生物法制备壳寡糖的研究进展
作者:
作者单位:

1.江西科技师范大学 生命科学学院,江西 南昌;2.天然微生物药物研究江西省重点实验室,江西 南昌

作者简介:

薛萍红:论文撰写及修改;邓运鸿:查阅相关文献及数据整理;田学琴:查阅相关文献及数据整理;刘少芳:指导论文思路、提供相关文献;胡志宏:提供研究思路,论文指导、修改和审稿。

基金项目:

国家自然科学基金(32260009)


Recent advances in bioproduction of chitooligosaccharides
Author:
Affiliation:

1.College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi, China;2.Jiangxi Key Laboratory of Natural Microbial Medicine Research, Nanchang, Jiangxi, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32260009).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [102]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    壳寡糖(chitooligosaccharide, COS)是几丁质(chitin, CI)或壳聚糖(chitosan, CS)的降解产物。由于其生物相容性好、可降解、无毒且具有强生物活性,在食品、化妆品、复合材料、污水处理、生物制药等领域展现出广阔的应用前景。当前,国内外学者主要采用物理、化学、生物酶等方法制备COS。然而,物理和化学方法存在较大的局限性,难以高效且绿色地合成特定要求的目标产物。相比之下,生物酶法制备COS的反应过程温和、可控,且对环境更加友好,能够克服物理、化学法的缺点。借助膜分离法、凝胶过滤色谱法、CM-SephadexC-25离子交换柱法和固定化金属亲和层析法等先进的分离纯化手段,可以有效提升COS的纯度。本文综述了近年来利用生物酶法技术制备COS的研究进展,旨在为实现高质量COS的工业化制备奠定一定的理论基础。同时,对COS的结构、性能及应用等方面进行综述,为COS的制备与分离研究提供基础。

    Abstract:

    chitooligosaccharide (COS) are degradation products of chitin or chitosan, demonstrating good biocompatibility, degradability, non-toxicity, and multiple bioactivities. COS have been widely used in food, cosmetics, composite materials, wastewater treatment, and biomedical industries. Currently, researchers mainly use physical, chemical, and biological enzyme methods to prepare COS. Physical and chemical methods have large limitations, and it is difficult to synthesize the target products with specific requirements in an efficient and green way. Bio-enzymatic preparation of COS shows a mild, controllable, and environmental friendly reaction process, overcoming the drawbacks of physical and chemical methods. The purity of COS can be improved by separation and purification techniques such as membrane separation, gel filtration chromatography, CM-SephadexC-25 ion-exchange column chromatography, and immobilized metal affinity chromatography. This review summarized the research progress in COS preparation using bio-enzymatic technology, aiming to lay theoretical foundation for high-quality industrial COS preparation. It also gave an overview of the structure, properties, and application of COS, contributing for the research on COS preparation and isolation.

    参考文献
    [1] 郭蔓, 赵华, 张朝正. 壳寡糖的制备及应用研究[J]. 中国食品添加剂, 2022, 33(10): 267-271.GUO M, ZHAO H, ZHANG CZ. Preparation and application of chitooligosaccharide[J]. China Food Additives, 2022, 33(10): 267-271 (in Chinese).
    [2] BENCHAMAS G, HUANG GL, HUANG SY, HUANG HL. Preparation and biological activities of chitosan oligosaccharides[J]. Trends in Food Science & Technology, 2021, 107: 38-44.
    [3] 卢春兰, 王蓓. 壳寡糖和几丁寡糖的制备方法及其在水产上的应用[J]. 广东农业科学, 2023, 50(2): 136-146.LU CL, WANG B. Preparation of chitooligosaccharides and chitin oligosaccharide and their application in aquaculture[J]. Guangdong Agricultural Sciences, 2023, 50(2): 136-146 (in Chinese).
    [4] MITTAL A, SINGH A, HONG H, BENJAKUL S. Chitooligosaccharides from shrimp shell chitosan prepared using H2O2 or ascorbic acid/H2O2 redox pair hydrolysis: characteristics, antioxidant and antimicrobial activities[J]. International Journal of Food Science & Technology, 2023, 58(5): 2645-2660.
    [5] ALJBOUR ND, BEG MDH, GIMBUN J. Acid hydrolysis of chitosan to oligomers using hydrochloric acid[J]. Chemical Engineering & Technology, 2019, 42(9): 1741-1746.
    [6] OKORO OV, NIE L, GUNDUZ O, ULAG S, HAMIDI M, SHAVANDI A. Technoeconomic assessment of biopolymer production from crustacean waste with the UK as a case study[J]. Sustainability, 2023, 15(3): 2280.
    [7] RAKKHUMKAEW N, PENGSUK C. Chitosan and chitooligosaccharides from shrimp shell waste: characterization, antimicrobial and shelf life extension in bread[J]. Food Science and Biotechnology, 2018, 27(4): 1201-1208.
    [8] 陈颖, 刘程惠, 白雯睿, 付喜庆, 高飞. 壳寡糖涂膜对鲜切苹果的保鲜作用[J]. 食品工业科技, 2019, 40(9): 269-274.CHEN Y, LIU CH, BAI WR, FU XQ, GAO F. Preservation of fresh-cut apples by chitooligosaccharide-coated films[J]. Science and Technology of Food Industry, 2019, 40(9): 269-274 (in Chinese).
    [9] 孙翠红, 徐翠莲, 赵铭钦, 王莹, 付培培, 陈发元. 壳寡糖及其衍生物抗烟草花叶病毒机理的初步研究[J]. 中国烟草科学, 2015, 36(2): 87-92.SUN CH, XU CL, ZHAO MQ, WANG Y, FU PP, CHEN FY. Preliminary study on the mechanism of chitosan and its derivatives against tobacco mosaic virus[J]. Chinese Tobacco Science, 2015, 36(2): 87-92 (in Chinese).
    [10] BADAWY MEI, RABEA EI. Potential of the biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit[J]. Postharvest Biology and Technology, 2009, 51(1): 110-117.
    [11] DAS SN, MADHUPRAKASH J, SARMA PVSRN, PURUSHOTHAM P, SUMA K, MANJEET K, RAMBABU S, GUEDDARI NE, MOERSCHBACHER BM, PODILE AR. Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants[J]. Critical Reviews in Biotechnology, 2015, 35(1): 29-43.
    [12] SáNCHEZ á, MENGíBAR M, RIVERA-RODRíGUEZ G, MOERCHBACHER B, ACOSTA N, HERAS A. The effect of preparation processes on the physicochemical characteristics and antibacterial activity of chitooligosaccharides[J]. Carbohydrate Polymers, 2017, 157: 251-257.
    [13] KONG SZ, LI DD, LUO H, LI WJ, HUANG YM, LI JC, HU Z, HUANG N, GUO MH, CHEN Y, LI SD. Anti-photoaging effects of chitosan oligosaccharide in ultraviolet-irradiated hairless mouse skin[J]. Experimental Gerontology, 2018, 103: 27-34.
    [14] NAVEED M, PHIL L, SOHAIL M, HASNAT M, BAIG MMFA, IHSAN AU, SHUMZAID M, KAKAR MU, KHAN TM, AKABAR M, HUSSAIN MI, ZHOU QG. Chitosan oligosaccharide (COS): an overview[J]. International Journal of Biological Macromolecules, 2019, 129: 827-843.
    [15] LEE SH, PARK JS, KIM SK, AHN CB, JE JY. Chitooligosaccharides suppress the level of protein expression and acetylcholinesterase activity induced by Aβ25-35 in PC12 cells[J]. Bioorganic & Medicinal Chemistry Letters, 2009, 19(3): 860-862.
    [16] BAI WX, WANG SD, AN SS, GUO MJ, GONG GM, LIU WY, MA SX, LI X, FU JH, YAO WB. Combination therapy of chitosan, gynostemma, and motherwort alleviates the progression of experimental rat chronic renal failure by inhibiting STAT1 activation[J]. Oncotarget, 2018, 9(21): 15498-15511.
    [17] KUMAR SG, RAHMAN MA, LEE SH, HWANG HS, KIM HA, YUN JW. Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice[J]. Proteomics, 2009, 9(8): 2149-2162.
    [18] KIM HJ, AHN HY, KWAK JH, SHIN DY, KWON YI, OH CG, LEE JH. The effects of chitosan oligosaccharide (GO2KA1) supplementation on glucose control in subjects with prediabetes[J]. Food & Function, 2014, 5(10): 2662-2669.
    [19] YU SY, KWON YI, LEE C, APOSTOLIDIS E, KIM YC. Antidiabetic effect of chitosan oligosaccharide (GO2KA1) is mediated via inhibition of intestinal alpha-glucosidase and glucose transporters and PPARγ expression[J]. BioFactors, 2017, 43(1): 90-99.
    [20] JEONG S, MIN CHO J, KWON YI, KIM SC, YEOB SHIN D, LEE JH. Chitosan oligosaccharide (GO2KA1) improves postprandial glycemic response in subjects with impaired glucose tolerance and impaired fasting glucose and in healthy subjects: a crossover, randomized controlled trial[J]. Nutrition & Diabetes, 2019, 9(1): 31.
    [21] ABEDIAN Z, MOGHADAMNIA AA, ZABIHI E, POURBAGHER R, GHASEMI M, NOURI HR, TASHAKORIAN H, JENABIAN N. Anticancer properties of chitosan against osteosarcoma, breast cancer and cervical cancer cell lines[J]. Caspian Journal of Internal Medicine, 2019, 10(4): 439-446.
    [22] TAN G, KAYA M, TEVLEK A, SARGIN I, BARAN T. Antitumor activity of chitosan from mayfly with comparison to commercially available low, medium and high molecular weight chitosans[J]. In Vitro Cellular & Developmental Biology Animal, 2018, 54(5): 366-374.
    [23] SRINIVASAN H, KANAYAIRAM V, RAVICHANDRAN R. Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1[J]. International Journal of Biological Macromolecules, 2018, 107: 662-667.
    [24] LI ZW, LI CW, WANG Q, SHI SJ, HU M, ZHANG Q, CUI HH, SUN JB, ZHOU M, WU GL, DANG JZ, LU LC. The cellular and molecular mechanisms underlying silver nanoparticle/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber-mediated wound healing[J]. Journal of Biomedical Nanotechnology, 2017, 13(1): 17-34.
    [25] LI CW, WANG Q, LI J, HU M, SHI SJ, LI ZW, WU GL, CUI HH, LI YY, ZHANG Q, YU XH, LU LC. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway[J]. International Journal of Nanomedicine, 2016, 11: 373-386.
    [26] SCHMITZ C, AUZA LG, KOBERIDZE D, RASCHE S, FISCHER R, BORTESI L. Conversion of chitin to defined chitosan oligomers: current status and future prospects[J]. Marine Drugs, 2019, 17(8): 452.
    [27] NOVIKOV VY, RYSAKOVA KS, SHUMSKAYA NV, MUKHORTOVA AM, KESAREV KA. King crab gills as a new source of chitin/chitosan and protein hydrolysates[J]. International Journal of Biological Macromolecules, 2023, 232: 123346.
    [28] KOU S, PETERS LM, MUCALO MR. Chitosan: a review of sources and preparation methods[J]. International Journal of Biological Macromolecules, 2021, 169: 85-94.
    [29] WEI LJ, LI Q, CHEN Y, ZHANG JJ, MI YQ, DONG F, LEI CQ, GUO ZY. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts[J]. Carbohydrate Polymers, 2019, 206: 493-503.
    [30] KUMAR M, BRAR A, VIVEKANAND V, PAREEK N. Bioconversion of chitin to bioactive chitooligosaccharides: amelioration and coastal pollution reduction by microbial resources[J]. Marine Biotechnology, 2018, 20(3): 269-281.
    [31] 刘梦琪, 吕瑞, 陈菊, 矫芮文, 米春孝, 李想, 任丹丹, 武龙, 汪秋宽, 周慧. 壳聚糖的抗菌作用及在抑菌活性包装中的应用进展[J]. 食品科学, 2024, 45(1): 261-271.LIU MQ, LU R CHEN J, ZHOU RW, MI CX, LI X, REN DD, WU L, WANG QK, ZHOU H. Antimicrobial effects of chitosan and its application in bacteriostatically active packaging[J]. Food Science, 2024, 45(1): 261-271 (in Chinese).
    [32] 冯培章. 寡糖素对植物生长发育的调控[J]. 生物学通报, 2001, 36(3): 16-17.FENG PZ. Regulation of plant growth and development by oligosaccharides[J]. Bulletin of Biology, 2001, 36(3): 16-17 (in Chinese).
    [33] LE B, YANG SH. Microbial chitinases: properties, current state and biotechnological applications[J]. World Journal of Microbiology & Biotechnology, 2019, 35(9): 144.
    [34] LANGNER T, G?HRE V. Fungal chitinases: function, regulation, and potential roles in plant/pathogen interactions[J]. Current Genetics, 2016, 62(2): 243-254.
    [35] LOMBARD V, RAMULU HG, DRULA E, COUTINHO PM, HENRISSAT B. The carbohydrate-active enzymes database (CAZy) in 2013[J]. Nucleic Acids Research, 2014, 42(D1): D490-D495.
    [36] 刘力睿, 潘杰, 李猛. 微生物几丁质酶的研究进展、应用及展望[J]. 生物资源, 2020, 42(5): 494-504.LIU LR, PAN J, LI M. Research progress, application and prospect of microbial chitinase[J]. Bioresources, 2020, 42(5): 494-504.
    [37] 谢池楚, 陈月华, 蔡峻, 刘传, 陈艳玲. Bt几丁质酶的基础表达及诱导合成的多态现象[J]. 生物工程学报, 2010, 26(11): 1532-1538.XIE CC, CHEN YH, CAI J, LIU C, CHEN YL. Essential expression and inducible synthesis polymorphism of chitinase in Bacillus thuringiensis[J]. Chinese Journal of Biotechnology, 2010, 26(11): 1532-1538 (in Chinese).
    [38] PALMA-GUERRERO J, JANSSON HB, SALINAS J, LOPEZ-LLORCA LV. Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi[J]. Journal of Applied Microbiology, 2008, 104(2): 541-553.
    [39] RUSH TA, PUECH-PAGèS V, BASCAULES A, JARGEAT P, MAILLET F, HAOUY A, MA?S AQ, CARRIEL CC, KHOKHANI D, KELLER-PEARSON M, TANNOUS J, COPE KR, GARCIA K, MAEDA J, JOHNSON C, KLEVEN B, CHOUDHURY QJ, LABBé J, SWIFT C, O’MALLEY MA, et al. Lipo-chitooligosaccharides as regulatory signals of fungal growth and development[J]. Nature Communications, 2020, 11(1): 3897.
    [40] LE B, YANG SH. Characterization of a chitinase from Salinivibrio sp. BAO-1801 as an antifungal activity and a biocatalyst for producing chitobiose[J]. Journal of Basic Microbiology, 2018, 58(10): 848-856.
    [41] ALVES TB, De OLIVEIRA ORNELA PH, De OLIVEIRA AHC, JORGE JA, GUIMAR?ES LHS. Production and characterization of a thermostable antifungal chitinase secreted by the filamentous fungus Aspergillus niveus under submerged fermentation[J]. 3 Biotech, 2018, 8(8): 369.
    [42] SURESH PV, ANIL KUMAR PK. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-glucosamine by thermoactive chitinases from soil mesophilic fungi[J]. Biodegradation, 2012, 23(4): 597-607.
    [43] 潘梦妍, 徐显皓, 刘延峰, 李江华, 吕雪芹, 堵国成, 刘龙. 甲壳素酶Chisb的定向进化及生物转化合成几丁寡糖[J]. 生物工程学报, 2019, 35(9): 1787-1796.PAN MY, XU XH, LIU YF, LI JH, LU XQ, DU GC, LIU L. Directed evolution of chitinase Chisb and biosynthesis of chitin oligosaccharide[J]. Chinese Journal of Biotechnology, 2019, 35(9): 1787-1796 (in Chinese).
    [44] GAO L, SUN JN, SECUNDO F, GAO X, XUE CH, MAO XZ. Cloning, characterization and substrate degradation mode of a novel chitinase from Streptomyces albolongus ATCC 27414[J]. Food Chemistry, 2018, 261: 329-336.
    [45] ZHANG Q, ZHANG XY, HE YC, LI YC. The synergistic action of two chitinases from Vibrio harveyi on chitin degradation[J]. Carbohydrate Polymers, 2023, 307: 120640.
    [46] XU P, WU XL, GUO XX, TANG J, ZONG MH, LOU WY. Double-chitinase hydrolysis of crab shell chitin pretreated by ionic liquid to generate chito-oligosaccharide[J]. ACS Sustainable Chemistry & Engineering, 2019, 7(1): 1683-1691.
    [47] MUKHERJEE S, BEHERA PK, MADHUPRAKASH J. Efficient conversion of crystalline chitin to N-acetylglucosamine and N,N′-diacetylchitobiose by the enzyme cocktail produced by Paenibacillus sp. LS1[J]. Carbohydrate Polymers, 2020, 250: 116889.
    [48] KROLICKA M, HINZ SWA, KOETSIER MJ, JOOSTEN R, EGGINK G, van den BROEK LAM, BOERIU CG. Chitinase Chi1 from Myceliophthora thermophila C1, a thermostable enzyme for chitin and chitosan depolymerization[J]. Journal of Agricultural and Food Chemistry, 2018, 66(7): 1658-1669.
    [49] KIDIBULE PE, SANTOS-MORIANO P, JIMéNEZ-ORTEGA E, RAMíREZ-ESCUDERO M, LIMóN MC, REMACHA M, PLOU FJ, SANZ-APARICIO J, FERNáNDEZ-LOBATO M. Use of chitin and chitosan to produce new chitooligosaccharides by chitinase Chit42: enzymatic activity and structural basis of protein specificity[J]. Microbial Cell Factories, 2018, 17(1): 47.
    [50] YANG SQ, FU X, YAN QJ, JIANG ZQ, WANG J. Biochemical characterization of a novel acidic exochitinase from Rhizomucor miehei with antifungal activity[J]. Journal of Agricultural and Food Chemistry, 2016, 64(2): 461-469.
    [51] ARAKI Y, ITO E. A pathway of chitosan formation in Mucor rouxii: enzymatic deacetylation of chitin[J]. Biochemical and Biophysical Research Communications, 1974, 56(3): 669-675.
    [52] 魏丽蓉, 秦汪艳, 李永成. 几丁质脱乙酰酶高产菌株的选育及其发酵特性研究[J]. 中国酿造, 2018, 37(7): 61-66.WEI LR, QIN WY, LI YC. Selection of high-yielding strains of chitin deacetylase and their fermentation characteristics[J]. China Brewing, 2018, 37(7): 61-66 (in Chinese).
    [53] 王伟平, 杜予民, 胡家俊. 壳低聚糖高产菌的诱变选育[J]. 安徽农业科学, 2011, 39(3): 1266-1267.WANG WP, DU YM, HU JJ. Selection of chitosan-oligosaccharide high-yield stain by mutagenesis[J]. Journal of Anhui Agricultural Sciences, 2011, 39(3): 1266-1267 (in Chinese).
    [54] SUN YY, ZHANG JQ, WU SJ, WANG SJ. Statistical optimization for production of chitin deacetylase from Rhodococcus erythropolis HG05[J]. Carbohydrate Polymers, 2014, 102: 649-652.
    [55] JANTZEN Da SILVA LUCAS A, QUADRO ORESTE E, LE?O GOUVEIA COSTA H, MARTíN LóPEZ H, DIAS MEDEIROS SAAD C, PRENTICE C. Extraction, physicochemical characterization, and morphological properties of chitin and chitosan from cuticles of edible insects[J]. Food Chemistry, 2021, 343.
    [56] 王皓, 吴丽, 朱小花, 刘旺旺, 杨公明. 甲壳素脱乙酰酶的研究概况及展望[J]. 中国生物工程杂志, 2015, 35(1): 96-103.WANG H, WU L, ZHU XH, LIU WW, YANG GM. Progress and prospect of chitin deacetylase[J]. China Biotechnology, 2015, 35(1): 96-103 (in Chinese).
    [57] 黄惠莉, 蔡阿娜, 陈培钦. 枯草芽孢杆菌甲壳素脱乙酰酶的酶学性质[J]. 氨基酸和生物资源, 2007, 29(3): 30-32, 46.HUANG HL, CAI A/E/EN, CHEN PQ. Enzymatic properties of chitin deacetylase from Bacillus subtilis[J]. Biotic Resources, 2007, 29(3): 30-32, 46 (in Chinese).
    [58] 闫晓平, 赵丹, 孙晓彤, 郭巍, 李少雅, 李景. 美国白蛾几丁质脱乙酰酶1 (HcCDA1)的克隆表达与酶活测定[J]. 中国生物防治学报, 2015, 31(3): 423-427.YAN XP, ZHAO D, SUN XT, GUO W, LI SY, LI J. Clonal expression and enzyme activity determination of chitin deacetylase 1 (HcCDA1) from the American white moth, Heteropneustes americanus[J]. Chinese Journal of Biological Control, 2015, 31(3): 423-427 (in Chinese).
    [59] KAFETZOPOULOS D, MARTINOU A, BOURIOTIS V. Bioconversion of chitin to chitosan: purification and characterization of chitin deacetylase from Mucor rouxii[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(7): 2564-2568.
    [60] TSIGOS I, BOURIOTIS V. Purification and characterization of chitin deacetylase from Colletotrichum lindemuthianum[J]. Journal of Biological Chemistry, 1995, 270(44): 26286-26291.
    [61] GAO XD, KATSUMOTO T, ONODERA K. Purification and characterization of chitin deacetylase from Absidia coerulea[J]. Journal of Biochemistry, 1995, 117(2): 257-263.
    [62] GHORMADE V, PATHAN EK, DESHPANDE MV. Can fungi compete with marine sources for chitosan production[J]. International Journal of Biological Macromolecules, 2017, 104: 1415-1421.
    [63] Bartnicki-Garcia S, Nickerson WJ.Nutrition, growth, and morphogenesis of Mucor rouxii[J]. Journal of Bacteriology, 1962, 84(4): 841-858.
    [64] 魏光, 李兆兰, 田军, 沈晓云. 从蓝色犁头霉中提取壳聚糖[J]. 食品科学, 1998(12): 9-12.WEI G, LI ZL, TIAN J, SHEN XY. Chitosan was extracted from Absidia coerulea[J]. Food Science, 1998(12): 9-12 (in Chinese).
    [65] 曹健, 殷蔚申. 黑曲霉几丁质和壳聚糖的研究[J]. 微生物学通报, 1995, 22(4): 200-203.CAO J, YIN WS. Studies on chitin and chitosan from Aspergillus niger[J]. Microbiology Bulletin, 1995, 22(4): 200-203 (in Chinese).
    [66] 秦汪艳, 李永成. 一株产几丁质脱乙酰酶诱变菌株的培养基配方及发酵条件优化[J]. 中国酿造, 2017, 36(9): 50-54.QIN WY, LI YC. Optimization of medium formulas and fermentation conditions of a chitin deacetylase-producing mutant strain[J]. China Brewing, 2017, 36(9): 50-54 (in Chinese).
    [67] ZHANG YY, LUO X, YIN LF, YIN FW, ZHENG WL, FU YQ. Isolation and screening of a chitin deacetylase producing Bacillus cereus and its potential for chitosan preparation[J]. Frontiers in Bioengineering and Biotechnology, 2023, 11: 1183333.
    [68] YANG L, LI X, LAI C, FAN Y, JIA O, YONG Q. Fungal chitosan production using xylose rich of corn stover prehydrolysate by Rhizopus oryzae[J]. Biotechnology & Biotechnological Equipment, 2017, 31(6): 1160-1166.
    [69] MONAGHAN RL, EVELEIGH DE, TEWARI RP, REESE ET. Chitosanase, a novel enzyme[J]. Nature: New Biology, 1973, 245(142): 78-80.
    [70] MA Q, GAO X, TU L, HAN Q, ZHANG X, GUO Y, YAN W, SHEN Y, WANG M. Enhanced chitin deacetylase production ability of Rhodococcus equi CGMCC14861 by co-culture fermentation with Staphylococcus sp. MC7[J]. Frontiers in Microbiology, 2020, 11: 592477.
    [71] 王琦, 崔阳, 刘进宝, 孙慧慧, 郭娜, 孙建安, 毛相朝. 壳聚糖酶的基因克隆表达及酶学性质研究[J]. 食品与生物技术学报, 2019, 38(1): 147-155.WANG Q, CUI Y, LIU JB, SUN HH, GUO N, SUN JA, MAO XZ. Cloning, expression, and characterization of chitosanase[J]. Journal of Food Science and Biotechnology, 2019, 38(1): 147-155 (in Chinese).
    [72] QIN Z, CHEN QM, LIN S, LUO S, QIU YJ, ZHAO LM. Expression and characterization of a novel cold-adapted chitosanase suitable for chitooligosaccharides controllable preparation[J]. Food Chemistry, 2018, 253: 139-147.
    [73] WANG YX, LI D, LIU MX, XIA CY, FAN QW, LI X, LAN ZJ, SHI GL, DONG WL, LI ZK, CUI ZL. Preparation of active chitooligosaccharides with a novel chitosanase Aq CoA and their application in fungal disease protection[J]. Journal of Agricultural and Food Chemistry, 2021, 69(11): 3351-3361.
    [74] YANG GS, SUN HH, CAO R, LIU Q, MAO XZ. Characterization of a novel glycoside hydrolase family 46 chitosanase, Csn-BAC, from Bacillus sp. MD-5[J]. International Journal of Biological Macromolecules, 2020, 146: 518-523.
    [75] LUO S, QIN Z, CHEN QM, FAN LQ, JIANG LH, ZHAO LM. High level production of a Bacillus amlyoliquefaciens chitosanase in Pichia pastoris suitable for chitooligosaccharides preparation[J]. International Journal of Biological Macromolecules, 2020, 149: 1034-1041.
    [76] CUI DD, YANG J, LU BS, SHEN H. Efficient preparation of chitooligosaccharide with a potential chitosanase csn-SH and its application for fungi disease protection[J]. Frontiers in Microbiology, 2021, 12: 682829.
    [77] QU TL, ZHANG CY, QIN Z, FAN LQ, JIANG LH, ZHAO LM. A novel GH family 20 β-N-acetylhexosaminidase with both chitosanase and chitinase activity from Aspergillus oryzae[J]. Frontiers in Molecular Biosciences, 2021, 8: 684086.
    [78] GUAN FF, HAN YS, YAN K, ZHANG Y, ZHANG ZF, WU NF, TIAN J. Highly efficient production of chitooligosaccharides by enzymes mined directly from the marine metagenome[J]. Carbohydrate Polymers, 2020, 234: 115909.
    [79] SUN HH, YANG GS, CAO R, MAO XZ, LIU Q. Expression and characterization of a novel glycoside hydrolase family 46 chitosanase identified from marine mud metagenome[J]. International Journal of Biological Macromolecules, 2020, 159: 904-910.
    [80] DOAN CT, TRAN TN, NGUYEN VB, NGUYEN AD, WANG SL. Conversion of squid pens to chitosanases and proteases via Paenibacillus sp. TKU042[J]. Marine Drugs, 2018, 16(3): 83.
    [81] GOHI BFCA, ZENG HY, PAN AD, HAN J, YUAN J. pH dependence of chitosan enzymolysis[J]. Polymers, 2017, 9(5): 174.
    [82] KACZMAREK MB, STRUSZCZYK-SWITA K, LI XK, SZCZ?SNA-ANTCZAK M, DAROCH M. Enzymatic modifications of chitin, chitosan, and chitooligosaccharides[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 243.
    [83] ZITOUNI M, FORTIN M, SCHEERLE RK, LETZEL T, MATTEAU D, RODRIGUE S, BRZEZINSKI R. Biochemical and molecular characterization of a thermostable chitosanase produced by the strain Paenibacillus sp. 1794 newly isolated from compost[J]. Applied Microbiology and Biotechnology, 2013, 97(13): 5801-5813.
    [84] SUN HH, CAO R, LI LH, ZHAO L, LIU Q. Cloning, purification and characterization of a novel GH46 family chitosanase, Csn-CAP, from Staphylococcus capitis[J]. Process Biochemistry, 2018, 75: 146-151.
    [85] ZHOU Y, CHEN XH, LI X, HAN YT, WANG YN, YAO RY, LI SY. Purification and characterization of a new cold-adapted and thermo-tolerant chitosanase from marine bacterium Pseudoalteromonas sp. SY39[J]. Molecules, 2019, 24(1): 183.
    [86] 章晔敏, 邵一凡, 熊妍妍, 毛贵珠, 陈小娥, 方旭波, 傅鹏程. 响应面法优化鹿皮曲霉ZJOU-AC1产壳聚糖酶的发酵条件[J]. 中国酿造, 2016, 35(11): 93-98.ZHANG YM, SHAO YF, XIONG YY, MAO GZ, CHEN XE, FANG XB, FU PC. Optimization of fermentation conditions of chitosanase-producing Aspergillus cervinus ZJOU-AC1 by response surface methodology[J]. China Brewing, 2016, 35(11): 93-98 (in Chinese).
    [87] CAO SN, GAO P, XIA WS, LIU SQ, WANG B. A novel chitosanase from Penicillium oxalicum M2 for chitooligosaccharide production: purification, identification and characterization[J]. Molecular Biotechnology, 2022, 64(9): 947-957.
    [88] ZHANG H, SANG Q, ZHANG WH. Statistical optimization of chitosanase production by Aspergillus sp. QD-2 in submerged fermentation[J]. Annals of Microbiology, 2012, 62(1): 193-201.
    [89] CHANG CT, LIN YL, LU SW, HUANG CW, WANG YT, CHUNG YC. Characterization of a chitosanase from jelly fig (Ficus awkeotsang Makino) latex and its application in the production of water-soluble low molecular weight chitosans[J]. PLoS One, 2016, 11(3): e0150490.
    [90] SAMAIN E, DROUILLARD S, HEYRAUD A, DRIGUEZ H, GEREMIA RA. Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli[J]. Carbohydrate Research, 1997, 302(1/2): 35-42.
    [91] ZHANG DW, WANG PG, QI QS. A two-step fermentation process for efficient production of penta-N-acetyl-chitopentaose in recombinant Escherichia coli[J]. Biotechnology Letters, 2007, 29(11): 1729-1733.
    [92] de ARAúJO NK, de ASSIS CF, dos SANTOS ES, de MACEDO GR, de FARIAS LF, ARIMATéIA HJr, de FREITAS FERNANDES PEDROSA M, PAGNONCELLI MGB. Production of enzymes by Paenibacillus chitinolyticus and Paenibacillus ehimensis to obtain chitooligosaccharides[J]. Applied Biochemistry and Biotechnology, 2013, 170(2): 292-300.
    [93] 赵华, 樊龙星, 张朝正. 响应面法优化组成型壳聚糖酶酶解条件[J]. 中国酿造, 2020, 39(1): 165-169.ZHAO H, FAN LX, ZHANG CZ. Optimization of enzymatic hydrolysis conditions of compositional chitosanase by response surface methodology[J]. China Brewing, 2020, 39(1): 165-169 (in Chinese).
    [94] CHEN YL, LING ZM, MAMTIMIN T, KHAN A, PENG L, YANG JF, ALI G, ZHOU TY, ZHANG Q, ZHANG J, LI XK. Chitooligosaccharides production from shrimp chaff in chitosanase cell surface display system[J]. Carbohydrate Polymers, 2022, 277: 118894.
    [95] PINELO M, JONSSON G, MEYER AS. Membrane technology for purification of enzymatically produced oligosaccharides: molecular and operational features affecting performance[J]. Separation and Purification Technology, 2009, 70(1): 1-11.
    [96] 杜昱光, 张铭俊, 张虎, 白雪芳. 海洋寡糖工程药物: 壳寡糖制备分离新工艺及其抗癌活性研究[J]. 中国微生态学杂志, 2001, 13(1): 5-7.DU YG, ZHANG MJ, ZHANG H, BAI XF. Marine oligosaccharides engineered drugs: a new process for the preparation and separation of chitosan and its anticancer activity[J]. Chinese Journal of Microecology, 2001, 13(1): 5-7 (in Chinese).
    [97] 高丽霞, 李春霞, 王世欣, 赵峡, 管华诗. 不同聚合度的壳寡糖单体的制备及其分析[J]. 中国海洋药物, 2013, 32(3): 21-27.GAO LX, LI CX, WANG SX, ZHAO X, GUAN HS. Preparation and analysis of chitooligosaccharide isomers with different degree[J]. Chinese Journal of Marine Drugs, 2013, 32(3): 21-27 (in Chinese).
    [98] 李克成. 单一聚合度和特定N-乙酰化壳寡糖的分离及抗氧化活性研究[D]. 北京: 中国科学院大学博士学位论文, 2013.LI KC. Isolation and antioxidant activity of chitooligosaccharides with single degree of polymerization and specific N-acetylation[D]. Beijing: Doctoral Dissertation of University of Chinese Academy of Sciences, 2013 (in Chinese).
    [99] LE DéVéDEC F, BAZINET L, FURTOS A, VENNE K, BRUNET S, MATEESCU MA. Separation of chitosan oligomers by immobilized metal affinity chromatography[J]. Journal of Chromatography A, 2008, 1194(2): 165-171.
    [100] YAN HH, SHANG YT, WANG LH, TIAN XQ, TRAN VT, YAO LH, ZENG B, HU ZH. Construction of a new Agrobacterium tumefaciens-mediated transformation system based on a dual auxotrophic approach in Cordyceps militaris[J]. Journal of Microbiology and Biotechnology, 2024, 34(5): 1178-1187.
    [101] 秦坤海, 刘琪聪, 黄慧, 曾斌, 胡志宏. 米曲霉尿嘧啶营养缺陷型突变体筛选及转化体系建立[J]. 微生物学杂志, 2023, 43(1): 51-56.QIN KH, LIU QC, HUANG H, ZENG B, HU ZH. Screening of uracil auxotrophic mutants of Aspergillus oryzae and establishment of transformation system[J]. Journal of Microbiology, 2023, 43(1): 51-56 (in Chinese).
    [102] 王立, 黄慧, 刘新平, 王兴明, 曾斌, 胡志宏. 农杆菌介导的蛹虫草营养缺陷型菌株和遗传转化体系的构建[J]. 微生物学通报, 2022, 49(8): 3373-3386.WANG L, HUANG H, LIU XP, WANG XM, ZENG B, HU ZH. Construction of Agrobacterium-mediated auxotrophic strain and genetic transformation system of Cordyceps militaris[J]. Microbiology China, 2022, 49(8): 3373-3386 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

薛萍红,邓运鸿,田学琴,刘少芳,胡志宏. 生物法制备壳寡糖的研究进展[J]. 微生物学报, 2025, 65(2): 453-466

复制
分享
文章指标
  • 点击次数:216
  • 下载次数: 373
  • HTML阅读次数: 67
  • 引用次数: 0
历史
  • 收稿日期:2024-08-26
  • 在线发布日期: 2025-02-18
文章二维码