diabetic kidney disease[J]. Microbiology China, 2023, 50(8): 3659-3670(in Chinese).
    [8] 刘伊依, 邱俊强. 运动与肠道菌群代谢产物: 短链脂肪酸在2型糖尿病中的代谢调控作用[J]. 中国运动医学杂志, 2023, 42(10): 818-824. LIU YQ, QIU JQ. Exercise and intestinal flora metabolites: metabolic regulation of short-chain fatty acids in type 2 diabetes mellitus[J]. Chinese Journal of Sports Medicine, 2023, 42(10): 818-824(in Chinese).
    [9] 张晓建, 桑力轩. 肠道菌群对代谢相关性脂肪肝的影响及运动干预研究进展[J]. 微生物学通报, 2022, 49(10): 4438-4447. ZHANG XJ, SANG LX. Effect of gut microbiota on metabolism-associated fatty liver disease and research progress of exercise intervention[J]. Microbiology China, 2022, 49(10): 4438-4447(in Chinese).
    [10] 杨琼, 戴霞, 徐丹青, 黎学颖. 基于肠道菌群探讨运动改善2型糖尿病的可能机制[J]. 中国免疫学杂志, 2023, 39(12): 2656-2661. YANG Q, DAI X, XU DQ, LI XY. Possible mechanisms of type 2 diabetes mellitus improvement via exercise-induced changes in gut microbiota composition and metabolites[J]. Chinese Journal of Immunology, 2023, 39(12): 2656-2661(in Chinese).
    [11] 蔡淑珍, 吴磊, 谢新强, 陈惠元, 吴清平. 肠道微生物群在人类健康衰老中的作用机制研究进展[J]. 微生物学报, 2023, 63(1): 85-105. CAI SZ, WU L, XIE XQ, CHEN HY, WU QP. Mechanism of gut microbiota in human healthy aging[J]. Acta Microbiologica Sinica, 2023, 63(1): 85-105(in Chinese).
    [12] LARSEN N, VOGENSEN FK, van den BERG FWJ, NIELSEN DS, ANDREASEN AS, PEDERSEN BK, AL-SOUD WA, SØRENSEN SJ, HANSEN LH, JAKOBSEN M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults[J]. PLoS One, 2010, 5(2): e9085.
    [13] DELBAERE K, ROEGIERS I, BRON A, DURIF C, van de WIELE T, BLANQUET-DIOT S, MARINELLI L. The small intestine: dining table of host-microbiota meetings[J]. FEMS Microbiology Reviews, 2023, 47(3): fuad022.
    [14] ZHANG ZW, TIAN T, CHEN Z, LIU LR, LUO T, DAI JH. Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes[J]. PeerJ, 2021, 9: e10952.
    [15] PETAKH P, OKSENYCH V, KAMYSHNYI A. The F/B ratio as a biomarker for inflammation in COVID-19 and T2D: Impact of metformin[J]. Biomedicine & Pharmacotherapy, 2023, 163: 114892.
    [16] LI YJ, QIAN F, CHENG XG, WANG D, WANG YR, PAN YT, CHEN LY, WANG W, TIAN Y. Dysbiosis of oral microbiota and metabolite profiles associated with type 2 diabetes mellitus[J]. Microbiology Spectrum, 2023, 11(1): e0379622.
    [17] GUO Q, HOU XY, CUI Q, LI SS, SHEN GH, LUO QY, WU HJ, CHEN H, LIU YT, CHEN AJ, ZHANG ZQ. Pectin mediates the mechanism of host blood glucose regulation through intestinal flora[J]. Critical Reviews in Food Science and Nutrition, 2024, 64(19): 6714-6736.
    [18] CHEN SJ, CAI ST, XU J, CHEN BB, CHEN XL, XIONG HP. Lack of Faecalibacterium prausnitzii and Bifidobacterium is associated with a higher risk of metabolic associated fatty liver disease in young-onset type 2 diabetes[J]. International Journal of Diabetes in Developing Countries, 2024, 44(1): 167-174.
    [19] LI JJ, YANG G, ZHANG QH, LIU Z, JIANG X, XIN Y. Function of Akkermansia muciniphila in type 2 diabetes and related diseases[J]. Frontiers in Microbiology, 2023, 14: 1172400.
    [20] LV MJ, LI LS, LI WD, YANG FJ, HU QY, XIONG DQ. Mechanism research on the interaction regulation of Escherichia and IFN-γ for the occurrence of T2DM[J]. Annals of Palliative Medicine, 2021, 10(10): 10391-10400.
    [21] SILVERMAN GJ, AZZOUZ DF, GISCH N, AMARNANI A. The gut microbiome in systemic lupus erythematosus: lessons from rheumatic fever[J]. Nature Reviews Rheumatology, 2024, 20(3): 143-157.
    [22] WEI XX, LI N, WU XY, CAO GD, QIAO HP, WANG J, HAO RR. The preventive effect of Glycyrrhiza polysaccharide on lipopolysaccharide-induced acute colitis in mice by modulating gut microbial communities[J]. International Journal of Biological Macromolecules, 2023, 239: 124199.
    [23] LEITE AZ, RODRIGUES NC, GONZAGA MI, PAIOLO JCC, de SOUZA CA, STEFANUTTO NAV, OMORI WP, PINHEIRO DG, BRISOTTI JL, MATHEUCCI JUNIOR E, MARIANO VS, de OLIVEIRA GLV. Detection of increased plasma Interleukin-6 levels and prevalence of Prevotella copri and Bacteroides vulgatus in the feces of type 2 diabetes patients[J]. Frontiers in Immunology, 2017, 8: 1107.
    [24] KARLSSON FH, TREMAROLI V, NOOKAEW I, BERGSTRÖM G, BEHRE CJ, FAGERBERG B, NIELSEN J, BÄCKHED F. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013, 498(7452): 99-103.
    [25] 余杭林, 田浩冬, 文世媛, 黄丽, 刘昊为, 李汉森, 王培松, 彭莉. 高强度间歇性运动干预2型糖尿病患者糖代谢及肠道菌群的变化[J]. 中国组织工程研究, 2025, 29(2): 286-293. YU HL, TIAN HD, WEN SY, HUANG L, LIU HW, LI HS, WANG PS, PENG L. Changes in glucose metabolism and intestinal flora in patients with type 2 diabetes mellitus after high-intensity intermittent exercise[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(2): 286-293(in Chinese).
    [26] ADACHI K, SUGIYAMA T, YAMAGUCHI Y, TAMURA Y, IZAWA S, HIJIKATA Y, EBI M, FUNAKI Y, OGASAWARA N, GOTO C, SASAKI M, KASUGAI K. Gut microbiota disorders cause type 2 diabetes mellitus and homeostatic disturbances in gut-related metabolism in Japanese subjects[J]. Journal of Clinical Biochemistry and Nutrition, 2019, 64(3): 231-238.
    [27] KOMAROFF AL. The microbiome and risk for obesity and diabetes[J]. JAMA, 2017, 317(4): 355-356.
    [28] ŁONIEWSKA B, FRASZCZYK-TOUSTY M, TOUSTY P, SKONIECZNA-ŻYDECKA K, MACIEJEWSKA-MARKIEWICZ D, ŁONIEWSKI I. Analysis of fecal short-chain fatty acids (SCFAs) in healthy children during the first two years of life: an observational prospective cohort study[J]. Nutrients, 2023, 15(2): 367.
    [29] TEYANI R, MONIRI NH. Gut feelings in the islets: the role of the gut microbiome and the FFA2 and FFA3 receptors for short chain fatty acids on β-cell function and metabolic regulation[J]. British Journal of Pharmacology, 2023, 180(24): 3113-3129.
    [30] LAGOD PP, ABDELLI LS, NASER SA. An in vivo model of propionic acid-rich diet-induced gliosis and neuro-inflammation in mice (FVB/N-tg(GFAPGFP)14Mes/J): a potential link to autism spectrum disorder[J]. International Journal of Molecular Sciences, 2024, 25(15): 8093.
    [31] LIM SJ, KWON HC, SHIN DM, CHOI YJ, HAN SG, KIM YJ, HAN SG. Apoptosis-inducing effects of short-chain fatty acids-rich fermented pistachio milk in human colon carcinoma cells[J]. Foods, 2023, 12(1): 189.
    [32] YI ZY, Chen L, Wang Y, HE D, ZHAO D, ZHANG SH, YU R, HUANG JH. The potential mechanism of Liu-Wei-Di-Huang Pills in treatment of type 2 diabetic mellitus: from gut microbiota to short-chain fatty acids metabolism[J]. Acta Diabetologica, 2022, 59(10): 1295-1308.
    [33] DU YH, HE CH, AN YC, HUANG Y, ZHANG HL, FU WX, WANG ML, SHAN ZY, XIE JM, YANG Y, ZHAO BS. The role of short chain fatty acids in inflammation and body health[J]. International Journal of Molecular Sciences, 2024, 25(13): 7379.
    [34] MAZHAR M, ZHU Y, QIN LK. The interplay of dietary fibers and intestinal microbiota affects type 2 diabetes by generating short-chain fatty acids[J]. Foods, 2023, 12(5): 1023.
    [35] DU LL, LI Q, YI H, KUANG TT, TANG Y, FAN G. Gut microbiota-derived metabolites as key actors in type 2 diabetes mellitus[J]. Biomedicine & Pharmacotherapy, 2022, 149: 112839.
    [36] COLLINS SL, STINE JG, BISANZ JE, OKAFOR CD, PATTERSON AD. Bile acids and the gut microbiota: metabolic interactions and impacts on disease[J]. Nature Reviews Microbiology, 2023, 21(4): 236-247.
    [37] HOU YS, ZHAI XZ, WANG XT, WU Y, WANG HY, QIN YX, HAN JL, MENG Y. Research progress on the relationship between bile acid metabolism and type 2 diabetes mellitus[J]. Diabetology & Metabolic Syndrome, 2023, 15(1): 235.
    [38] GOU XM, QIN L, WU D, XIE J, LU YL, ZHANG QR, HE YQ. Research progress of takeda G protein-coupled receptor 5 in metabolic syndrome[J]. Molecules, 2023, 28(15): 5870.
    [39] DING C, WANG ZP, DOU XY, YANG Q, NING Y, KAO S, SANG XN, HAO M, WANG KL, PENG MY, ZHANG SS, HAN X, CAO G. Farnesoid X receptor: from structure to function and its pharmacology in liver fibrosis[J]. Aging and Disease, 2024, 15(4): 1508-1536.
    [40] SHAN ZL, SUN TP, HUANG H, CHEN SJ, CHEN LK, LUO C, YANG W, YANG XF, YAO P, CHENG JQ, HU FB, LIU LG. Association between microbiota-dependent metabolite trimethylamine-N- oxide and type 2 diabetes[J]. The American Journal of Clinical Nutrition, 2017, 106(3): 888-894.
    [41] ZHUANG RL, GE XY, HAN L, YU P, GONG X, MENG QS, ZHANG YZ, FAN HM, ZHENG L, LIU ZM, ZHOU XH. Gut microbe–generated metabolite trimethylamine N-oxide and the risk of diabetes: a systematic review and dose-response meta-analysis[J]. Obesity Reviews, 2019, 20(6): 883-894.
    [42] LIU YY, HUANG K, ZHANG Y, CAO HW, GUAN X. Dietary polyphenols maintain homeostasis via regulating bile acid metabolism: a review of possible mechanisms[J]. Food & Function, 2023, 14(21): 9486-9505.
    [43] CHEN SF, HENDERSON A, PETRIELLO MC, ROMANO KA, GEARING M, MIAO J, SCHELL M, SANDOVAL-ESPINOLA WJ, TAO JH, SHA BD, GRAHAM M, CROOKE R, KLEINRIDDERS A, BALSKUS EP, REY FE, MORRIS AJ, BIDDINGER SB. Trimethylamine N-oxide binds and activates PERK to promote metabolic dysfunction[J]. Cell Metabolism, 2019, 30(6): 1141-1151.e5.
    [44] SNELSON M, PASQUALE C, EKINCI EI, COUGHLAN MT. Gut microbiome, prebiotics, intestinal permeability and diabetes complications[J]. Best Practice & Research Clinical Endocrinology & Metabolism, 2021, 35(3): 101507.
    [45] DU LY, LEI X, WANG J, WANG L, ZHONG QP, FANG X, LI P, DU B, WANG YT, LIAO ZL. Lipopolysaccharides derived from Gram-negative bacterial pool of human gut microbiota promote inflammation and obesity development[J]. International Reviews of Immunology, 2022, 41(1): 45-56.
    [46] LIU H, PAN LL, LV ST, YANG Q, ZHANG H, CHEN W, LV ZW, SUN J. Alterations of gut microbiota and blood lipidome in gestational diabetes mellitus with hyperlipidemia[J]. Frontiers in Physiology, 2019, 10: 1015.
    [47] KIM CS, JUNG S, HWANG GS, SHIN DM. Gut microbiota indole-3-propionic acid mediates neuroprotective effect of probiotic consumption in healthy elderly: a randomized, double-blind, placebo-controlled, multicenter trial and in vitro study[J]. Clinical Nutrition, 2023, 42(6): 1025-1033.
    [48] NIU B, PAN T, XIAO Y, WANG HC, ZHU JL, TIAN FW, LU WW, CHEN W. The therapeutic potential of dietary intervention: based on the mechanism of a tryptophan derivative-indole propionic acid on metabolic disorders[J]. Critical Reviews in Food Science and Nutrition, 2024: 1-20.
    [49] TABONE M, BRESSA C, GARCÍA-MERINO JA, MORENO-PÉREZ D, VAN EC, CASTELLI FA, FENAILLE F, LARROSA M. The effect of acute moderate-intensity exercise on the serum and fecal metabolomes and the gut microbiota of cross-country endurance athletes[J]. Scientific Reports, 2021, 11(1): 3558.
    [50] WU JQ, YANG KP, FAN HC, WEI ML, XIONG Q. Targeting the gut microbiota and its metabolites for type 2 diabetes mellitus[J]. Frontiers in Endocrinology, 2023, 14: 1114424.
    [51] de VADDER F, KOVATCHEVA-DATCHARY P, ZITOUN C, DUCHAMPT A, BÄCKHED F, MITHIEUX G. Microbiota-produced succinate improves glucose homeostasis via intestinal gluconeogenesis[J]. Cell Metabolism, 2016, 24(1): 151-157.
    [52] ZHANG MW, CUI SM, MAO BY, ZHANG QX, ZHAO JX, ZHANG H, TANG X, CHEN W. Ellagic acid and intestinal microflora metabolite urolithin A: a review on its sources, metabolic distribution, health benefits, and biotransformation[J]. Critical Reviews in Food Science and Nutrition, 2023, 63(24): 6900-6922.
    [53] VANGIPURAPU J, FERNANDES SILVA L, KUULASMAA T, SMITH U, LAAKSO M. Microbiota-related metabolites and the risk of type 2 diabetes[J]. Diabetes Care, 2020, 43(6): 1319-1325.
    [54] CLARKE SF, MURPHY EF, O’SULLIVAN O, LUCEY AJ, HUMPHREYS M, HOGAN A, HAYES P, O’REILLY M, JEFFERY IB, WOOD-MARTIN R, KERINS DM, QUIGLEY E, ROSS RP, O’TOOLE PW, MOLLOY MG, FALVEY E, SHANAHAN F, COTTER PD. Exercise and associated dietary extremes impact on gut microbial diversity[J]. Gut, 2014, 63(12): 1913-1920.
    [55] SHALON D, CULVER RN, GREMBI JA, FOLZ J, TREIT PV, SHI HD, ROSENBERGER FA, DETHLEFSEN L, MENG XD, YAFFE E, ARANDA-DÍAZ A, GEYER PE, MUELLER-REIF JB, SPENCER S, PATTERSON AD, TRIADAFILOPOULOS G, HOLMES SP, MANN M, FIEHN O, RELMAN DA, et al. Profiling the human intestinal environment under physiological conditions[J]. Nature, 2023, 617(7961): 581-591.
    [56] LAMBERT JE, MYSLICKI JP, BOMHOF MR, BELKE DD, SHEARER J, REIMER RA. Exercise training modifies gut microbiota in normal and diabetic mice[J]. Applied Physiology, Nutrition, and Metabolism, 2015, 40(7): 749-752.
    [57] 刘昭志, 黄丽, 田浩冬, 李岚, 陈晓, 陶云飞, 彭莉. 运动对大学生肠道菌群影响的系统综述[J]. 中国组织工程研究, 2025, 29(11): 2394-2401. LIU ZZ, HUANG L, TIAN HD, LI L, CHEN X, TAO YF, PENG L. Effects of exercise intervention on intestinal flora in college students: a systematic review[J]. Chinese Journal of Tissue Engineering Research, 2025, 29(11): 2394-2401(in Chinese).
    [58] 田浩冬, 黄丽, 刘昊为, 刘诗琪, 张壬, 向秋, 张好, 王培松, 彭莉. T2DM患者运动响应与肠道菌群代谢: 关系探究与机制推断[J]. 上海体育学院学报, 2023, 47(4): 24-38. TIAN HD, HUANG L, LIU HW, LIU SQ, ZHANG R, XIANG Q, ZHANG H, WANG PS, PENG L. Exercise response and gut microbiota metabo>[106] DOUGLAS JA, DEIGHTON K, ATKINSON JM, SARI-SARRAF V, STENSEL DJ, ATKINSON G. Acute exercise and appetite-regulating hormones in overweight and obese individuals: a meta-analysis[J]. Journal of Obesity, 2016, 2016: 2643625.
    [107] WORTHINGTON JJ, REIMANN F, GRIBBLE FM. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity[J]. Mucosal Immunology, 2018, 11(1): 3-20.
    [108] TRAPP S, BRIERLEY DI. Brain GLP-1 and the regulation of food intake: GLP-1 action in the brain and its implications for GLP-1 receptor agonists in obesity treatment[J]. British Journal of Pharmacology, 2022, 179(4): 557-570.
    [109] RIBEIRO FM, SILVA MA, LYSSA V, MARQUES G, LIMA HK, FRANCO OL, PETRIZ B. The molecular signaling of exercise and obesity in the microbiota-gut-brain axis[J]. Frontiers in Endocrinology, 2022, 13: 927170.
    [110] WANG Y, LV BH, LIU NN, TAO SY, DOU JF, LI J, DENG RX, YANG XY, JIANG GJ. The mechanism of bile acid metabolism regulating lipid metabolism and inflammatory response in T2DM through the gut-liver axis[J]. Heliyon, 2024, 10(16): e35421.
    [111] MILBANK E, DÍAZ-TRELLES R, DRAGANO N, LATORRE J, MUKTHAVARAM R, MAYNERIS-PERXACHS J, ORTEGA F, FEDERICI M, BURCELIN R, KARMALI PP, TACHIKAWA K, CHIVUKULA P, LÓPEZ M, FERNÁNDEZ-REAL JM, MORENO-NAVARRETE JM. Liver lipopolysaccharide binding protein prevents hepatic inflammation in physiological and pathological non-obesogenic conditions[J]. Pharmacological Research, 2023, 187: 106562.
    [112] XIONG N, HU SM. Regulation of intestinal IgA responses[J]. Cellular and Molecular Life Sciences, 2015, 72(14): 2645-2655.
    [113] LIN HW, LIN J, PAN TT, LI T, JIANG HM, FANG Y, WANG YX, WU FL, HUANG J, ZHANG HD, CHEN DZ, CHEN YP. Polymeric immunoglobulin receptor deficiency exacerbates autoimmune hepatitis by inducing intestinal dysbiosis and barrier dysfunction[J]. Cell Death & Disease, 2023, 14(1): 68.
    [114] MIRPURI J, RAETZ M, STURGE CR, WILHELM CL, BENSON A, SAVANI RC, HOOPER LV, YAROVINSKY F. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota[J]. Gut Microbes, 2014, 5(1): 28-39.
    [115] KUGADAS A, WRIGHT Q, GEDDES-MCALISTER J, GADJEVA M. Role of microbiota in strengthening ocular mucosal barrier function through secretory IgA[J]. Investigative Ophthalmology & Visual Science, 2017, 58(11): 4593-4600.
    [116] CARBAJO-PESCADOR S, PORRAS D, GARCÍA-MEDIAVILLA MV, MARTÍNEZ-FLÓREZ S, JUAREZ-FERNÁNDEZ M, CUEVAS MJ, MAURIZ JL, GONZÁLEZ-GALLEGO J, NISTAL E, SÁNCHEZ-CAMPOS S. Beneficial effects of exercise on gut microbiota functionality and barrier integrity, and gut-liver crosstalk in an in vivo model of early obesity and non-alcoholic fatty liver disease[J]. Disease Models & Mechanisms, 2019, 12(5): dmm039206.
    酛鐱蘱7]猠套奁NG吠扑杌, 佌聉镎瀠效療瘬删酓H故幎儠籃瑒謬挠敚HANG 卍乃伬耠套孁孎扇 XY, YUAN MM, YUAN MY, JIA S, CAO ZW, WU C, CHEN BR, GAO AB, BI YF, NING G, WANG WQ, WANG JQ, LIU RX. Gut microbiota regulates postprandial GLP-1 response via ileal bile acid-TGR5 signaling[J]. Gut Microbes听张帲02猳稬张15嬨弲朩霺 2串吷輴刱夲攴嬮<坢籲尾畛怱耱攸啝攠杆癕 R, 剎杉U RY,丠噚佈聁祏戠FY, WANG JX, CAO QQ, YU YH, LIU C, ZHANG D, SUN ZL. Exercise alleviated intestinal damage and microbial disturbances in mice exposed to fluoride[J]. Chemosphere, 2022, 288: 132658.
    [119] GUZIOR DV, QUINN RA. Review: microbial transformations of human bile acids[J]. Microbiome, 2021, 9(1): 140.
    [120] HODGE RJ, NUNEZ DJ. Therapeutic potential of Takeda-G-protein-receptor-5(TGR5) agonists. Hope or hype?[J]. Diabetes, Obesity & Metabolism, 2016, 18(5): 439-443.
    [121] ZHANG YQ, LEE FY, BARRERA G, LEE H, VALES C, GONZALEZ FJ, WILLSON TM, EDWARDS PA. Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(4): 1006-1011.
    [122] GAO ZG, YIN J, ZHANG J, WARD RE, MARTIN RJ, LEFEVRE M, CEFALU WT, YE JP. Butyrate improves insulin sensitivity and increases energy expenditure in mice[J]. Diabetes, 2009, 58(7): 1509-1517.astrointestinal barrier permeability and elevates circulating levels of pro- and anti-inflammatory cytokines[J]. Applied Physiology, Nutrition, and Metabolism, 2020, 45(4): 376-386.
    [75] KARL JP, MARGOLIS LM, MADSLIEN EH, MURPHY NE, CASTELLANI JW, GUNDERSEN Y, HOKE AV, LEVANGIE MW, KUMAR R, CHAKRABORTY N, GAUTAM A, HAMMAMIEH R, MARTINI S, MONTAIN SJ, PASIAKOS SM. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2017, 312(6): G559-G571.
    [76] TORQUATI L, GAJANAND T, COX ER, WILLIS CRG, ZAUGG J, KEATING SE, COOMBES JS. Effects of exercise intensity on gut microbiome composition and function in people with type 2 diabetes[J]. European Journal of Sport Science, 2023, 23(4): 530-541.
    [77] ZHANG FR, CHEN XX, YANG MX, SHEN XY, WANG YL, ZHONG DL, ZENG F, JIN RJ. Metabolic impairments associated with type 2 diabetes mellitus and the potential effects of exercise therapy: an exploratory randomized trial based on untargeted metabolomics[J]. PLoS One, 2024, 19(3): e0300593.
    [78] de GROOT P, SCHEITHAUER T, BAKKER GJ, PRODAN A, LEVIN E, KHAN MT, HERREMA H, ACKERMANS M, SERLIE MJM, de BRAUW M, LEVELS JHM, SALES A, GERDES VE, STÅHLMAN M, SCHIMMEL AWM, DALLINGA-THIE G, BERGMAN JJ, HOLLEMAN F, HOEKSTRA JBL, GROEN A, et al. Donor metabolic characteristics drive effects of faecal microbiota transplantation on recipient insulin sensitivity, energy expenditure and intestinal transit time[J]. Gut, 2020, 69(3): 502-512.
    [79] OETTLÉ GJ. Effect of moderate exercise on bowel habit[J]. Gut, 1991, 32(8): 941-944.
    [80] VANDEPUTTE D, FALONY G, VIEIRA-SILVA S, TITO RY, JOOSSENS M, RAES J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates[J]. Gut, 2016, 65(1): 57-62.
    [81] LOUIS P, FLINT HJ. Formation of propionate and butyrate by the human colonic microbiota[J]. Environmental Microbiology, 2017, 19(1): 29-41.
    [82] KHALEDI M, DARVISHI M, SAMENI F, SHAHRJERDI S, KARAMI E, BARAHUI N, HEMMATI J, HASHEMINASAB MS, SANAE MJ, AKHAVAN-SIGARI R, OWLIA P. Association between exercise and changes in gut microbiota profile: a review[J]. Sport Sciences for Health, 2024, 20(2): 273-286.
    [83] CLAUSS M, GÉRARD P, MOSCA A, LECLERC M. Interplay between exercise and gut microbiome in the context of human health and performance[J]. Frontiers in Nutrition, 2021, 8: 637010.
    [84] 齐臻, 乐生龙, 姚武, 程蜀琳. 2型糖尿病患者运动响应异质性的研究进展[J]. 广州体育学院学报, 2023, 43(1): 18-25. QI Z, LE SL, YAO W, CHENG SL. A progress review in exercise response heterogeneity in patients with type 2 diabetes[J]. Journal of Guangzhou Sport University, 2023, 43(1): 18-25(in Chinese).
    [85] CHENG RT, WANG L, LE SL, YANG YF, ZHAO C, ZHANG XQ, YANG X, XU T, XU LT, WIKLUND P, GE J, LU DJ, ZHANG CH, CHEN LN, CHENG SL. A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease[J]. Nature Communications, 2022, 13(1): 2555.
    [86] LIU Y, WANG Y, NI YQ, CHEUNG CKY, LAM KSL, WANG Y, XIA ZY, YE DW, GUO J, TSE MA, PANAGIOTOU G, XU AM. Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention[J]. Cell Metabolism, 2020, 31(1): 77-91.e5.
    [87] PRZEWŁÓCKA K, FOLWARSKI M, KAŹMIERCZAK-SIEDLECKA K, SKONIECZNA-ŻYDECKA K, KACZOR JJ. Gut-muscle AxisExists and may affect skeletal muscle adaptation to training[J]. Nutrients, 2020, 12(5): 1451.
    [88] TICINESI A, NOUVENNE A, CERUNDOLO N, CATANIA P, PRATI B, TANA C, MESCHI T. Gut microbiota, muscle mass and function in aging: a focus on physical frailty and sarcopenia[J]. Nutrients, 2019, 11(7): 1633.
    [89] PINKAS M, BRZOZOWSKI T. The Role of the Myokine Irisin in the Protection and Carcinogenesis of the Gastrointestinal Tract[J]. Antioxidants, 2024, 13(4): 413.
    [90] LUNDBY C, STEENSBERG A. Interleukin-6 response to exercise during acute and chronic hypoxia[J]. European Journal of Applied Physiology, 2004, 91(1): 88-93.
    [91] CHANSA O, SHANTAVASINKUL PC, MONSUWAN W, SIRIVARASAI J. Association between gut microbiota profiles, dietary intake, and inflammatory markers in overweight and obese women[J]. Foods, 2024, 13(16): 2592.
    [92] REBECCA S, RYE OS, SUNE J, MARK F, KLARLUND PB. Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans[J]. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 2003, 17(8): 884-886.
    [93] ALADAG T, MOGULKOC R, BALTACI AK. Irisin and energy metabolism and the role of irisin on metabolic syndrome[J]. Mini Reviews in Medicinal Chemistry, 2023, 23(20): 1942-1958.
    [94] BARELLA LF, JAIN S, KIMURA T, PYDI SP. Metabolic roles of G protein-coupled receptor signaling in obesity and type 2 diabetes[J]. The FEBS Journal, 2021, 288(8): 2622-2644.
    [95] WU LT, ZHOU M, XIE YQ, LANG HD, LI TY, YI L, ZHANG QY, MI MT. Dihydromyricetin enhances exercise-induced GLP-1 elevation through stimulating cAMP and inhibiting DPP-4[J]. Nutrients, 2022, 14(21): 4583.
    [96] SHARMA C, KIM Y, AHN D, CHUNG SJ. Protein tyrosine phosphatases (PTPs) in diabetes: causes and therapeutic opportunities[J]. Archives of Pharmacal Research, 2021, 44(3): 310-321.
    [97] Da CRUZ RODRIGUES KC, MARTINS PEREIRA R, PERUCA GF, TORRES BARBOSA LW, RAMOS SANT’ANA M, ROSETTO MUÑOZ V, MORELLI AP, MOREIRA SIMABUCO F, SANCHEZ RAMOS Da SILVA A, ESPER CINTRA D, ROCHETE ROPELLE E, PAULI JR, de MOURA LP. Short-term strength exercise reduces hepatic insulin resistance in obese mice by reducing PTP1B content, regardless of changes in body weight[J]. International Journal of Molecular Sciences, 2021, 22(12): 6402.
    [98] SCHEIMAN J, LUBER JM, CHAVKIN TA, MacDONALD T, TUNG A, PHAM LD, WIBOWO MC, WURTH RC, PUNTHAMBAKER S, TIERNEY BT, YANG Z, HATTAB MW, AVILA-PACHECO J, CLISH CB, LESSARD S, CHURCH GM, KOSTIC AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism[J]. Nature Medicine, 2019, 25(7): 1104-1109.
    [99] THORENS B. Neuronal glucose sensing mechanisms and circuits in the control of insulin and glucagon secretion[J]. Physiological Reviews, 2024, 104(4): 1461-1486.
    [100] BORGMANN D, CIGLIERI E, BIGLARI N, BRANDT C, CREMER AL, BACKES H, TITTGEMEYER M, WUNDERLICH FT, BRÜNING JC, FENSELAU H. Gut-brain communication by distinct sensory neurons differently controls feeding and glucose metabolism[J]. Cell Metabolism, 2021, 33(7): 1466-1482.e7.
    [101] MAZDA T, YAMAMOTO H, FUJIMURA M, FUJIMIYA M. Gastric distension-induced release of 5-HT stimulates c-fos expression in specific brain nuclei via 5-HT3 receptors in conscious rats[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2004, 287(1): G228-G235.
    [102] CHENG YY, KOU YT, WANG J, WANG Y, RONG WF, HAN HX, ZHANG GH. 5-hydroxytryptamine 4 receptor agonist attenuates diabetic enteric neuropathy through inhibition of the receptor-interacting protein kinase 3 pathway[J]. The American Journal of Pathology, 2024, 194(5): 785-795.
    [103] LI PF, TONG T, SHAO XY, HAN Y, ZHANG M, LI YL, LV X, LI H, LI ZM. The synergism of Lactobacillaceae, inulin, polyglucose, and aerobic exercise ameliorates hyperglycemia by modulating the gut microbiota community and the metabolic profiles in db/db mice[J]. Food & Function, 2024, 15(9): 4832-4851.
    [104] CERVENKA I, AGUDELO LZ, RUAS JL. Kynurenines: tryptophan’s metabolites in exercise, inflammation, and mental health[J]. Science, 2017, 357(6349): eaaf9794.
    [105] CHAMBERS ES, VIARDOT A, PSICHAS A, MORRISON DJ, MURPHY KG, ZAC-VARGHESE SEK, MacDOUGALL K, PRESTON T, TEDFORD C, FINLAYSON GS, BLUNDELL JE, BELL JD, THOMAS EL, MT-ISA S, ASHBY D, GIBSON GR, KOLIDA S, DHILLO WS, BLOOM SR, MORLEY W, CLEGG S, FROST G. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults[J]. Gut, 2015, 64(11): 1744-1754.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘昭志,彭莉. 运动、肠道菌群和2型糖尿病关系的研究进展[J]. 微生物学报, 2025, 65(1): 1-16

复制
分享
文章指标
  • 点击次数:185
  • 下载次数: 190
  • HTML阅读次数: 124
  • 引用次数: 0
历史
  • 收稿日期:2024-08-04
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码