CRISPR系统在枯草芽孢杆菌基因编辑中的研究进展
作者:
作者单位:

1.西北农林科技大学 动物科技学院,陕西 杨凌;2.辽宁省微生物科学研究院,辽宁 朝阳

作者简介:

公涵萱:文献检索整理,综述撰写;王智伟:图表制作及修改;陈玉林:整体构思与设计;杨雨鑫:全文审阅与修订;刘功炜:全文指导与返修。

基金项目:

国家重点研发计划(2022YFD1300201);中国博士后科学基金(2023M732893);陕西省博士后科研项目(2023BSHEDZZ145);国家绒毛用羊产业技术体系(CARS-39-12)


Research advances in CRISPR-based genetic editing of Bacillus subtilis
Author:
Affiliation:

1.College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China;2.Microbial Research Institute of Liaoning Province, Chaoyang, Liaoning, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2022YFD1300201), the China Postdoctoral Science Foundation (2023M732893), the Shaanxi Postdoctoral Research Project (2023BSHEDZZ145), and the China Agriculture Research System (CARS-39-12).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [75]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    枯草芽孢杆菌( Bacillus subtilis)是一种公认安全的(generally recognized as safe, GRAS)益生菌,同时也是优良的工业生产底盘菌株,具有异源蛋白分泌能力强、低品质碳源生长特性良好以及无明显密码子偏好性等优点。自2016年以来,成簇规律间隔短回文重复序列(clustered regularly interspaced short palindromic repeats, CRISPR)基因编辑技术已成功应用于枯草芽孢杆菌,实现了精准的基因点突变、基因敲除、外源基因插入、基因表达调控及碱基替换等多种基因工程操作。这些进展极大地推动了枯草芽孢杆菌作为高效微生物细胞工厂的发展,并在农业、医药、食品以及合成生物学等领域展现了广泛的应用潜力。本文系统回顾了CRISPR系统在枯草芽孢杆菌中的发展历程,重点总结了其在高效生产不同产物方面的应用成果。旨在通过CRISPR系统靶向优化枯草芽孢杆菌的代谢通路,为在工业化生产中高效、稳定地合成目标产物提供参考,并为新型基因编辑系统的进一步开发与应用提供启示。

    Abstract:

    Bacillus subtilis is a generally recognized as safe (GRAS) probiotic and an excellent industrial chassis strain. It possesses advantages such as strong heterologous protein secretion capability, robust growth with low-quality carbon sources, and negligible codon bias. Since 2016, clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing has been successfully applied to B. subtilis, enabling precise genetic modifications, including point mutations, gene knockout, foreign gene insertion, gene expression regulation, and base editing. These advancements have significantly promoted the development of B. subtilis as an efficient microbial cell factory and have shown broad application potential in agriculture, pharmaceuticals, food production, and synthetic biology. This paper systematically review the development of the CRISPR system in B. subtilis and summarize its application in the efficient production of various products. The aim is to provide insights into the targeted optimization of metabolic pathways in B. subtilis via the CRISPR system to achieve efficient and stable industrial production of target products, as well as to offer references for the further development and application of novel gene editing systems.

    参考文献
    [1] CHEN X , GAO C , GUO L , HU G , LUO Q , LIU J , NIELSEN J , CHEN J , LIU L . DCEO biotechnology: tools to design, construct, evaluate, and optimize the metabolic pathway for biosynthesis of chemicals[J]. Chemical Reviews, 2018, 118( 1): 4- 72.
    [2] DVO?áK P , NIKEL PI , DAMBORSKY J , de LORENZO V . Bioremediation 3.0: engineering pollutant-removing bacteria in the times of systemic biology[J]. Biotechnology Advances, 2017, 35( 7): 845- 866.
    [3] GU Y , XU X , WU Y , NIU T , LIU Y , LI J , DU G , LIU L . Advances and prospects of Bacillus subtilis cellular factories: from rational design to industrial applications [J]. Metabolic Engineering, 2018, 50: 109- 121.
    [4] ZHU B , STüLKE J . SubtiWiki in 2018: from genes and proteins to functional network annotation of the model organism Bacillus subtilis [J]. Nucleic Acids Research, 2018, 46( D1): D743- D748.
    [5] POPP PF , DOTZLER M , RADECK J , BARTELS J , MASCHER T . The Bacillus BioBrick Box 2.0: expanding the genetic toolbox for the standardized work with Bacillus subtilis [J]. Scientific Reports, 2017, 7( 1): 15058.
    [6] SIERRO N , MAKITA Y , de HOON M , NAKAI K . DBTBS: a database of transcriptional regulation in Bacillus subtilis containing upstream intergenic conservation information [J]. Nucleic Acids Research, 2008, 36( Database issue): D93- D96.
    [7] CASPI R , BILLINGTON R , FERRER L , FOERSTER H , FULCHER CA , KESELER IM , KOTHARI A , KRUMMENACKER M , LATENDRESSE M , MUELLER LA , ONG Q, PALEY S , SUBHRAVETI P , WEAVER DS , KARP PD . The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases[J]. Nucleic Acids Research, 2016, 44( D1): D471- D480.
    [8] CONTESINI FJ , MELO RR , SATO HH . An overview of Bacillus proteases: from production to application [J]. Critical Reviews in Biotechnology, 2018, 38( 3): 321- 334.
    [9] ZHANG Q , WU Y , GONG M , ZHANG H , LIU Y , LV X , LI J , DU G , LIU L . Production of proteins and commodity chemicals using engineered Bacillus subtilis platform strain [J]. Essays in Biochemistry, 2021, 65( 2): 173- 185.
    [10] NIAUDET B , JANNIèRE L , EHRLICH SD . Integration of linear, heterologous DNA molecules into the Bacillus subtilis chromosome: mechanism and use in induction of predictable rearrangements [J]. Journal of Bacteriology, 1985, 163( 1): 111- 120.
    [11] POHL S , BHAVSAR G , HULME J , BLOOR AE , MISIRLI G , LECKENBY MW , RADFORD DS , SMITH W , WIPAT A , WILLIAMSON ED , HARWOOD CR , CRANENBURGH RM . Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins [J]. Proteomics, 2013, 13( 22): 3298- 3308.
    [12] YAN X , YU HJ , HONG Q , LI SP . Cre/lox system and PCR-based genome engineering in Bacillus subtilis [J]. Applied and Environmental Microbiology, 2008, 74( 17): 5556- 5562.
    [13] MALI P , AACH J , STRANGES PB , ESVELT KM , MOOSBURNER M , KOSURI S , YANG L , CHURCH GM . CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering[J]. Nature Biotechnology, 2013, 31( 9): 833- 838.
    [14] ISHINO Y , SHINAGAWA H , MAKINO K , AMEMURA M , NAKATA A . Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product [J]. Journal of Bacteriology, 1987, 169( 12): 5429- 5433.
    [15] JANSEN R , EMBDEN JD , GAASTRA W , SCHOULS LM . Identification of genes that are associated with DNA repeats in prokaryotes[J]. Molecular Microbiology, 2002, 43( 6): 1565- 1575.
    [16] MOJICA FJ , DíEZ-VILLASE?OR C , GARCíA-MARTíNEZ J , SORIA E . Intervening sequences of regularly spaced prokaryotic repeats derive from foreign genetic elements[J]. Journal of Molecular Evolution, 2005, 60( 2): 174- 182.
    [17] BARRANGOU R , FREMAUX C , DEVEAU H , RICHARDS M , BOYAVAL P , MOINEAU S , ROMERO DA , HORVATH P . CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315( 5819): 1709- 1712.
    [18] DELTCHEVA E , CHYLINSKI K , SHARMA CM , GONZALES K , CHAO Y , PIRZADA ZA , ECKERT MR , VOGEL J , CHARPENTIER E . CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III [J]. Nature, 2011, 471( 7340): 602- 607.
    [19] JINEK M , CHYLINSKI K , FONFARA I , HAUER M , DOUDNA JA , CHARPENTIER E . A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337( 6096): 816- 821.
    [20] MAKAROVA KS , WOLF YI , ALKHNBASHI OS , COSTA F , SHAH SA , SAUNDERS SJ , BARRANGOU R , BROUNS SJ , CHARPENTIER E , HAFT DH , HORVATH P , MOINEAU S , MOJICA FJ , TERNS RM , TERNS MP , WHITE MF , YAKUNIN AF , GARRETT RA , van der OOST J , BACKOFEN R , et al . An updated evolutionary classification of CRISPR-Cas systems[J]. Nature Reviews Microbiology, 2015, 13( 11): 722- 736.
    [21] WANG JY , DOUDNA JA . CRISPR technology: a decade of genome editing is only the beginning[J]. Science, 2023, 379( 6629): eadd8643.
    [22] NISHIMASU H , RAN FA , HSU PD , KONERMANN S , SHEHATA SI , DOHMAE N , ISHITANI R , ZHANG F , NUREKI O . Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156( 5): 935- 949.
    [23] TONG Y , WEBER T , LEE SY . CRISPR/Cas-based genome engineering in natural product discovery[J]. Natural Product Reports, 2019, 36( 9): 1262- 1280.
    [24] KOONIN EV , MAKAROVA KS , ZHANG F . Diversity, classification and evolution of CRISPR-Cas systems[J]. Current Opinion in Microbiology, 2017, 37: 67- 78.
    [25] HU JH , MILLER SM , GEURTS MH , TANG W , CHEN L , SUN N , ZEINA CM , GAO X , REES HA , LIN Z , LIU DR . Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556( 7699): 57- 63.
    [26] WALTON RT , CHRISTIE KA , WHITTAKER MN , KLEINSTIVER BP . Unconstrained genome targeting with near-PAMless engineered CRISPR-Cas9 variants[J]. Science, 2020, 368( 6488): 290- 296.
    [27] ZALATAN JG , LEE ME , ALMEIDA R , GILBERT LA , WHITEHEAD EH , La RUSSA M , TSAI JC , WEISSMAN JS , DUEBER JE , QI LS , LIM WA . Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds[J]. Cell, 2015, 160( 1/2): 339- 350.
    [28] DOUDNA JA , CHARPENTIER E . Genome editing. The new frontier of genome engineering with CRISPR-Cas9[J]. Science, 2014, 346( 6213): 1258096.
    [29] KOMOR AC , KIM YB , PACKER MS , ZURIS JA , LIU DR . Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533( 7603): 420- 424.
    [30] MATSOUKAS IG . Commentary: programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Frontiers in Genetics, 2018, 9: 21.
    [31] ANZALONE AV , GAO XD , PODRACKY CJ , NELSON AT , KOBLAN LW , RAGURAM A , LEVY JM , MERCER JAM , LIU DR . Programmable deletion, replacement, integration and inversion of large DNA sequences with twin prime editing[J]. Nature Biotechnology, 2022, 40( 5): 731- 740.
    [32] KOBLAN LW , ARBAB M , SHEN MW , HUSSMANN JA , ANZALONE AV , DOMAN JL , NEWBY GA , YANG D , MOK B, REPLOGLE JM , XU A , SISLEY TA , WEISSMAN JS , ADAMSON B , LIU DR . Efficient C?G-to-G?C base editors developed using CRISPRi screens, target-library analysis, and machine learning[J]. Nature Biotechnology, 2021, 39( 11): 1414- 1425.
    [33] LIU Z , LU Z , YANG G , HUANG S , LI G , FENG S , LIU Y , LI J , YU W , ZHANG Y , CHEN J , SUN Q , HUANG X . Efficient generation of mouse models of human diseases via ABE- and BE-mediated base editing [J]. Nature Communications, 2018, 9( 1): 2338.
    [34] 宗媛, 高彩霞 . 碱基编辑系统研究进展[J]. 遗传, 2019, 41( 9): 777- 800. ZONG Y , GAO CX . Progress on base editing systems[J]. Hereditas, 2019, 41( 9): 777- 800 (in Chinese).
    [35] GAUDELLI NM , KOMOR AC , REES HA , PACKER MS , BADRAN AH , BRYSON DI , LIU DR . Programmable base editing of A?T to G?C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551( 7681): 464- 471.
    [36] 刘尧, 周先辉, 黄舒泓, 王小龙 . 引导编辑: 突破碱基编辑类型的新技术[J]. 遗传, 2022, 44( 11): 993- 1008. LIU Y , ZHOU XH , HUANG SH , WANG XL . Prime editing: a search and replace tool with versatile base changes[J]. Hereditas, 2022, 44( 11): 993- 1008 (in Chinese).
    [37] ZHENG K , WANG Y , LI N , JIANG FF , WU CX , LIU F , CHEN HC , LIU ZF . Highly efficient base editing in bacteria using a Cas9-cytidine deaminase fusion[J]. Communications Biology, 2018, 1: 32.
    [38] WANG Y , CHENG H , LIU Y , LIU Y , WEN X , ZHANG K , NI X , GAO N , FAN L , ZHANG Z , LIU J , CHEN J , WANG L , GUO Y , ZHENG P , WANG M , SUN J , MA Y . In-situ generation of large numbers of genetic combinations for metabolic reprogramming via CRISPR-guided base editing [J]. Nature Communications, 2021, 12( 1): 678.
    [39] ALTENBUCHNER J . Editing of the Bacillus subtilis genome by the CRISPR-Cas9 system [J]. Applied and Environmental Microbiology, 2016, 82( 17): 5421- 5427.
    [40] PETERS JM , COLAVIN A , SHI H , CZARNY TL , LARSON MH , WONG S , HAWKINS JS , LU CHS , KOO BM, MARTA E , SHIVER AL , WHITEHEAD EH , WEISSMAN JS , BROWN ED , QI LS , HUANG KC , GROSS CA . A comprehensive, CRISPR-based functional analysis of essential genes in bacteria[J]. Cell, 2016, 165( 6): 1493- 1506.
    [41] SO Y, PARK SY , PARK EH , PARK SH , KIM EJ , PAN JG , CHOI SK . A highly efficient CRISPR-Cas9-mediated large genomic deletion in Bacillus subtilis [J]. Frontiers in Microbiology, 2017, 8: 1167.
    [42] TOYMENTSEVA AA , ALTENBUCHNER J . New CRISPR-Cas9 vectors for genetic modifications of Bacillus species [J]. FEMS Microbiology Letters, 2019, 366( 1): fny284.
    [43] LU Z , YANG S , YUAN X , SHI Y , OUYANG L , JIANG S , YI L , ZHANG G . CRISPR-assisted multi-dimensional regulation for fine-tuning gene expression in Bacillus subtilis [J]. Nucleic Acids Research, 2019, 47( 7): e40.
    [44] PRICE MA , CRUZ R , BRYSON J , ESCALETTES F , ROSSER SJ . Expanding and understanding the CRISPR toolbox for Bacillus subtilis with MAD7 and dMAD7 [J]. Biotechnology and Bioengineering, 2020, 117( 6): 1805- 1816.
    [45] WU Y , LIU Y , LV X , LI J , DU G , LIU L . CAMERS-B: CRISPR/Cpf1 assisted multiple-genes editing and regulation system for Bacillus subtilis [J]. Biotechnology and Bioengineering, 2020, 117( 6): 1817- 1825.
    [46] HAO W , SUO F , LIN Q , CHEN Q , ZHOU L , LIU Z , CUI W , ZHOU Z . Design and construction of portable CRISPR-Cpf1-mediated genome editing in Bacillus subtilis 168 oriented toward multiple utilities [J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 524676.
    [47] YU S , PRICE MA , WANG Y , LIU Y , GUO Y , NI X , ROSSER SJ , BI C , WANG M . CRISPR-dCas9 mediated cytosine deaminase base editing in Bacillus subtilis [J]. ACS Synthetic Biology, 2020, 9( 7): 1781- 1789.
    [48] KIM MS , KIM HR , JEONG DE , CHOI SK . Cytosine base editor-mediated multiplex genome editing to accelerate discovery of novel antibiotics in Bacillus subtilis and Paenibacillus polymyxa [J]. Frontiers in Microbiology, 2021, 12: 691839.
    [49] HAO W , CUI W , SUO F , HAN L , CHENG Z , ZHOU Z . Construction and application of an efficient dual-base editing platform for Bacillus subtilis evolution employing programmable base conversion [J]. Chemical Science, 2022, 13( 48): 14395- 14409.
    [50] YU W , JIN K , WU Y , ZHANG Q , LIU Y , LI J , DU G , CHEN J , LV X , LEDESMA-AMARO R , LIU L . A pathway independent multi-modular ordered control system based on thermosensors and CRISPRi improves bioproduction in Bacillus subtilis [J]. Nucleic Acids Research, 2022, 50( 11): 6587- 6600.
    [51] FERRANDO J , FILLUELO O , ZEIGLER DR , PICART P . Barriers to simultaneous multilocus integration in Bacillus subtilis tumble down: development of a straightforward screening method for the colorimetric detection of one-step multiple gene insertion using the CRISPR-Cas9 system [J]. Microbial Cell Factories, 2023, 22( 1): 21.
    [52] ZHU X , LUO H , YU X , LV H , SU L , ZHANG K , WU J . Genome-wide CRISPRi screening of key genes for recombinant protein expression in Bacillus subtilis [J]. Advanced Science, 2024, 11( 33): e2404313.
    [53] MAO C , ZHENG H , CHEN Y , YUAN P , SUN D . Development of a type I-E CRISPR-based programmable repression system for fine-tuning metabolic flux toward d-pantothenic acid in Bacillus subtilis [J]. ACS Synthetic Biology, 2024, 13( 8): 2480- 2491.
    [54] WESTBROOK AW , REN X , MOO-YOUNG M , CHOU CP . Engineering of cell membrane to enhance heterologous production of hyaluronic acid in Bacillus subtilis [J]. Biotechnology and Bioengineering, 2018, 115( 1): 216- 231.
    [55] JAKUTYTE-GIRAITIENE L , GASIUNAS G . Design of a CRISPR-Cas system to increase resistance of Bacillus subtilis to bacteriophage SPP1 [J]. Journal of Industrial Microbiology & Biotechnology, 2016, 43( 8): 1183- 1188.
    [56] SCHILLING T , DIETRICH S , HOPPERT M , HERTEL R . A CRISPR-Cas9-based toolkit for fast and precise in vivo genetic engineering of Bacillus subtilis phages [J]. Viruses, 2018, 10( 5): 241.
    [57] ZHANG K , DUAN X , WU J . Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system [J]. Scientific Reports, 2016, 6: 27943.
    [58] BURBY PE , SIMMONS LA . MutS2 promotes homologous recombination in Bacillus subtilis [J]. Journal of Bacteriology, 2016, 199( 2): e00682-16.
    [59] CAI MZ , CHEN PT . Novel combined Cre-Cas system for improved chromosome editing in Bacillus subtilis [J]. Journal of Bioscience and Bioengineering, 2021, 132( 2): 113- 119.
    [60] WESTBROOK AW , MOO-YOUNG M , CHOU CP . Development of a CRISPR-Cas9 tool kit for comprehensive engineering of Bacillus subtilis [J]. Applied and Environmental Microbiology, 2016, 82( 16): 4876- 4895.
    [61] LIM H, CHOI SK . Programmed gRNA removal system for CRISPR-Cas9-mediated multi-round genome editing in Bacillus subtilis [J]. Frontiers in Microbiology, 2019, 10: 1140.
    [62] 刘丁玉 . 枯草芽孢杆菌启动子文库和CRISPR-Cas9n基因组编辑技术的建立与应用[D]. 天津: 天津大学博士学位论文, 2019. LIU DY . Establishment and application of promoter library and CRISPR-Cas9n mediated genome editing for Bacillus subtilis [D]. Tianjin: Doctoral Dissertation of Tianjin University, 2019 (in Chinese).
    [63] WU Y , CHEN T , LIU Y , LV X , LI J , DU G , LEDESMA-AMARO R , LIU L . CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis [J]. Metabolic Engineering, 2018, 49: 232- 241.
    [64] DONG C , FONTANA J , PATEL A , CAROTHERS JM , ZALATAN JG . Author correction: synthetic CRISPR-Cas gene activators for transcriptional reprogramming in bacteria[J]. Nature Communications, 2018, 9: 4318.
    [65] CHEN Q , WANG B , PAN L . Efficient expression of γ-glutamyl transpeptidase in Bacillus subtilis via CRISPR/Cas9n and its immobilization [J]. Applied Microbiology and Biotechnology, 2024, 108( 1): 149.
    [66] ZHAO X , CHEN X , XUE Y , WANG X . Development of an efficient iterative genome editing method in Bacillus subtilis using the CRISPR-AsCpf1 system [J]. Journal of Basic Microbiology, 2022, 62( 7): 824- 832.
    [67] BOUMEZBEUR AH , BRUER M , STOECKLIN G , MACK M . Rational engineering of transcriptional riboswitches leads to enhanced metabolite levels in Bacillus subtilis [J]. Metabolic Engineering, 2020, 61: 58- 68.
    [68] LIU D , HUANG C , GUO J , ZHANG P , CHEN T , WANG Z , ZHAO X . Development and characterization of a CRISPR/Cas9n-based multiplex genome editing system for Bacillus subtilis [J]. Biotechnology for Biofuels, 2019, 12: 197.
    [69] WU Y , LI Y , JIN K , ZHANG L , LI J , LIU Y , DU G , LV X , CHEN J , LEDESMA-AMARO R , LIU L . CRISPR-dCas12a-mediated genetic circuit cascades for multiplexed pathway optimization[J]. Nature Chemical Biology, 2023, 19( 3): 367- 377.
    [70] 陈玉林, 刘功炜, 杨雨鑫, 公涵萱, 崔雯元 . 一株无特定抗性基因枯草芽孢杆菌及应用: CN116396915B[P]. 2023-10-31. CHEN YL , LIU GW , YANG YX , GONG HX , CUI WY . A strain of Bacillus subtilis without specific resistance gene and its application : CN116396915B[P]. 2023-10-31 (in Chinese).
    [71] 崔雯元 . 白蚁源枯草芽孢杆菌的生物学特性与绒山羊饲喂效果研究[D]. 杨陵: 西北农林科技大学硕士学位论文, 2024. CUI WY . Study on biological characteristics of Bacillus subtilis from termite and feeding effect of cashmere goats [D]. Yangling: Master’s Thesis of Northwest A&F University, 2024 (in Chinese).
    [72] LIU G , GONG H , TANG H , MENG Z , WANG Z , CUI W , ZHANG K , CHEN Y , YANG Y . Enhanced lignocellulose degradation in Bacillus subtilis RLI2019 through CRISPR/Cas9-mediated chromosomal integration of ternary cellulase genes [J]. International Journal of Biological Macromolecules, 2025, 306(Pt3): 141727.
    [73] 公涵萱 . 基于CRISPR/Cas9技术增强枯草芽孢杆菌纤维素降解能力的研究[D]. 杨陵: 西北农林科技大学硕士学位论文, 2024. Gong HX . Study on enhancing cellulose degradation ability of Bacillus subtilis based on CRISPR/Cas9 technology [D]. Yangling: Master’s Thesis of Northwest A&F University, 2024 (in Chinese).
    [74] 杨雨鑫, 陈玉林, 刘功炜, 公涵萱, 崔雯元 . 一株共表达多元纤维素酶基因的枯草芽孢杆菌及其构建方法与应用: CN117264861B[P]. 2024-02-20. YANG YX , CHEN YL , LIU GW , GONG HX , CUI WY . A Bacillus subtilis strain expressing multiple cellulase genes and its construction method and application : CN117264861B[P]. 2024-02-20 (in Chinese).
    [75] LIU Y , CHENG H , LI H , ZHANG Y , WANG M . A programmable CRISPR/Cas9 toolkit improves lycopene production in Bacillus subtilis [J]. Applied and Environmental Microbiology, 2023, 89( 6): e0023023.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

公涵萱,王智伟,陈玉林,杨雨鑫,刘功炜. CRISPR系统在枯草芽孢杆菌基因编辑中的研究进展[J]. 微生物学报, 2025, 65(5): 1867-1884

复制
分享
文章指标
  • 点击次数:157
  • 下载次数: 239
  • HTML阅读次数: 87
  • 引用次数: 0
历史
  • 收稿日期:2024-11-05
  • 在线发布日期: 2025-04-30
文章二维码