APOBEC家族蛋白的结构功能及其在疾病控制中的作用
作者:
作者单位:

1.广东省农业科学院 动物卫生研究所,广东省畜禽疫病防治研究重点实验室,广东 广州;2.西北农林科技大学 动物医学院,陕西 杨凌;3.华南农业大学 兽医学院,广东 广州

作者简介:

张志杰:全文相关内容的文献查询和下载,初稿撰写;王松祺:APOBEC3家族蛋白相关部分的修改和文献查漏补缺;聂晶晶:AID和APOBEC1蛋白相关部分的修改和文献查漏补缺;瞿云芝:APOBEC2蛋白相关部分的修改和文献查漏补缺,以及补充图表;沈海燕:整篇文章框架的构思,参与从文章撰写、投稿以及整个过程的文章修改工作。

基金项目:

“十四五” 广东省农业科技创新十大主攻方向 “揭榜挂帅” 项目(2024KJ14);广东省畜禽疫病防治研究重点实验室项目(2023B1212060040);猪禽种业全国重点实验室项目(2023QZ-NK13, ZQQZ-55, 2023QZ-NK05, GDNKY-ZQQZ-K07);广东省基础与应用基础研究基金(2021A1515011125)


Structures and functions of APOBEC family members and their roles in disease control
Author:
Affiliation:

1.Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China;2.College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China;3.College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China

Fund Project:

This work was supported by the Open Competition Program of Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-year Plan of Guangdong Province (2024KJ14), the Special Fund for Key Laboratory of Livestock Disease Prevention of Guangdong Province (2023B1212060040), the State Key Laboratory of Swine and Poultry Breeding Industry Project (2023QZ-NK13, ZQQZ-55, 2023QZ-NK05, GDNKY-ZQQZ-K07), and the Guangdong Basic and Applied Basic Research Foundation (2021A1515011125).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [114]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    活化诱导胞苷脱氨酶(activation-induced cytidine deaminase, AID)和载脂蛋白B mRNA编辑酶催化多肽(apolipoprotein B mRNA-editing enzyme, catalytic polypeptide, APOBEC)构成了一类保守的胞苷脱氨酶家族,各成员蛋白在机体内发挥着各不相同的功能,并且在机体的天然免疫防御机制中也发挥着重要作用。AID在脊椎动物的获得性免疫系统中发挥重要作用,其介导抗体类别转换重组(class switch recombination, CSR)、促进抗体亲和力成熟,并参与抗体多样性的产生。APOBEC1则具有催化胞嘧啶脱氨基化、介导RNA编辑以调控细胞功能的作用,同时还展现出抗逆转录病毒活性,并与肿瘤和癌症的发生存在一定的关联。APOBEC2主要在心肌和骨骼肌中表达,与肌肉纤维类型的转变、体重下降、肌肉再生以及体细胞肌肉组织相关疾病有关,同时在控制基因表达方面也具有潜在作用。APOBEC3s在天然免疫和获得性免疫应答中均占据重要地位,其成员蛋白在抑制逆转录转座子、抑制病毒复制、DNA降解、RNA编辑以及影响细胞周期等方面均发挥着关键作用。APOBEC4基因在各种动物中相对保守,其活性中心序列与其他APOBEC蛋白不同,是公认的胞苷对尿苷编辑酶,并具有抗病毒活性。目前,关于动物源APOBEC家族成员的研究相对较少,本文综述了APOBEC家族成员的结构特征和生物功能,为日后研究动物源APOBEC家族成员在机体免疫应答及对疾病影响方面提供参考,同时也为进一步探索利用增强APOBEC家族成员功能的活性物质来寻找抗病毒药物提供新思路。

    Abstract:

    Activation induced cytidine deaminase (AID) and apolipoprotein B mRNA editing enzyme catalytic peptide (APOBEC) constitute a conserved family of cytidine deaminase enzymes. The family members have different functions in the body, and they play an important role in the immune defense of the host. AID plays a role mainly in the adaptive immune systems of vertebrates, mediating class switch recombination, antibody affinity maturation, and antibody diversity generation. APOBEC1 capable of catalyzing cytosine deamination, mediating RNA editing for cellular regulation, and resisting retroviral infection is involved in tumorigenesis and cancer development. APOBEC2, most abundant in cardiac and skeletal muscle, is associated with muscle fiber type switch, loss of weight, muscle development, and myopathy. Moreover, it may have potential indirect effects in controlling gene expression. APOBEC3s play key roles in both innate and adaptive immune responses. They are involved in the inhibition of retrotransposon functioning and viral infection, DNA degradation, RNA editing, and cell cycle regulation. The APOBEC4 gene is conserved in various animal species, with the active center sequence different from those of other APOBEC proteins. It is widely recognized that APOBEC4 is a uridine-editing enzyme, which has antiviral activity. The research is limited regarding the animal-derived APOBEC family members. This review describes the structural characteristics and biological functions of APOBEC family members, providing reference for research on the roles of animal-derived APOBEC family members in the immune responses and disease control. In addition, this review provides new ideas for the development of antivirals by enhancing the activities of APOBEC family members.

    参考文献
    [1] DUDLEY JP. APOBECs: our fickle friends?[J]. PLoS Pathogens, 2023, 19(5): e1011364.
    [2] VIEIRA VC, SOARES MA. The role of cytidine deaminases on innate immune responses against human viral infections[J]. BioMed Research International, 2013, 2013: 683095.
    [3] STAVROU S, ROSS SR. APOBEC3 proteins in viral immunity[J]. Journal of Immunology, 2015, 195(10): 4565-4570.
    [4] FENG YQ, SEIJA N, di NOIA JM, MARTIN A. AID in antibody diversification: there and back again: (trends in immunology 41, 586-600; 2020)[J]. Trends in Immunology, 2021, 42(1): 89.
    [5] KOITO A, IKEDA T. Intrinsic restriction activity by AID/APOBEC family of enzymes against the mobility of retroelements[J]. Mobile Genetic Elements, 2011, 1(3): 197-202.
    [6] 梁伟姿. APOBEC3家族蛋白对逆转录转座子LINE-1和SVA的调控研究[D]. 天津: 天津大学博士学位论文, 2016.LIANG WZ. Study on the regulation of APOBEC3 family proteins on retrotransposons LINE-1 and SVA[D]. Tianjin: Doctoral Dissertation of Tianjin University, 2016 (in Chinese).
    [7] MAITI A, HOU SR, SCHIFFER CA, MATSUO H. Interactions of APOBEC3s with DNA and RNA[J]. Current Opinion in Structural Biology, 2021, 67: 195-204.
    [8] BUTLER K, ROUF BANDAY A. APOBEC3-mediated mutagenesis in cancer: causes, clinical significance and therapeutic potential[J]. Journal of Hematology & Oncology, 2023, 16(1): 31.
    [9] SALTER JD, BENNETT RP, SMITH HC. The APOBEC protein family: united by structure, divergent in function[J]. Trends in Biochemical Sciences, 2016, 41(7): 578-594.
    [10] LaRUE RS, JóNSSON SR, SILVERSTEIN KAT, LAJOIE M, BERTRAND D, EL-MABROUK N, H?TZEL I, ANDRéSDóTTIR V, SMITH TPL, HARRIS RS. The artiodactyl APOBEC3 innate immune repertoire shows evidence for a multi-functional domain organization that existed in the ancestor of placental mammals[J]. BMC Molecular Biology, 2008, 9: 104.
    [11] OhAINLE M, KERNS JA, MALIK HS, EMERMAN M. Adaptive evolution and antiviral activity of the conserved mammalian cytidine deaminase APOBEC3H[J]. Journal of Virology, 2006, 80(8): 3853-3862.
    [12] ZIELONKA J, BRAVO IG, MARINO D, CONRAD E, PERKOVI? M, BATTENBERG M, CICHUTEK K, MüNK C. Restriction of equine infectious Anemia virus by equine APOBEC3 cytidine deaminases[J]. Journal of Virology, 2009, 83(15): 7547-7559.
    [13] LaRUE RS, ANDRéSDóTTIR V, BLANCHARD Y, CONTICELLO SG, DERSE D, EMERMAN M, GREENE WC, JóNSSON SR, LANDAU NR, L?CHELT M, MALIK HS, MALIM MH, MüNK C, O’BRIEN SJ, PATHAK VK, STREBEL K, WAIN-HOBSON S, YU XF, YUHKI N, HARRIS RS. Guidelines for Naming nonprimate APOBEC3 genes and proteins[J]. Journal of Virology, 2009, 83(2): 494-497.
    [14] SALTER JD, SMITH HC. Modeling the embrace of a mutator: APOBEC selection of nucleic acid ligands[J]. Trends in Biochemical Sciences, 2018, 43(8): 606-622.
    [15] KOSTYUSHEV D, BREZGIN S, KOSTYUSHEVA A, PONOMAREVA N, BAYUROVA E, ZAKIROVA N, KONDRASHOVA A, GOPTAR I, NIKIFOROVA A, SUDINA A, BABIN Y, GORDEYCHUK I, LUKASHEV A, ZAMYATNIN AAJr, IVANOV A, CHULANOV V. Transient and tunable CRISPRa regulation of APOBEC/AID genes for targeting hepatitis B virus[J]. Molecular Therapy Nucleic Acids, 2023, 32: 478-493.
    [16] FOSSAT N, TOURLE K, RADZIEWIC T, BARRATT K, LIEBHOLD D, STUDDERT JB, POWER M, JONES V, LOEBEL DAF, TAM PPL. C to U RNA editing mediated by APOBEC1 requires RNA-binding protein RBM47[J]. EMBO Reports, 2014, 15(8): 903-910.
    [17] TENG BB, OCHSNER S, ZHANG Q, SOMAN KV, LAU PP, CHAN L. Mutational analysis of apolipoprotein B mRNA editing enzyme (APOBEC1): structure-function relationships of RNA editing and dimerization[J]. Journal of Lipid Research, 1999, 40(4): 623-635.
    [18] TENG B, BURANT CF, DAVIDSON NO. Molecular cloning of an apolipoprotein B messenger RNA editing protein[J]. Science, 1993, 260(5115): 1816-1819.
    [19] NAVARATNAM N, FUJINO T, BAYLISS J, JARMUZ A, HOW A, RICHARDSON N, SOMASEKARAM A, BHATTACHARYA S, CARTER C, SCOTT J. Escherichia coli cytidine deaminase provides a molecular model for ApoB RNA editing and a mechanism for RNA substrate recognition[J]. Journal of Molecular Biology, 1998, 275(4): 695-714.
    [20] WANG SS, KIM K, GELVEZ N, CHUNG C, GOUT JF, FIXMAN B, VERMULST M, CHEN XS. Identification of RBM46 as A novel APOBEC1 cofactor for C-to-U RNA-editing activity[J]. Journal of Molecular Biology, 2023, 435(24): 168333.
    [21] IKEDA T, ONG EBB, WATANABE N, SAKAGUCHI N, MAEDA K, KOITO A. Creation of chimeric human/rabbit APOBEC1 with HIV-1 restriction and DNA mutation activities[J]. Scientific Reports, 2016, 6: 19035.
    [22] IKEDA T, SHIMODA M, EBRAHIMI D, VandeBERG JL, HARRIS RS, KOITO A, MAEDA K. Opossum APOBEC1 is a DNA mutator with retrovirus and retroelement restriction activity[J]. Scientific Reports, 2017, 7: 46719.
    [23] SHIMIZU Y, NISHITSUJI H, MARUSAWA H, UJINO S, TAKAKU H, SHIMOTOHNO K. The RNA-editing enzyme APOBEC1 requires heterogeneous nuclear ribonucleoprotein Q isoform 6 for efficient interaction with interleukin-8 mRNA[J]. Journal of Biological Chemistry, 2014, 289(38): 26226-26238.
    [24] 茹福霞. Apobec1介导的RNA编辑在M1型骨髓来源巨噬细胞极化中的作用和调控机制[D]. 无锡: 江南大学硕士学位论文, 2022.RU F X, Role and regulation mechanism of Apobec1-induced RNA editing in polarization of M1 bone marrow-derived macrophages[D]. Wuxi: Master’s Thesis of Jiangnan University, 2022.
    [25] ROSENBERG BR, HAMILTON CE, MWANGI MM, DEWELL S, NINA PAPAVASILIOU F. Transcriptome-wide sequencing reveals numerous APOBEC1 mRNA-editing targets in transcript 3′UTRs[J]. Nature Structural & Molecular Biology, 2011, 18(2): 230-236.
    [26] COLE DC, CHUNG Y, GAGNIDZE K, HAJDAROVIC KH, RAYON-ESTRADA V, HARJANTO D, BIGIO B, GAL-TOTH J, MILNER TA, McEWEN BS, NINA PAPAVASILIOU F, BULLOCH K. Loss of APOBEC1 RNA-editing function in microglia exacerbates age-related CNS pathophysiology[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): 13272-13277.
    [27] KUNG CP, MAGGI LBJr, WEBER JD. The role of RNA editing in cancer development and metabolic disorders[J]. Frontiers in Endocrinology, 2018, 9: 762.
    [28] LI J, ZHAO XL, GILBERT ER, LI DY, LIU YP, WANG Y, ZHU Q, WANG YG, CHEN Y, TIAN K. APOBEC2 mRNA and protein is predominantly expressed in skeletal and cardiac muscles of chickens[J]. Gene, 2014, 539(2): 263-269.
    [29] SATO Y, PROBST HC, TATSUMI R, IKEUCHI Y, NEUBERGER MS, RADA C. Deficiency in APOBEC2 leads to a shift in muscle fiber type, diminished body mass, and myopathy[J]. Journal of Biological Chemistry, 2010, 285(10): 7111-7118.
    [30] MATSUMOTO T, MARUSAWA H, ENDO Y, UEDA Y, MATSUMOTO Y, CHIBA T. Expression of APOBEC2 is transcriptionally regulated by NF-kappaB in human hepatocytes[J]. FEBS Letters, 2006, 580(3): 731-735.
    [31] MITRA M, HERCíK K, BYEON IL, AHN J, HILL S, HINCHEE-RODRIGUEZ K, SINGER D, BYEON CH, CHARLTON LM, NAM G, HEIDECKER G, GRONENBORN AM, LEVIN JG. Structural determinants of human APOBEC3A enzymatic and nucleic acid binding properties[J]. Nucleic Acids Research, 2014, 42(2): 1095-1110.
    [32] BOHN MF, SHANDILYA SMD, SILVAS TV, NALIVAIKA EA, KOUNO T, KELCH BA, RYDER SP, KURT-YILMAZ N, SOMASUNDARAN M, SCHIFFER CA. The ssDNA mutator APOBEC3A is regulated by cooperative dimerization[J]. Structure, 2015, 23(5): 903-911.
    [33] CARPENTER MA, LI M, RATHORE A, LACKEY L, LAW EK, LAND AM, LEONARD B, SHANDILYA SMD, BOHN MF, SCHIFFER CA, BROWN WL, HARRIS RS. Methylcytosine and normal cytosine deamination by the foreign DNA restriction enzyme APOBEC3A[J]. Journal of Biological Chemistry, 2012, 287(41): 34801-34808.
    [34] LOVE RP, XU HX, CHELICO L. Biochemical analysis of hypermutation by the deoxycytidine deaminase APOBEC3A[J]. Journal of Biological Chemistry, 2012, 287(36): 30812-30822.
    [35] PHAM P, LANDOLPH A, MENDEZ C, LI N, GOODMAN MF. A biochemical analysis linking APOBEC3A to disparate HIV-1 restriction and skin cancer[J]. Journal of Biological Chemistry, 2013, 288(41): 29294-29304.
    [36] 吴小霞. APOBEC3A的功能研究新进展[J]. 中国艾滋病性病, 2016, 22(6): 481-484.
    [37] SHARMA S, PATNAIK SK, THOMAS TAGGART R, KANNISTO ED, ENRIQUEZ SM, GOLLNICK P, BAYSAL BE. APOBEC3A cytidine deaminase induces RNA editing in monocytes and macrophages[J]. Nature Communications, 2015, 6: 6881.
    [38] KIM K, CALABRESE P, WANG SS, QIN C, RAO YL, FENG PH, CHEN XS. The roles of APOBEC-mediated RNA editing in SARS-CoV-2 mutations, replication and fitness[J]. Scientific Reports, 2022, 12(1): 14972.
    [39] SIRIWARDENA SU, CHEN K, BHAGWAT AS. Functions and malfunctions of mammalian DNA-cytosine deaminases[J]. Chemical Reviews, 2016, 116(20): 12688-12710.
    [40] NIOCEL M, APPOURCHAUX R, NGUYEN XN, DELPEUCH M, CIMARELLI A. The DNA damage induced by the Cytosine Deaminase APOBEC3A Leads to the production of ROS[J]. Scientific Reports, 2019, 9(1): 4714.
    [41] BANDARRA S, MIYAGI E, RIBEIRO AC, GON?ALVES J, STREBEL K, BARAHONA I. APOBEC3B potently restricts HIV-2 but not HIV-1 in a vif-dependent manner[J]. Journal of Virology, 2021, 95(23): e0117021.
    [42] McDOUGLE RM, HULTQUIST JF, STABELL AC, SAWYER SL, HARRIS RS. D316 is critical for the enzymatic activity and HIV-1 restriction potential of human and Rhesus APOBEC3B[J]. Virology, 2013, 441(1): 31-39.
    [43] CHEN YM, SHEN BC, ZHENG XC, LONG QX, XIA J, HUANG Y, CAI XF, WANG DQ, CHEN J, TANG N, HUANG AL, HU Y. DHX9 interacts with APOBEC3B and attenuates the anti-HBV effect of APOBEC3B[J]. Emerging Microbes & Infections, 2020, 9(1): 366-377.
    [44] CARPENTER MA, TEMIZ NA, IBRAHIM MA, JARVIS MC, BROWN MR, ARGYRIS PP, BROWN WL, STARRETT GJ, YEE D, HARRIS RS. Mutational impact of APOBEC3A and APOBEC3B in a human cell line and comparisons to breast cancer[J]. PLoS Genetics, 2023, 19(11): e1011043.
    [45] CASWELL DR, GUI P, MAYEKAR MK, LAW EK, PICH O, BAILEY C, BOUMELHA J, LUCAS KERR D, BLAKELY CM, MANABE T, MARTINEZ-RUIZ C, BAKKER B, de DIOS PALOMINO VILLCAS J, VOKES NI, DIETZEN M, ANGELOVA M, GINI B, TAMAKI W, ALLEGAKOEN P, WU W, HUMPTON TJ, et al. The role of APOBEC3B in lung tumor evolution and targeted cancer therapy resistance[J]. Nature Genetics, 2024, 56(1): 60-73.
    [46] DURFEE C, TEMIZ NA, LEVIN-KLEIN R, ARGYRIS PP, ALS?E L, CARRACEDO S, ALONSO deLa VEGA A, PROEHL J, HOLZHAUER AM, SEEMAN ZJ, LIU XY, LIN YT, VOGEL RI, SOTILLO R, NILSEN H, HARRIS RS. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases[J]. Cell Reports Medicine, 2023, 4(10): 101211.
    [47] ROELOFS PA, TIMMERMANS MAM, STEFANOVSKA B, den BOESTERT MA, van den BORNE AWM, BALCIOGLU HE, TRAPMAN AM, HARRIS RS, MARTENS JWM, SPAN PN. Aberrant APOBEC3B expression in breast cancer is linked to proliferation and cell cycle phase[J]. Cells, 2023, 12(8): 1185.
    [48] WITTKOPP CJ, ADOLPH MB, WU LI, CHELICO L, EMERMAN M. A single nucleotide polymorphism in human APOBEC3C enhances restriction of lentiviruses[J]. PLoS Pathogens, 2016, 12(10): e1005865.
    [49] ADOLPH MB, ARA A, FENG YQ, WITTKOPP CJ, EMERMAN M, FRASER JS, CHELICO L. Cytidine deaminase efficiency of the lentiviral viral restriction factor APOBEC3C correlates with dimerization[J]. Nucleic Acids Research, 2017, 45(6): 3378-3394.
    [50] JAGUVA VASUDEVAN AA, BALAKRISHNAN K, GERTZEN CGW, BORVET? F, ZHANG ZL, SANGWIMAN A, HELD U, KüSTERMANN C, BANERJEE S, SCHUMANN GG, H?USSINGER D, BRAVO IG, GOHLKE H, MüNK C. Loop 1 of APOBEC3C regulates its antiviral activity against HIV-1[J]. Journal of Molecular Biology, 2020, 432(23): 6200-6227.
    [51] SHEEHY AM, GADDIS NC, CHOI JD, MALIM MH. Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein[J]. Nature, 2002, 418(6898): 646-650.
    [52] JAGUVA VASUDEVAN AA, HOFMANN H, WILLBOLD D, H?USSINGER D, KOENIG BW, MüNK C. Enhancing the catalytic deamination activity of APOBEC3C is insufficient to inhibit vif-deficient HIV-1[J]. Journal of Molecular Biology, 2017, 429(8): 1171-1191.
    [53] LI D, LIU JX, KANG FB, GUAN WW, GAO XC, WANG YM, SUN DX. Core-APOBEC3C chimerical protein inhibits hepatitis B virus replication[J]. Journal of Biochemistry, 2011, 150(4): 371-374.
    [54] DANG Y, WANG XJ, ESSELMAN WJ, ZHENG YH. Identification of APOBEC3DE as another antiretroviral factor from the human APOBEC family[J]. Journal of Virology, 2006, 80(21): 10522-10533.
    [55] D?RRSCHUCK E, FISCHER N, BRAVO IG, HANSCHMANN KM, KUIPER H, SP?TTER A, M?LLER R, CICHUTEK K, MüNK C, T?NJES RR. Restriction of porcine endogenous retrovirus by porcine APOBEC3 cytidine deaminases[J]. Journal of Virology, 2011, 85(8): 3842-3857.
    [56] 田浪. 与PRRSV增殖相关的P-Body分子筛选及APOBEC3F/3G对PRRSV增殖的影响[D]. 贵州: 贵州大学硕士学位论文, 2020.TIAN L. Screening of P-Body molecules related to PRRSV proliferation and the effect of APOBEC3F/3G on PRRSV proliferation [D]. Guizhou: Master’ These of Guizhou University, 2020.
    [57] ZHAO ZL, LI ZL, HUAN C, WANG H, SU X, ZHANG WY. CAEV vif hijacks ElonginB/C, CYPA and Cullin5 to assemble the E3 ubiquitin ligase complex stepwise to degrade oaA3Z2-Z3[J]. Frontiers in Microbiology, 2019, 10: 565.
    [58] SUSPèNE R, RAYMOND KA, BOUTIN L, GUILLIER S, LEMOINE F, FERRARIS O, TOURNIER JN, ISENI F, SIMON-LORIèRE E, VARTANIAN JP. APOBEC3F is a mutational driver of the human monkeypox virus identified in the 2022 outbreak[J]. The Journal of Infectious Diseases, 2023, 228(10): 1421-1429.
    [59] WU RR, OSHI M, ASAOKA M, HUYSER MR, TOKUMARU Y, YAMADA A, YAN L, ENDO I, ISHIKAWA T, TAKABE K. APOBEC3F expression in triple-negative breast cancer is associated with tumor microenvironment infiltration and activation of cancer immunity and improved survival[J]. American Journal of Cancer Research, 2022, 12(2): 744-762.
    [60] ROGOZIN IB, BASU MK, KING JORDAN I, PAVLOV YI, KOONIN EV. APOBEC4, a new member of the AID/APOBEC family of polynucleotide (deoxy)cytidine deaminases predicted by computational analysis[J]. Cell Cycle, 2005, 4(9): 1281-1285.
    [61] MARINO D, PERKOVI? M, HAIN A, JAGUVA VASUDEVAN AA, HOFMANN H, HANSCHMANN KM, MüHLEBACH MD, SCHUMANN GG, K?NIG R, CICHUTEK K, H?USSINGER D, MüNK C. APOBEC4 enhances the replication of HIV-1[J]. PLoS One, 2016, 11(6): e0155422.
    [62] SHI MY, TAN L, ZHANG YD, MENG CC, WANG W, SUN YJ, SONG CP, LIU WW, LIAO Y, YU SQ, REN T, DING Z, LIU XF, QIU XS, DING C. Characterization and functional analysis of chicken APOBEC4[J]. Developmental & Comparative Immunology, 2020, 106: 103631.
    [63] KRZYSIAK TC, JUNG J, THOMPSON J, BAKER D, GRONENBORN AM. APOBEC2 is a monomer in solution: implications for APOBEC3G models[J]. Biochemistry, 2012, 51(9): 2008-2017.
    [64] PROCHNOW C, BRANSTEITTER R, KLEIN MG, GOODMAN MF, CHEN XS. The APOBEC-2 crystal structure and functional implications for the deaminase AID[J]. Nature, 2007, 445(7126): 447-451.
    [65] ETARD C, ROOSTALU U, STR?HLE U. Lack of Apobec2-related proteins causes a dystrophic muscle phenotype in zebrafish embryos[J]. The Journal of Cell Biology, 2010, 189(3): 527-539.
    [66] PENNINGS JLA, van DARTEL DAM, PRONK TE, HENDRIKSEN PJM, PIERSMA AH. Identification by gene coregulation mapping of novel genes involved in embryonic stem cell differentiation[J]. Stem Cells and Development, 2011, 20(1): 115-126.
    [67] LACKEY L, DEMOREST ZL, LAND AM, HULTQUIST JF, BROWN WL, HARRIS RS. APOBEC3B and AID have similar nuclear import mechanisms[J]. Journal of Molecular Biology, 2012, 419(5): 301-314.
    [68] DANG Y, DAVIS RW, YORK IA, ZHENG YH. Identification of 81LGxGxxIxW89 and 171EDRW174 domains from human immunodeficiency virus type 1 Vif that regulate APOBEC3G and APOBEC3F neutralizing activity[J]. Journal of Virology, 2010, 84(11): 5741-5750.
    [69] BOHN MF, SHANDILYA SMD, ALBIN JS, KOUNO T, ANDERSON BD, McDOUGLE RM, CARPENTER MA, RATHORE A, EVANS L, DAVIS AN, ZHANG JY, LU YJ, SOMASUNDARAN M, MATSUO H, HARRIS RS, SCHIFFER CA. Crystal structure of the DNA cytosine deaminase APOBEC3F: the catalytically active and HIV-1 vif-binding domain[J]. Structure, 2013, 21(6): 1042-1050.
    [70] JóNSSON SR, LaRUE RS, STENGLEIN MD, FAHRENKRUG SC, ANDRéSDóTTIR V, HARRIS RS. The restriction of zoonotic PERV transmission by human APOBEC3G[J]. PLoS One, 2007, 2(9): e893.
    [71] 沈海燕, 王松祺, 张斌, 刘志成, 张建峰, 廖明, 张春红. 猪A3Z2基因生物信息学分析及其对PEDV复制的抑制作用[J]. 中国畜牧兽医, 2023, 50(9): 3695-3706.SHEN HY, WANG SQ, ZHANG B, LIU ZC, ZHANG JF, LIAO M, ZHANG CH. Bioinformatics analysis of porcine A3Z2 gene and its antiviral activity of PEDV replication[J]. China Animal Husbandry & Veterinary Medicine, 2023, 50(9): 3695-3706 (in Chinese).
    [72] JARMUZ A, CHESTER A, BAYLISS J, GISBOURNE J, DUNHAM I, SCOTT J, NAVARATNAM N. An anthropoid-specific locus of orphan C to U RNA-editing enzymes on chromosome 22[J]. Genomics, 2002, 79(3): 285-296.
    [73] YANG HJ, FUMIAKI ITO, WOLFE AARON D, SHUXING LI, NAZANIN MOHAMMADZADEH, LOVE ROBIN P, MAOCAI YAN, BRETT ZIRKLE, AMIT GABA, LINDA CHELICO, S CHEN XIAOJIANG. Understanding the structural basis of HIV-1 restriction by the full length double-domain APOBEC3G[J]. Nature Communication, 2020, 11(1): 632.
    [74] LUO K, WANG T, LIU BD, TIAN CJ, XIAO ZX, KAPPES J, YU XF. Cytidine deaminases APOBEC3G and APOBEC3F interact with human immunodeficiency virus type 1 integrase and inhibit proviral DNA formation[J]. Journal of Virology, 2007, 81(13): 7238-7248.
    [75] WANG XX, AO ZJ, CHEN LY, KOBINGER G, PENG JY, YAO XJ. The cellular antiviral protein APOBEC3G interacts with HIV-1 reverse transcriptase and inhibits its function during viral replication[J]. Journal of Virology, 2012, 86(7): 3777-3786.
    [76] HüTTENHAIN R, XU JW, BURTON LA, GORDON DE, HULTQUIST JF, JOHNSON JR, SATKAMP L, HIATT J, RHEE DY, BAEK K, CROSBY DC, FRANKEL AD, MARSON A, HARPER JW, ALPI AF, SCHULMAN BA, GROSS JD, KROGAN NJ. ARIH2 is a vif-dependent regulator of CUL5-mediated APOBEC3G degradation in HIV infection[J]. Cell Host & Microbe, 2019, 26(1): 86-99.e7.
    [77] OPI S, KAO S, GOILA-GAUR R, KHAN MA, MIYAGI E, TAKEUCHI H, STREBEL K. Human immunodeficiency virus type 1 Vif inhibits packaging and antiviral activity of a degradation-resistant APOBEC3G variant[J]. Journal of Virology, 2007, 81(15): 8236-8246.
    [78] KAO S, KHAN MA, MIYAGI E, PLISHKA R, BUCKLER-WHITE A, STREBEL K. The human immunodeficiency virus type 1 Vif protein reduces intracellular expression and inhibits packaging of APOBEC3G (CEM15), a cellular inhibitor of virus infectivity[J]. Journal of Virology, 2003, 77(21): 11398-11407.
    [79] MANGEAT B, TURELLI P, CARON G, FRIEDLI M, PERRIN L, TRONO D. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts[J]. Nature, 2003, 424(6944): 99-103.
    [80] ABUDU A, TAKAORI-KONDO A, IZUMI T, SHIRAKAWA K, KOBAYASHI M, SASADA A, FUKUNAGA K, UCHIYAMA T. Murine retrovirus escapes from murine APOBEC3 via two distinct novel mechanisms[J]. Current Biology, 2006, 16(15): 1565-1570.
    [81] WANG HQ, ZHONG M, LI YP, LI K, WU S, GUO TT, CEN S, JIANG JD, LI ZR, LI YH. APOBEC3G is a restriction factor of EV71 and mediator of IMB-Z antiviral activity[J]. Antiviral Research, 2019, 165: 23-33.
    [82] LI ZL, NING SS, SU X, LIU X, WANG H, LIU Y, ZHENG WW, ZHENG BS, YU XF, ZHANG WY. Enterovirus 71 antagonizes the inhibition of the host intrinsic antiviral factor A3G[J]. Nucleic Acids Research, 2018, 46(21): 11514-11527.
    [83] TURELLI P, MANGEAT B, JOST S, VIANIN S, TRONO D. Inhibition of hepatitis B virus replication by APOBEC3G[J]. Science, 2004, 303(5665): 1829.
    [84] KITAMURA K, WANG Z, CHOWDHURY S, SIMADU M, KOURA M, MURAMATSU M. Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of hepatitis B viral genomes: excision repair of covalently closed circular DNA[J]. PLoS Pathogens, 2013, 9(5): e1003361.
    [85] NGUYEN DH, GUMMULURU S, HU JM. Deamination-independent inhibition of hepatitis B virus reverse transcription by APOBEC3G[J]. Journal of Virology, 2007, 81(9): 4465-4472.
    [86] NGUYEN DH, HU JM. Reverse transcriptase- and RNA packaging signal-dependent incorporation of APOBEC3G into hepatitis B virus nucleocapsids[J]. Journal of Virology, 2008, 82(14): 6852-6861.
    [87] BAUMERT TF, R?SLER C, MALIM MH, von WEIZS?CKER F. Hepatitis B virus DNA is subject to extensive editing by the human deaminase APOBEC3C[J]. Hepatology, 2007, 46(3): 682-689.
    [88] KOMOHARA Y, YANO H, SHICHIJO S, SHIMOTOHNO K, ITOH K, YAMADA A. High expression of APOBEC3G in patients infected with hepatitis C virus[J]. Journal of Molecular Histology, 2006, 37(8/9): 327-332.
    [89] PENG ZG, ZHAO ZY, LI YP, WANG YP, HAO LH, FAN B, LI YH, WANG YM, SHAN YQ, HAN YX, ZHU YP, LI JR, YOU XF, LI ZR, JIANG JD. Host apolipoprotein B messenger RNA-editing enzyme catalytic polypeptide-like 3G is an innate defensive factor and drug target against hepatitis C virus[J]. Hepatology, 2011, 53(4): 1080-1089.
    [90] FEHRHOLZ M, KENDL S, PRIFERT C, WEISSBRICH B, LEMON K, RENNICK L, DUPREX PW, RIMA BK, KONING FA, HOLMES RK, MALIM MH, SCHNEIDER-SCHAULIES J. The innate antiviral factor APOBEC3G targets replication of measles, mumps and respiratory syncytial viruses[J]. The Journal of General Virology, 2012, 93(Pt 3): 565-576.
    [91] GLADWELL W, YOST O, LI H, BELL WJ, CHEN SH, WARD JM, KLEEBERGER SR, RESNICK MA, MENENDEZ D. APOBEC3G is a p53-dependent restriction factor in respiratory syncytial virus infection of human cells included in the p53/Immune axis[J]. International Journal of Molecular Sciences, 2023, 24(23): 16793.
    [92] SHICHIJO T, YASUNAGA JI, SATO K, NOSAKA K, TOYODA K, WATANABE M, ZHANG WY, KOYANAGI Y, MURPHY EL, BRUHN RL, KOH KR, AKARI H, IKEDA T, HARRIS RS, GREEN PL, MATSUOKA M. Vulnerability to APOBEC3G linked to the pathogenicity of deltaretroviruses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2024, 121(13): e2309925121.
    [93] ESNAULT C, HEIDMANN O, DELEBECQUE F, DEWANNIEUX M, RIBET D, HANCE AJ, HEIDMANN T, SCHWARTZ O. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses[J]. Nature, 2005, 433: 430-433.
    [94] DUTKO JA, SCH?FER A, KENNY AE, CULLEN BR, JOAN CURCIO M. Inhibition of a yeast LTR retrotransposon by human APOBEC3 cytidine deaminases[J]. Current Biology, 2005, 15(7): 661-666.
    [95] CHIU YL, WITKOWSKA H EWA, HALL SC, SANTIAGO M, SOROS VB, ESNAULT C, HEIDMANN T, GREENE WC. High-molecular-mass APOBEC3G complexes restrict Alu retrotransposition[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(42): 15588-15593.
    [96] DANG Y, SIEW LM, WANG XJ, HAN YX, LAMPEN R, ZHENG YH. Human cytidine deaminase APOBEC3H restricts HIV-1 replication[J]. Journal of Biological Chemistry, 2008, 283(17): 11606-11614.
    [97] ZHEN AJ, DU J, ZHOU XH, XIONG Y, YU XF. Reduced APOBEC3H variant anti-viral activities are associated with altered RNA binding activities[J]. PLoS One, 2012, 7(7): e38771.
    [98] CHESARINO NM, EMERMAN M. Polymorphisms in human APOBEC3H differentially regulate ubiquitination and antiviral activity[J]. Viruses, 2020, 12(4): 378.
    [99] MILEWSKA A, KINDLER E, VKOVSKI P, ZEGLEN S, OCHMAN M, THIEL V, RAJFUR Z, PYRC K. APOBEC3-mediated restriction of RNA virus replication[J]. Scientific Reports, 2018, 8(1): 5960.
    [100] WANG XJ, ABUDU A, SON S, DANG Y, VENTA PJ, ZHENG YH. Analysis of human APOBEC3H haplotypes and anti-human immunodeficiency virus type 1 activity[J]. Journal of Virology, 2011, 85(7): 3142-3152.
    [101] ZHU M, WANG YZ, WANG C, SHEN W, LIU J, GENG LG, CHENG Y, DAI JC, JIN GF, MA HX, HU ZB, SHEN HB. The eQTL-missense polymorphisms of APOBEC3H are associated with lung cancer risk in a Han Chinese population[J]. Scientific Reports, 2015, 5: 14969.
    [102] LADA AG, FRAHM KRICK C, KOZMIN SG, MAYOROV VI, KARPOVA TS, ROGOZIN IB, PAVLOV YI. Mutator effects and mutation signatures of editing deaminases produced in bacteria and yeast[J]. Biochemistry Biokhimiia, 2011, 76(1): 131-146.
    [103] CONTICELLO SG, LANGLOIS M, YANG ZZ, NEUBERGER MS. DNA deamination in immunity: aid in the context of its APOBEC relatives[J]. Advances in Immunology, 2007, 94: 37-73.
    [104] PILZECKER B, JACOBS H. Mutating for good: DNA damage responses during somatic hypermutation[J]. Frontiers in Immunology, 2019, 10: 438.
    [105] ZAN H, CASALI P. Regulation of aicda expression and AID activity[J]. Autoimmunity, 2013, 46(2): 83-101.
    [106] ?AKAN E, GUNAYDIN G. Activation induced cytidine deaminase: an old friend with new faces[J]. Frontiers in Immunology, 2022, 13: 965312.
    [107] VONICA A, ROSA A, ARDUINI BL, BRIVANLOU AH. APOBEC2, a selective inhibitor of TGFβ signaling, regulates left-right axis specification during early embryogenesis[J]. Developmental Biology, 2011, 350(1): 13-23.
    [108] HARRIS RS, DUDLEY JP. APOBECs and virus restriction[J]. Virology, 2015, 479: 131-145.
    [109] RATCLIFF J, SIMMONDS P. Potential APOBEC-mediated RNA editing of the genomes of SARS-CoV-2 and other coronaviruses and its impact on their longer term evolution[J]. Virology, 2021, 556: 62-72.
    [110] HUANG GY, ZHAN XL, SHEN LH, LOU LP, DAI YH, JIANG AM, GAO YZ, WANG YZ, XIE XY, ZHANG J. APOBEC family reshapes the immune microenvironment and therapy sensitivity in clear cell renal cell carcinoma[J]. Clinical and Experimental Medicine, 2024, 24(1): 212.
    [111] YANG HJ, PACHECO J, KIM K, BOKANI A, ITO F, EBRAHIMI D, CHEN XS. Molecular mechanism for regulating APOBEC3G DNA editing function by the non-catalytic domain[J]. Nature Communications, 2024, 15: 8773.
    [112] FERRé VM, COPPéE R, GBEASOR-KOMLANVI FA, VACHER S, BRIDIER-NAHMIAS A, BUCAU M, SALOU M, LAMEIRAS S, COUVELARD A, DAGNRA AC, BIECHE I, DESCAMPS D, EKOUEVI DK, GHOSN J, CHARPENTIER C. Viral whole genome sequencing reveals high variations in APOBEC3 editing between HPV risk categories[J]. Journal of Medical Virology, 2024, 96(10): e70002.
    [113] KAWALE AS, ZOU LE. Regulation, functional impact, and therapeutic targeting of APOBEC3A in cancer [J]. DNA Repair, 2024, 141: 103734.
    [114] Van NORDEN M, FALLS Z, MANDLOI S, SEGAL BH, BAYSAL BE, SAMUDRALA R, ELKIN PL. The implications of APOBEC3-mediated C-to-U RNA editing for human disease [J]. Communications Biology, 2024, 7(1): 529.
    相似文献
    引证文献
引用本文

张志杰,王松祺,聂晶晶,瞿云芝,沈海燕. APOBEC家族蛋白的结构功能及其在疾病控制中的作用[J]. 微生物学报, 2025, 65(5): 1849-1866

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-10-31
  • 在线发布日期: 2025-04-30
文章二维码