猪链球菌检测技术研究进展
作者:
作者单位:

1.深圳市动植物疫病预防控制中心,广东 深圳;2.南京农业大学 动物医学院,江苏 南京;3.农业农村部动物细菌学重点实验室,江苏 南京;4.世界动物卫生组织猪链球菌病参考实验室,江苏 南京;5.深圳海关动植物检验检疫技术中心,广东 深圳

作者简介:

李繁:论文设计;彭泽仁:论文撰写;刘荣启:论文设计;孙洁:论文撰写;吴宗福:论文审阅与修改。

基金项目:

深圳市科技计划(KCXFZ20230731094003006)


Advances in detection methods for Streptococcus suis
Author:
Affiliation:

1.Shenzhen Animal and Plant Disease Prevention and Control Center, Shenzhen, Guangdong, China;2.College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, China;3.Key Laboratory of Animal Bacteriology, Ministry of Agriculture and Rural Affairs, Nanjing, Jiangsu, China;4.WOAH Reference Laboratory for Swine Streptococcosis, Nanjing, Jiangsu, China;5.Animal and Plant Inspection and Quarantine Technology Centre of Shenzhen Customs, Shenzhen, Guangdong, China

Fund Project:

This work was supported by the Shenzhen Science and Technology Program (KCXFZ20230731094003006).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [72]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    猪链球菌(Streptococcus suis)是猪的重要致病菌,能够引发猪的脑膜炎、败血症、关节炎等多种疾病,给养猪业带来严重的经济损失。此外,该菌也能感染人类,导致疾病甚至死亡,是重要的人兽共患病原菌。因此,建立准确、快速、灵敏且简便的检测技术对于猪链球菌病的防控至关重要。目前,国内外已开发出多种猪链球菌检测技术,包括传统的微生物学、分子生物学、免疫学方法,以及基于纳米材料的免疫传感器、CRISPR-Cas12a系统、基质辅助激光解吸/电离飞行时间质谱等新型检测技术。本综述概述了上述技术的原理、应用及其优缺点,并探讨了猪链球菌检测技术未来的发展方向,旨在为猪链球菌病的防控提供重要参考。

    Abstract:

    Streptococcus suis, a major pathogen of pigs, can cause meningitis, septicemia, and arthritis, leading to serious economic losses in the pig industry. In addition, it can also infect humans and result in diseases or death, being a zoonotic pathogen. Therefore, accurate, rapid, sensitive, and simple detection methods are critical for the prevention and control of swine streptococcosis. At present, a variety of detection methods for S. suis have been developed, including traditional detection methods of microbiology, molecular biology, and immunology and emerging technologies such as nanomaterial-based immunosensors, CRISPR-Cas12a system, and matrix-assisted laser desorption ionization-time of flight mass spectrometry. This review summarizes the principles, applications, advantages, and disadvantages of the above methods and introduces the future directions of S. suis detection methods, aiming to provide reference for the prevention and control of swine streptococcosis.

    参考文献
    [1] 陆承平, 吴宗福. 猪链球菌病[M]. 北京: 中国农业出版社, 2015.LU CP, WU ZF. Swine Streptococcosis[M]. Beijing: China Agriculture Press, 2015 (in Chinese).
    [2] GOYETTE-DESJARDINS G, AUGER JP, XU JG, SEGURA M, GOTTSCHALK M. Streptococcus suis, an important pig pathogen and emerging zoonotic agent—an update on the worldwide distribution based on serotyping and sequence typing[J]. Emerging Microbes & Infections, 2014, 3(6): e45.
    [3] SEGURA M, FITTIPALDI N, CALZAS C, GOTTSCHALK M. Critical Streptococcus suis virulence factors: are they all really critical?[J]. Trends in Microbiology, 2017, 25(7): 585-599.
    [4] OKURA M, OSAKI M, NOMOTO R, ARAI S, OSAWA R, SEKIZAKI T, TAKAMATSU D. Current taxonomical situation of Streptococcus suis[J]. Pathogens, 2016, 5(3): 45.
    [5] PAN ZH, MA JL, DONG WY, SONG WC, WANG KC, LU CP, YAO HC. Novel variant serotype of Streptococcus suis isolated from piglets with meningitis[J]. Applied and Environmental Microbiology, 2015, 81(3): 976-985.
    [6] ZHENG H, JI SB, LIU ZJ, LAN RT, HUANG Y, BAI XM, GOTTSCHALK M, XU JG. Eight novel capsular polysaccharide synthesis gene loci identified in nontypeable Streptococcus suis isolates[J]. Applied and Environmental Microbiology, 2015, 81(12): 4111-4119.
    [7] QIU XT, BAI XM, LAN RT, ZHENG H, XU JG. Novel capsular polysaccharide loci and new diagnostic tools for high-throughput capsular gene typing in Streptococcus suis[J]. Applied and Environmental Microbiology, 2016, 82(24): 7102-7112.
    [8] HUANG JH, LIU X, CHEN H, CHEN L, GAO XP, PAN ZH, WANG J, LU CP, YAO HC, WANG LP, WU ZF. Identification of six novel capsular polysaccharide loci (NCL) from Streptococcus suis multidrug resistant non-typeable strains and the pathogenic characteristic of strains carrying new NCLs[J]. Transboundary and Emerging Diseases, 2019, 66(2): 995-1003.
    [9] BOJARSKA A, JANAS K, PEJSAK Z, OTULAK-KOZIE? K, GARBACZEWSKA G, HRYNIEWICZ W, SADOWY E. Diversity of serotypes and new cps loci variants among Streptococcus suis isolates from pigs in Poland and Belarus[J]. Veterinary Microbiology, 2020, 240: 108534.
    [10] KRáLOVá N, FITTIPALDI N, ZOUHAROVá M, NEDBALCOVá K, MATIA?KOVá K, GEBAUER J, KULICH P, ?IMEK B, MATIA?OVIC J. Streptococcus suis strains with novel and previously undescribed capsular loci circulate in Europe[J]. Veterinary Microbiology, 2024, 298: 110265.
    [11] LIU ZY, XU QH, LIANG PJ, PENG ZR, YAO HC, ZHENG H, WU ZF. The characteristics of population structure and antimicrobial resistance of Streptococcus suis serotype 8, a non-negligible pathotype[J]. Transboundary and Emerging Diseases, 2022, 69(5): e2495-e2505.
    [12] LIANG PJ, WANG ML, GOTTSCHALK M, VELA AI, ESTRADA AA, WANG JP, DU PC, LUO M, ZHENG H, WU ZF. Genomic and pathogenic investigations of Streptococcus suis serotype 7 population derived from a human patient and pigs[J]. Emerging Microbes & Infections, 2021, 10(1): 1960-1974.
    [13] ZHU JL, WANG JP, KANG WM, ZHANG XY, KERDSIN A, YAO HC, ZHENG H, WU ZF. Streptococcus suis serotype 4: a population with the potential pathogenicity in humans and pigs[J]. Emerging Microbes & Infections, 2024, 13(1): 2352435.
    [14] PERCH B, KRISTJANSEN P, SKADHAUGE K. Group R streptococci pathogenic for man. Two cases of meningitis and one fatal case of sepsis[J]. Acta Pathologica et Microbiologica Scandinavica, 1968, 74(1): 69-76.
    [15] TANG J, BAI W, ZHU J. GUO HB. Epidemiological and pathogenic study on the outbreak of toxic shock syndrome and meningocephalitis caused by swine Streptococcus[J]. Journal of Medical Colleges of PLA, 2004, 19(1): 59-63.
    [16] YU HJ, JING HQ, CHEN ZH, ZHENG H, ZHU XP, WANG H, WANG SW, LIU LG, ZU RQ, LUO LZ, XIANG NJ, LIU HL, LIU XC, SHU YL, LEE SS, CHUANG SK, WANG Y, XU JG, YANG WZ, GROUPS SSS. Human Streptococcus suis outbreak, Sichuan, China[J]. Emerging Infectious Diseases, 2006, 12(6): 914-920.
    [17] KANG WM, WANG ML, YI XL, WANG JP, ZHANG XY, WU ZF, WANG Y, SUN H, GOTTSCHALK M, ZHENG H, XU JG. Investigation of genomic and pathogenicity characteristics of Streptococcus suis ST1 human strains from Guangxi Zhuang Autonomous Region (GX) between 2005 and 2020 in China[J]. Emerging Microbes & Infections, 2024, 13(1): 2339946.
    [18] Robert A, Whiley JMH. Streptococcus. Bergey’s Manual of Systematics of Archaea and Bacteria[J]. John Wiley & Sons and Bergey’s Manual Trust, 2009. DOI: 10.1002/9781118960608.gbm00612.
    [19] HALEIS A, ALFA M, GOTTSCHALK M, BERNARD K, RONALD A, MANICKAM K. Meningitis caused by Streptococcus suis serotype 14, North America[J]. Emerging Infectious Diseases, 2009, 15(2): 350-352.
    [20] HOMMEZ J, DEVRIESE LA, HENRICHSEN J, CASTRYCK F. Identification and characterization of Streptococcus suis[J]. Veterinary Microbiology, 1986, 11(4): 349-355.
    [21] OKWUMABUA O, O’CONNOR M, SHULL E. A polymerase chain reaction (PCR) assay specific for Streptococcus suis based on the gene encoding the glutamate dehydrogenase[J]. FEMS Microbiology Letters, 2003, 218(1): 79-84.
    [22] ISHIDA S, TIEN LHT, OSAWA R, TOHYA M, NOMOTO R, KAWAMURA Y, TAKAHASHI T, KIKUCHI N, KIKUCHI K, SEKIZAKI T. Development of an appropriate PCR system for the reclassification of Streptococcus suis[J]. Journal of Microbiological Methods, 2014, 107: 66-70.
    [23] 都玉, 刘召颖, 彭泽仁, 吴宗福. 重庆屠宰场猪链球菌感染的调查[J]. 畜牧与兽医, 2022, 54(6): 58-65.DU Y, LIU ZY, PENG ZR, WU ZF. Investigation on Streptococcus suis infection in some slaughterhouses of Chongqing[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(6): 58-65 (in Chinese).
    [24] 刘召颖, 朱夏雨, 牛洪颖, 万欣, 吴宗福. 浙江某市屠宰场猪链球菌血清型、耐药及致病特征[J]. 微生物学报, 2022, 62(8): 3236-3250.LIU ZY, ZHU XY, NIU HY, WAN X, WU ZF. Serotypes, antimicrobial resistance, and pathogenic characteristics of Streptococcus suis isolated from a slaughterhouse in an area of Zhejiang Province[J]. Acta Microbiologica Sinica, 2022, 62(8): 3236-3250 (in Chinese).
    [25] 彭泽仁, 吴宗福. 广西、四川两地屠宰场猪链球菌致病特征分析[J]. 微生物学报, 2023, 63(12): 4714-4725.PENG ZR, WU ZF. Pathogenic characteristics of Streptococcus suis isolated from slaughterhouses in Sichuan and Guangxi[J]. Acta Microbiologica Sinica, 2023, 63(12): 4714-4725 (in Chinese).
    [26] 许杨, 王瑞光, 彭泽仁, 吴宗福. 2023年江苏地区屠宰场健康猪源猪链球菌致病与耐药特征[J]. 微生物学报, 2025, 65(1): 211-224.XU Y, WANG RG, PENG ZR, WU ZF. The pathogenic and antimicrobial resistance characteristics of Streptococcus suis isolates from healthy pigs at slaughterhouses in Jiangsu Province, 2023[J]. Acta Microbiologica Sinica, 2025, 65(1): 211-224.
    [27] SILVA LMG, BAUMS CG, REHM T, WISSELINK HJ, GOETHE R, VALENTIN-WEIGAND P. Virulence-associated gene profiling of Streptococcus suis isolates by PCR[J]. Veterinary Microbiology, 2006, 115(1/2/3): 117-127.
    [28] KERDSIN A, DEJSIRILERT S, AKEDA Y, SEKIZAKI T, HAMADA S, GOTTSCHALK M, OISHI K. Fifteen Streptococcus suis serotypes identified by multiplex PCR[J]. Journal of Medical Microbiology, 2012, 61(Pt 12): 1669-1672.
    [29] KERDSIN A, AKEDA Y, HATRONGJIT R, DETCHAWNA U, SEKIZAKI T, HAMADA S, GOTTSCHALK M, OISHI K. Streptococcus suis serotyping by a new multiplex PCR[J]. Journal of Medical Microbiology, 2014, 63(Pt 6): 824-830.
    [30] LIU ZJ, ZHENG H, GOTTSCHALK M, BAI XM, LAN RT, JI SB, LIU HC, XU JG. Development of multiplex PCR assays for the identification of the 33 serotypes of Streptococcus suis[J]. PLoS One, 2013, 8(8): e72070.
    [31] 文德亮, 俞向前, 叶承荣, 何随彬, 陈亮, 朱建国, 浦坚华, 宋德义. 猪关节病重要病原体多重PCR检测方法的建立及应用[J]. 畜牧与兽医, 2016, 48(9): 100-103.WEN DL, YU XQ, YE CR, HE SB, CHEN L, ZHU JG, PU JH, SONG DY. Establishment and application of multiplex PCR detection method for important pathogens of porcine arthropathy[J]. Animal Husbandry & Veterinary Medicine, 2016, 48(9): 100-103 (in Chinese).
    [32] TANG YL, ZHANG XY, WU W, LU ZY, FANG WH. Inactivation of the sodA gene of Streptococcus suis type 2 encoding superoxide dismutase leads to reduced virulence to mice[J]. Veterinary Microbiology, 2012, 158(3/4): 360-366.
    [33] NGA TVT, NGHIA HDT, TU LTP, DIEP TS, MAI NTH, CHAU TTH, SINH DX, PHU NH, NGA TTT, CHAU NV, CAMPBELL J, HOA NT, CHINH NT, HIEN TT, FARRAR J, SCHULTSZ C. Real-time PCR for detection of Streptococcus suis serotype 2 in cerebrospinal fluid of human patients with meningitis[J]. Diagnostic Microbiology and Infectious Disease, 2011, 70(4): 461-467.
    [34] SRINIVASAN V, McGEE L, NJANPOP-LAFOURCADE BM, MO?SI J, BEALL B. Species-specific real-time PCR assay for the detection of Streptococcus suis from clinical specimens[J]. Diagnostic Microbiology and Infectious Disease, 2016, 85(2): 131-132.
    [35] 雷宇平, 王仲兵, 杨治平, 张仲萍, 王治维, 胡明明. 猪链球菌荧光定量PCR检测方法的建立及临床应用[J].中国动物检疫, 2017, 34(12): 84-87.LEI YP, WANG ZB, YANG ZP, ZHANG ZP, WANG ZW, HU MM. Establishment of fluorescence quantitative PCR for Streptococcus suis detection and its clinical application[J]. China Animal Health Inspection, 2017, 34(12): 84-87 (in Chinese).
    [36] NOTOMI T, OKAYAMA H, MASUBUCHI H, YONEKAWA T, WATANABE K, AMINO N, HASE T. Loop-mediated isothermal amplification of DNA[J]. Nucleic Acids Research, 2000, 28(12): E63.
    [37] HUY NT, HANG LTT, BOAMAH D, LAN NTP, van THANH P, WATANABE K, HUONG VTT, KIKUCHI M, ARIYOSHI K, MORITA K, HIRAYAMA K. Development of a single-tube loop-mediated isothermal amplification assay for detection of four pathogens of bacterial meningitis[J]. FEMS Microbiology Letters, 2012, 337(1): 25-30.
    [38] 朱水荣, 王志刚, 余昭, 张政, 梅玲玲, 杨婷婷, 卢亦愚. 应用LAMP技术鉴定89K毒力岛2型猪链球菌菌株[J]. 中国人兽共患病学报, 2010, 26(7): 659-667.ZHU SR, WANG ZG, YU Z, ZHANG Z, MEI LL, YANG TT, LU YY. Discriminating strains of Streptococcus suis serotype 2 of 89K pathogenicity island by loop-mediated isothermal amplification technology[J]. Chinese Journal of Zoonoses, 2010, 26(7): 659-667.
    [39] ARAI S, TOHYA M, YAMADA R, OSAWA R, NOMOTO R, KAWAMURA Y, SEKIZAKI T. Development of loop-mediated isothermal amplification to detect Streptococcus suis and its application to retail pork meat in Japan[J]. International Journal of Food Microbiology, 2015, 208: 35-42.
    [40] MATSON RS. ELISA essentials: surfaces, antibodies, enzymes, and substrates[J]. Methods in Molecular Biology, 2023, 2612: 19-31.
    [41] LI YL, LI L, FAN XX, ZOU YL, ZHANG YQ, WANG QH, SUN CY, PAN SD, WU XD, WANG ZL. Development of real-time reverse transcription recombinase polymerase amplification (RPA) for rapid detection of peste des petits ruminants virus in clinical samples and its comparison with real-time PCR test[J]. Scientific Reports, 2018, 8: 17760.
    [42] ZHANG SS, WANG CY, MENG KY, LIU J. Recombinase polymerase amplification-lateral flow dipstick (RPA-LFD) designed for rapid detection of canine distemper virus[J]. Journal of Veterinary Medical Science, 2024, 86(5): 584-591.
    [43] 张闪闪, 何斌, 李书光, 刘明成, 姜金庆, 胡建和, 雷连成, 沈志强, 夏小静. 可视化RPA-LFD技术快速检测猪链球菌[J]. 畜牧兽医学报, 2022, 53(2): 538-547.ZHANG SS, HE B, LI SG, LIU MC, JIANG JQ, HU JH, LEI LC, SHEN ZQ, XIA XJ. Rapid detection of Streptococcus suis with visual RPA-LFD technology[J]. Acta Veterinaria et Zootechnica Sinica, 2022, 53(2): 538-547 (in Chinese).
    [44] DRAIN PK, HYLE EP, NOUBARY F, FREEDBERG KA, WILSON D, BISHAI WR, RODRIGUEZ W, BASSETT IV. Diagnostic point-of-care tests in resource-limited settings[J]. The Lancet Infectious Diseases, 2014, 14(3): 239-249.
    [45] VECHT U, WISSELINK HJ, ANAKOTTA J, SMITH HE. Discrimination between virulent and nonvirulent Streptococcus suis type 2 strains by enzyme-linked immunosorbent assay[J]. Veterinary Microbiology, 1993, 34(1): 71-82.
    [46] del CAMPO SEPúLVEDA EM, ALTMAN E, KOBISCH M, D’ALLAIRE S, GOTTSCHALK M. Detection of antibodies against Streptococcus suis capsular type 2 using a purified capsular polysaccharide antigen-based indirect ELISA[J]. Veterinary Microbiology, 1996, 52(1/2): 113-125.
    [47] YANG JX, JIN ML, CHEN JF, YANG Y, ZHENG P, ZHANG AD, SONG YF, ZHOU HB, CHEN HC. Development and evaluation of an immunochromatographic strip for detection of Streptococcus suis type 2 antibody[J]. Journal of Veterinary Diagnostic Investigation, 2007, 19(4): 355-361.
    [48] JU Y, HAO HJ, XIONG GH, GENG HR, ZHENG YL, WANG J, CAO YY, YANG YH, CAI XH, JIANG YQ. Development of colloidal gold-based immunochromatographic assay for rapid detection of Streptococcus suis serotype 2[J]. Veterinary Immunology and Immunopathology, 2010, 133(2/3/4): 207-211.
    [49] LU YW, WANG SB, CAI XS, CAO M, LU QY, HU D, CHEN Q, XIONG XH. A rapid colloidal gold immunochromatographic assay based on polyclonal antibodies against HtpsC protein for the detection of Streptococcus suis[J]. Frontiers in Microbiology, 2023, 14: 1294368.
    [50] FEDIO WM, JINNEMAN KC, YOSHITOMI KJ, ZAPATA R, WENDAKOON CN, BROWNING P, WEAGANT SD. Detection of E. coli O157:H7 in raw ground beef by pathatrix? immunomagnetic-separation, real-time PCR and cultural methods[J]. International Journal of Food Microbiology, 2011, 148(2): 87-92.
    [51] GOTTSCHALK M, LACOUTURE S, ODIERNO L. Immunomagnetic isolation of Streptococcus suis serotypes 2 and 1/2 from swine tonsils[J]. Journal of Clinical Microbiology, 1999, 37(9): 2877-2881.
    [52] KWON SJ, KIM E, YANG H, KWAK J. An electrochemical immunosensor using ferrocenyl-tethered dendrimer[J]. Analyst, 2006, 131(3): 402-406.
    [53] LI L, LIANG LZ, WU H, ZHU XH. One-dimensional perovskite manganite oxide nanostructures: recent developments in synthesis, characterization, transport properties, and applications[J]. Nanoscale Research Letters, 2016, 11(1): 121.
    [54] JIN YD. Multifunctional compact hybrid Au nanoshells: a new generation of nanoplasmonic probes for biosensing, imaging, and controlled release[J]. Accounts of Chemical Research, 2014, 47(1): 138-148.
    [55] SKRABALAK SE, CHEN JY, SUN YG, LU XM, AU L, COBLEY CM, XIA YN. Gold nanocages: synthesis, properties, and applications[J]. Accounts of Chemical Research, 2008, 41(12): 1587-1595.
    [56] HANSEN JA, MUKHOPADHYAY R, J? HANSEN, GOTHELF KV. Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles[J]. Journal of the American Chemical Society, 2006, 128(12): 3860-3861.
    [57] WANG HJ, YUAN R, CHAI YQ, CAO YL, GAN XX, CHEN YF, WANG Y. An ultrasensitive peroxydisulfate electrochemiluminescence immunosensor for Streptococcus suis serotype 2 based on l-cysteine combined with mimicking bi-enzyme synergetic catalysis to in situ generate coreactant[J]. Biosensors and Bioelectronics, 2013, 43: 63-68.
    [58] WANG HJ, BAI LJ, CHAI YQ, YUAN R. Synthesis of multi-fullerenes encapsulated palladium nanocage, and its application in electrochemiluminescence immunosensors for the detection of Streptococcus suis serotype 2[J]. Small, 2014, 10(9): 1857-1865.
    [59] PICKAR-OLIVER A, GERSBACH CA. The next generation of CRISPR-Cas technologies and applications[J]. Nature Reviews Molecular Cell Biology, 2019, 20(8): 490-507.
    [60] GAO P, YANG H, RAJASHANKAR KR, HUANG ZW, PATEL DJ. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition[J]. Cell Research, 2016, 26(8): 901-913.
    [61] NU?EZ JK, HARRINGTON LB, KRANZUSCH PJ, ENGELMAN AN, DOUDNA JA. Foreign DNA capture during CRISPR-Cas adaptive immunity[J]. Nature, 2015, 527(7579): 535-538.
    [62] SWARTS DC, van der OOST J, JINEK M. Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a[J]. Molecular Cell, 2017, 66(2): 221-233.e4.
    [63] CHEN JS, MA EB, HARRINGTON LB, Da COSTA M, TIAN XR, PALEFSKY JM, DOUDNA JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436-439.
    [64] LI SY, CHENG QX, LIU JK, NIE XQ, ZHAO GP, WANG J. CRISPR-Cas12a has both Cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Research, 2018, 28(4): 491-493.
    [65] WANG L, SUN J, ZHAO JY, BAI JY, ZHANG YL, ZHU Y, ZHANG WJ, WANG CL, LANGFORD PR, LIU SG, LI G. A CRISPR-Cas12a-based platform facilitates the detection and serotyping of Streptococcus suis serotype 2[J]. Talanta, 2024, 267: 125202.
    [66] DEKKER N, DAEMEN I, VERSTAPPEN K, de GREEFF A, SMITH H, DUIM B. Simultaneous quantification and differentiation of Streptococcus suis serotypes 2 and 9 by quantitative real-time PCR, evaluated in tonsillar and nasal samples of pigs[J]. Pathogens, 2016, 5(3): 46.
    [67] WANG ZH, ZHOU Y, GUO GL, LI Q, YU YF, ZHANG W. Promising potential of machine learning-assisted MALDI-TOF MS as an effective detector for Streptococcus suis serotype 2 and virulence thereof[J]. Applied and Environmental Microbiology, 2023, 89(11): e0128423.
    [68] BIZZINI A, GREUB G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification[J]. Clinical Microbiology and Infection, 2010, 16(11): 1614-1619.
    [69] NOMURA F. Proteome-based bacterial identification using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS): a revolutionary shift in clinical diagnostic microbiology[J]. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 2015, 1854(6): 528-537.
    [70] CROXATTO A, PROD’HOM G, GREUB G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology[J]. FEMS Microbiology Reviews, 2012, 36(2): 380-407.
    [71] PéREZ-SANCHO M, VELA AI, GARCíA-SECO T, GOTTSCHALK M, DOMíNGUEZ L, FERNáNDEZ-GARAYZáBAL JF. Assessment of MALDI-TOF MS as alternative tool for Streptococcus suis identification[J]. Frontiers in Public Health, 2015, 3: 202.
    [72] CHAIDEN C, JARESITTHIKUNCHAI J, KERDSIN A, MEEKHANON N, ROYTRAKUL S, NUANUALSUWAN S. Streptococcus suis serotyping by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J]. PLoS One, 2021, 16(5): e0249682.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李繁,彭泽仁,刘荣启,孙洁,吴宗福. 猪链球菌检测技术研究进展[J]. 微生物学报, 2025, 65(3): 883-897

复制
分享
文章指标
  • 点击次数:11
  • 下载次数: 22
  • HTML阅读次数: 19
  • 引用次数: 0
历史
  • 收稿日期:2024-10-15
  • 在线发布日期: 2025-03-10
文章二维码