莽草酸的生物合成研究进展
作者:
作者单位:

福建师范大学 生命科学学院,工业微生物发酵技术国家地方联合工程研究中心,工业微生物教育部工程中心,福建 福州

作者简介:

夏煌慧:负责文章总体框架的确定、数据的收集与整理,并负责论文的初稿撰写与修订工作;崔树梅:负责研究设计、数据收集;黄建忠:负责写作指导。

基金项目:

国家重点研发计划(2022YFD1802104)


Research progress in shikimic acid biosynthesis
Author:
  • XIA Huanghui

    XIA Huanghui

    Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • CUI Shumei

    CUI Shumei

    Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HUANG Jianzhong

    HUANG Jianzhong

    Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Engineering Research Center of Industrial Microbiology, Ministry of Education, National and Local United Engineering Research Center of Industrial Microbiology and Fermentation Technology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2022YFD1802104).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [116]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    莽草酸(shikimic acid, SA)是一种重要的天然化合物,在生物体内具有抗病毒、抗血栓、镇痛、抑菌、抑制恶性肿瘤等多重功能,广泛应用于医药、化妆品、食品和农业等领域,因此被视为是极具潜力的生物分子。作为芳香族化合物的前体,莽草酸在生物体内的代谢途径中起着重要作用。传统的莽草酸生产方式主要依赖于从植物(如八角茴香)中提取或通过化学合成,这些方法不仅成本高、效率低,还对环境造成负担。随着合成生物学和代谢工程技术的不断进步,利用生物代谢工程技术生产莽草酸因其更高的可持续性和经济性,逐渐成为研究热点。本文综述了莽草酸的应用领域及其生产方法,并重点阐述了其生物合成的研究进展与优化策略。

    Abstract:

    Shikimic acid (SA) is an important natural compound with many biological activities, including antiviral, antithrombotic, analgesic, antimicrobial, and anti-cancer properties. Due to its diverse applications in medicine, cosmetics, food, and agriculture, SA is considered a highly promising biomolecule. As a precursor of aromatic compounds, SA plays a crucial role in various metabolic pathways within organisms. Traditional methods for producing SA mainly rely on plant extraction (such as star anise) or chemical synthesis. However, these approaches face challenges such a high costs, low efficiency, and environmental concerns. With the ongoing advancements in synthetic biology and metabolic engineering, the production of SA through metabolic engineering has emerged as a focal point of research, offering a more sustainable and cost-effective alternative. This paper reviews the applications and production methods of SA, with a particular emphasis on recent progress and optimization strategies in its biosynthesis.

    参考文献
    [1] Group ETC. Plant-derived ingredients and synthetic biology[EB/OL]. Case study: star anise. [2012-07-02]. https://www.etcgroup.org/content/case-study-star-anise.
    [2] POLLACK A. Is bird flu drug really so vexing? Debating the difficulty of Tamiflu[EB/OL]. New York Times. [2005]. http://www.nytimes.com/2005/11/05/business/05tamiflu.html.
    [3] ZHANG XT, YOSHIHARA K, MIYATA N, HATA T, ALTAISAIKHAN A, TAKAKURA S, ASANO Y, IZUNO S, SUDO N. Dietary tryptophan, tyrosine, and phenylalanine depletion induce reduced food intake and behavioral alterations in mice[J]. Physiology & Behavior, 2022, 244: 113653.
    [4] 马怡, 孙建宁, 徐秋萍, 郭亚建. 莽草酸对血小板聚集和凝血的抑制作用[J]. 药学学报, 2000, 35(1): 1-3.MA Y, SUN JN, XU QP, GUO YJ. Inhibitory effects of shikimic acid on platelet aggragation and blood coagulation[J]. Acta Pharmaceutica Sinica, 2000, 35(1): 1-3 (in Chinese).
    [5] 林军, 胡海峰, 胡又佳, 朱宝泉. 莽草酸及其代谢产物在医药工业中的应用[J]. 药物生物技术, 2011, 18(5): 461-465.LIN J, HU HF, HU YJ, ZHU BQ. The application of shikimic acid and its metabolites in the pharmaceutical industry[J]. Pharmaceutical Biotechnology, 2011, 18(5): 461-465 (in Chinese).
    [6] KR?MER JO, NUNEZ-BERNAL D, AVERESCH NJH, HAMPE J, VARELA J, VARELA C. Production of aromatics in Saccharomyces cerevisiae: a feasibility study[J]. Journal of Biotechnology, 2013, 163(2): 184-193.
    [7] JIANG SD, SINGH G, BOAM DJ, COGGINS JR. Synthesis of 3-deoxy-3,3-difluoroshikimic acid and its 4-epimer from quinic acid[J]. Tetrahedron: Asymmetry, 1999, 10(21): 4087-4090.
    [8] JIANG M, ZHANG HR. Engineering the shikimate pathway for biosynthesis of molecules with pharmaceutical activities in E. coli[J]. Current Opinion in Biotechnology, 2016, 42: 1-6.
    [9] ENRICH LB, SCHEUERMANN ML, MOHADJER A, MATTHIAS KR, ELLER CF, NEWMAN MS, FUJINAKA M, POON T. Liquidambar styraciflua: a renewable source of shikimic acid[J]. Tetrahedron Letters, 2008, 49(16): 2503-2505.
    [10] 鄢芳清, 韩亚昆, 李娟, 李燕军, 徐庆阳, 陈宁, 谢希贤. 大肠杆菌芳香族氨基酸代谢工程研究进展[J]. 生物加工过程, 2017, 15(5): 32-39, 85.YAN FQ, HAN YK, LI J, LI YJ, XU QY, CHEN N, XIE XX. Metabolic engineering of aromatic amino acids in Escherichia coli[J]. Chinese Journal of Bioprocess Engineering, 2017, 15(5): 32-39, 85 (in Chinese).
    [11] REARDON S. How synthetic biologists are building better biofactories[J]. Nature, 2024, 628(8006): 224-226.
    [12] DELL KA, FROST JW. Identification and removal of impediments to biocatalytic synthesis of aromatics from d-glucose: rate-limiting enzymes in the common pathway of aromatic amino acid biosynthesis[J]. Journal of the American Chemical Society, 1993, 115: 11581-9.
    [13] WU FL, CAO P, SONG GT, CHEN WJ, WANG QH. Expanding the repertoire of aromatic chemicals by microbial production[J]. Journal of Chemical Technology & Biotechnology, 2018, 93(10): 2804-2816.
    [14] LI L, TU R, SONG G, LI L, TU R, SONG G, CHEN W, LI L, WANG L, WANG Q. Development of a synthetic 3-dehydroshikimate biosensor in Escherichia coli for metabolite monitoring and genetic screening[J]. ACS Synthetic Biology, 2019, 8: 297-306.
    [15] RODRIGUEZ A, MARTíNEZ JA, FLORES N, ESCALANTE A, GOSSET G, BOLIVAR F. Engineering Escherichia coli to overproduce aromatic amino acids and derived compounds[J]. Microbial Cell Factories, 2014, 13(1): 126.
    [16] KMIETOWICZ Z. Tamiflu reduces complications of flu, new review finds[J]. BMJ, 2015, 350: h537.
    [17] GHOSH S, CHISTI Y, BANERJEE UC. Production of shikimic acid[J]. Biotechnology Advances, 2012, 30(6): 1425-1431.
    [18] RAWAT G, TRIPATHI P, SAXENA RK. Expanding horizons of shikimic acid. Recent progresses in production and its endless frontiers in application and market trends[J]. Applied Microbiology and Biotechnology, 2013, 97(10): 4277-4287.
    [19] BOCHKOV DV, SYSOLYATIN SV, KALASHNIKOV AI, SURMACHEVA IA. Shikimic acid: review of its analytical, isolation, and purification techniques from plant and microbial sources[J]. Journal of Chemical Biology, 2012, 5(1): 5-17.
    [20] RAWAT G, TRIPATHI P, JAHAN F, SAXENA RK. A natural isolate producing shikimic acid: isolation, identification, and culture condition optimization[J]. Applied Biochemistry and Biotechnology, 2013, 169(8): 2290-2302.
    [21] NIE LD, SHI XX, KO KH, LU WD. A short and practical synthesis of oseltamivir phosphate (Tamiflu) from (-)-shikimic acid[J]. The Journal of Organic Chemistry, 2009, 74(10): 3970-3973.
    [22] 黄晓婷, 杨冬业, 郑楚, 范志敏, 刘漫君, 韦桂宁. 八角莽草酸的抗动脉粥样硬化作用机制研究[J]. 中国实验方剂学杂志, 2014, 20(11): 126-130.HUANG XT, YANG DY, ZHENG C, FAN ZM, LIU MJ, WEI GN. Mechanism of anti-atherogenesis of shikimic acid from Illicium verum[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2014, 20(11): 126-130 (in Chinese).
    [23] MA Y, XU QP, SUN JN, BAI LM, GUO YJ, NIU JZ. Antagonistic effects of shikimic acid against focal cerebral ischemia injury in rats subjected to middle cerebral artery thrombosis[J]. Acta Pharmacologica Sinica, 1999, 20(8): 701-704.
    [24] QUI?ONES N, HERNáNDEZ S, ESPINOZA CATALáN L, VILLENA J, BRITO I, CABRERA AR, SALAS CO, CUELLAR MA. (-)-shikimic acid as a chiral building block for the synthesis of new cytotoxic 6-aza-analogues of angucyclinones[J]. Molecules, 2018, 23(6): 1422.
    [25] 林洁, 兰琪欣, 韦应芳, 廖兰艳, 韦国锋. 八角茴香药用成分的提取及其镇痛作用的实验研究[J]. 右江民族医学院学报, 2008, 30(2): 195-196.LIN J, LAN QX, WEI YF, LIAO LY, WEI GF. An experimental study of the extraction procedure of medicinal components from star anise and its analgesic function[J]. Journal of Youjiang Medical College for Nationalities, 2008, 30(2): 195-196 (in Chinese).
    [26] AL-MALKI AL. Shikimic acid from Artemisia absinthium inhibits protein glycation in diabetic rats[J]. International Journal of Biological Macromolecules, 2019, 122: 1212-1216.
    [27] ALDESUQUY H, IBRAHIM AH. The role of shikimic acid in regulation of growth, transpiration, pigmentation, photosynthetic activity and productivity of Vigna sinensis plants[J]. Phyton-annales Rei Botanicae, 2000, 40(2): 277-292.
    [28] MENG XW, LIU ZG, DAI L, ZHAO WQ, WANG JR, WANG LL, CUI YP, LI Y, CUI YS, ZHANG Y, WANG LY, YU FJ, ZHAO J, LIU MJ. Shikimic acid accelerates phase change and flowering in Chinese jujube[J]. Horticultural Plant Journal, 2024, 10(2): 413-424.
    [29] SINERGA. Verochic[EB/OL]. [2022-07]. https://www.ulprospector.com/en/na/PersonalCare/Detail/12615/371026/Verochic.
    [30] ARMESTO N, FERRERO M, FERNáNDEZ S, GOTOR V. Novel enzymatic synthesis of 4-O-cinnamoyl quinic and shikimic acid derivatives[J]. The Journal of Organic Chemistry, 2003, 68(14): 5784-5787.
    [31] NINOMIYA M, HARA Y, KUBO Y, YAMASHITA T, KATAGIRI C. Tracking of cutaneous vascular structural changes post-UV irradiation using optical coherence tomography angiography[J]. Photodermatology, Photoimmunology & Photomedicine, 2020, 36(3): 226-232.
    [32] PANICH U, SITTITHUMCHAREE G, RATHVIBOON N, JIRAWATNOTAI S. Ultraviolet radiation-induced skin aging: the role of DNA damage and oxidative stress in epidermal stem cell damage mediated skin aging[J]. Stem Cells International, 2016, 2016: 7370642.
    [33] MARTíNEZ-GUTIéRREZ A, FERNáNDEZ-DURAN I, MARAZUELA-DUQUE A, SIMONET NG, YOUSEF I, MARTíNEZ-ROVIRA I, MARTíNEZ-HOYOS J, VAQUERO A. Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1[J]. Aging, 2021, 13(9): 12308-12333.
    [34] CIANCAGLIO WA, MERCURIO DG, CAMPOS PMBGM. Shikimic acid: a potential active principle for skin exfoliation[J]. Surgical & Cosmetic Dermatology, 2014, 6: 239-247.
    [35] BATORY M, ROTSZTEJN H. Shikimic acid in the light of current knowledge[J]. Journal of Cosmetic Dermatology, 2022, 21(2): 501-505.
    [36] 罗威, 高冬丽. 莽草酸含量测定方法综述[J]. 现代食品, 2020, 26(10): 59-63.LUO W, GAO DL. A review of the quantitative methods of shikimic acid content[J]. Modern Food, 2020, 26(10): 59-63 (in Chinese).
    [37] MARDONES C, HITSCHFELD A, CONTRERAS A, LEPE K, GUTIéRREZ L, von BAER D. Comparison of shikimic acid determination by capillary zone electrophoresis with direct and indirect detection with liquid chromatography for varietal differentiation of red wines[J]. Journal of Chromatography A, 2005, 1085(2): 285-292.
    [38] 邱米, 马锦林, 张日清, 陆顺忠, 李娜. 莽草酸的研究综述[J]. 广西林业科学, 2009, 38(1): 45-47.QIU M, MA JL, ZHANG RQ, LU SZ, LI N. The progress in research on shikimic acid[J]. Guangxi Forestry Science, 2009, 38(1): 45-47 (in Chinese).
    [39] 中国报告大厅. 2023年八角种植规模呈现高速增长态势:八角茴油需求逐渐增加[EB/OL]. [2023-02-10]. https://m.chinabgao.com/info/1243936.html.
    [40] WHITING GC. Occurrence of shikimic acid in gooseberry fruits[J]. Nature, 1957, 179: 531.
    [41] AVULA B, WANG YH, SMILLIE TJ, KHAN IA. Determination of shikimic acid in fruits of Illicium species and various other plant samples by LC-UV and LC-ESI-MS[J]. Chromatographia, 2009, 69(3): 307-314.
    [42] 何新华, 刘玲, 刘兴国, 刘兆普, 赵耕毛, 李洪燕. 八角茴香中莽草酸提取和纯化工艺的研究[J]. 天然产物研究与开发, 2008, 20(5): 914-917.HE XH, LIU L, LIU XG, LIU ZP, ZHAO GM, LI HY. Research on the extraction and purification of shikimic acid from Illicium verum Hook.F[J]. Natural Product Research and Development, 2008, 20(5): 914-917 (in Chinese).
    [43] 廖洪利, 臧志和, 宋丽, 陈定军, 王锋. 八角茴香中莽草酸的提取[J]. 成都医学院学报, 2006, 1(2): 130-131.LIAO HL, ZANG ZH, SONG L, CHEN DJ, WANG F. Extraction of shikimic acid from lllicium Verum[J]. Journal of Chengdu Medical College, 2006, 1(2): 130-131 (in Chinese).
    [44] MAGANO J. Synthetic approaches to the neuraminidase inhibitors zanamivir (Relenza) and oseltamivir phosphate (Tamiflu) for the treatment of influenza[J]. Chemical Reviews, 2009, 109(9): 4398-4438.
    [45] VINATORU M. An overview of the ultrasonically assisted extraction of bioactive principles from herbs[J]. Ultrasonics Sonochemistry, 2001, 8(3): 303-313.
    [46] 刘洁, 李秋庭, 陆顺忠, 杨静, 李娜. 超声波提取八角莽草酸工艺研究[J]. 粮油食品科技, 2009, 17(5): 47-50.LIU J, LI QT, LU SZ, YANG J, LI N. Research on extracting shikimic acid from Illicium verum Hook.f.by ultrasonic extraction[J]. Science and Technology of Cereals, Oils and Foods, 2009, 17(5): 47-50 (in Chinese).
    [47] JIANG SD, SINGH G. Chemical synthesis of shikimic acid and its analogues[J]. Tetrahedron, 1998, 54(19): 4697-4753.
    [48] JEFFREY JS. Industrial applications of chemical process synthesis[M]. Pennsylvania: Academic Press, 1996: 1.
    [49] 刘相奎, 王强, 袁哲东. (-)-莽草酸合成路线图解[J]. 中国医药工业杂志, 2006, 37(1): 70-72.LIU XK, WANG Q, YUAN ZD. Graphical synthetic routes of (-)-shikimic acid[J]. Chinese Journal of Pharmaceuticals, 2006, 37(1): 70-72 (in Chinese).
    [50] BOHM BA. Shikimic acid (3,4,5-trihydroxy-1-cyclohexene-1-carboxylic acid)[J]. Chemical Reviews, 1965, 65(4): 435-466.
    [51] JIANG SD, McCULLOUGH KJ, MEKKI B, SINGH G, WIGHTMAN RH. Enantiospecific synthesis of (-)-5-epi-shikimic acid and (-)-shikimic acid[J]. Journal of the Chemical Society-perkin Transactions 1, 1997 (12): 1805-1814.
    [52] ALVES C, BARROS MT, MAYCOCK CD, VENTURA MR. An efficient transformation of quinic acid to shikimic acid derivatives[J]. Tetrahedron, 1999, 55(28): 8443-8456.
    [53] CHOTANI G, DODGE T, HSU A, KUMAR M, LaDUCA R, TRIMBUR D, WEYLER W, SANFORD K. The commercial production of chemicals using pathway engineering[J]. Biochimica et Biophysica Acta, 2000, 1543(2): 434-455.
    [54] SAXENA RK, ANAND P, SARAN S, ISAR J. Microbial production of 1,3-propanediol: recent developments and emerging opportunities[J]. Biotechnology Advances, 2009, 27(6): 895-913.
    [55] RANGACHARI S, FRIEDMAN TC, HARTMANN G, WEISENFELD RB. Processes for producing and recovering shikimic acid: US8344178[P]. 2013-01-01.
    [56] SONG H, LEE SY. Production of succinic acid by bacterial fermentation[J]. Enzyme and Microbial Technology, 2006, 39(3): 352-361.
    [57] ESCALANTE A, CALDERóN R, VALDIVIA A, de ANDA R, HERNáNDEZ G, RAMíREZ OT, GOSSET G, BOLíVAR F. Metabolic engineering for the production of shikimic acid in an evolved Escherichia coli strain lacking the phosphoenolpyruvate: carbohydrate phosphotransferase system[J]. Microbial Cell Factories, 2010, 9: 21.
    [58] KR?MER M, BONGAERTS J, BOVENBERG R, KREMER S, MüLLER U, ORF S, WUBBOLTS M, RAEVEN L. Metabolic engineering for microbial production of shikimic acid[J]. Metabolic Engineering, 2003, 5(4): 277-283.
    [59] FLORES N, XIAO J, BERRY A, BOLIVAR F, VALLE F. Pathway engineering for the production of aromatic compounds in Escherichia coli[J]. Nature Biotechnology, 1996, 14(5): 620-623.
    [60] BONGAERTS J, KR?MER M, MüLLER U, RAEVEN L, WUBBOLTS M. Metabolic engineering for microbial production of aromatic amino acids and derived compounds[J]. Metabolic Engineering, 2001, 3(4): 289-300.
    [61] LüTKE-EVERSLOH T, STEPHANOPOULOS G. Combinatorial pathway analysis for improved L-tyrosine production in Escherichia coli: Identification of enzymatic bottlenecks by systematic gene overexpression[J]. Metabolic Engineering, 2008, 10(2): 69-77.
    [62] PFLEGER BF, PITERA DJ, SMOLKE CD, KEASLING JD. Combinatorial engineering of intergenic regions in operons tunes expression of multiple genes[J]. Nature Biotechnology, 2006, 24(8): 1027-1032.
    [63] YUAN JF, CHING CB. Combinatorial engineering of mevalonate pathway for improved Amorpha-4,11-diene production in budding yeast[J]. Biotechnology and Bioengineering, 2014, 111(3): 608-617.
    [64] WU G, YAN Q, JONES JA, TANG YJ, FONG SS, KOFFAS MAG. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications[J]. Trends in Biotechnology, 2016, 34(8): 652-664.
    [65] FUNG DKC, LAU WY, CHAN WT, YAN AX. Copper efflux is induced during anaerobic amino acid limitation in Escherichia coli to protect iron-sulfur cluster enzymes and biogenesis[J]. Journal of Bacteriology, 2013, 195(20): 4556-4568.
    [66] 刘倩钰, 吴丽雯, 牛建军, 赵西林. 细菌磷酸转移酶系统(PTS)的组成与功能研究进展[J]. 微生物学通报, 2020, 47(7): 2266-2277.LIU QY, WU LW, NIU JJ, ZHAO XL. Research progress of the composition and function of bacterial phosphotransferase system[J]. Microbiology China, 2020, 47(7): 2266-2277 (in Chinese).
    [67] KOGURE T, INUI M. Recent advances in metabolic engineering of Corynebacterium glutamicum for bioproduction of value-added aromatic chemicals and natural products[J]. Applied Microbiology and Biotechnology, 2018, 102(20): 8685-8705.
    [68] YI J, DRATHS KM, LI K, FROST JW. Altered glucose transport and shikimate pathway product yields in E. coli[J]. Biotechnology Progress, 2003, 19(5): 1450-1459.
    [69] GARRIDO-PERTIERRA A, COOPER RA. Evidence for two dinstinct pyruvate kinase genes in Escherichia coli K-12[J]. FEBS Letters, 1983, 162(2): 420-422.
    [70] ZAID SIDDIQUEE K AL, ARAUZO-BRAVO MJ, SHIMIZU K. Effect of a pyruvate kinase (pykF-gene) knockout mutation on the control of gene expression and metabolic fluxes in Escherichia coli[J]. FEMS Microbiology Letters, 2004, 235(1): 25-33.
    [71] BECKER J, WITTMANN C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products[J]. Biotechnology Advances, 2019, 37(6): 107360.
    [72] KOGURE T, KUBOTA T, SUDA M, HIRAGA K, INUI M. Metabolic engineering of Corynebacterium glutamicum for shikimate overproduction by growth-arrested cell reaction[J]. Metabolic Engineering, 2016, 38: 204-216.
    [73] CHOI SS, SEO SY, PARK SO, LEE HN, SONG JS, KIM JY, PARK JH, KIM S, LEE SJ, CHUN GT, KIM ES. Cell factory design and culture process optimization for dehydroshikimate biosynthesis in Escherichia coli[J]. Frontiers in Bioengineering and Biotechnology, 2019, 7: 241.
    [74] CARTHEW RW. Gene regulation and cellular metabolism: an essential partnership[J]. Trends in Genetics, 2021, 37(4): 389-400.
    [75] 程瑶, 赵千婧, 王佳, 孙新晓, 申晓林, 袁其朋. 化合物代谢新途径构建及微生物糖代谢网络改造的研究进展[J]. 北京化工大学学报(自然科学版), 2018, 45(5): 78-91.CHENG Y, ZHAO QJ, WANG J, SUN XX, SHEN XL, YUAN QP. Advances in the construction of new pathways of chemical compound metabolism and modification of microbial sugar metabolism network[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2018, 45(5): 78-91 (in Chinese).
    [76] PITTARD J, YANG J. Biosynthesis of the aromatic amino acids[J]. EcoSal Plus, 2008. DOI:10.1128/ecosalplus.3.6.1.8.
    [77] RODRIGUEZ A, MARTíNEZ JA, BáEZ-VIVEROS JL, FLORES N, HERNáNDEZ-CHáVEZ G, RAMíREZ OT, GOSSET G, BOLIVAR F. Constitutive expression of selected genes from the pentose phosphate and aromatic pathways increases the shikimic acid yield in high-glucose batch cultures of an Escherichia coli strain lacking PTS and pykF[J]. Microbial Cell Factories, 2013, 12: 86.
    [78] LIU DF, AI GM, ZHENG QX, LIU C, JIANG CY, LIU LX, ZHANG B, LIU YM, YANG C, LIU SJ. Metabolic flux responses to genetic modification for shikimic acid production by Bacillus subtilis strains[J]. Microbial Cell Factories, 2014, 13(1): 40.
    [79] GHOSH S, MOHAN U, BANERJEE UC. Studies on the production of shikimic acid using the aroK knockout strain of Bacillus megaterium[J]. World Journal of Microbiology & Biotechnology, 2016, 32(8): 127.
    [80] CHEN K, DOU J, TANG SR, YANG YS, WANG H, FANG HQ, ZHOU CL. Deletion of the aroK gene is essential for high shikimic acid accumulation through the shikimate pathway in E. coli[J]. Bioresource Technology, 2012, 119: 141-147.
    [81] LEE MY, HUNG WP, TSAI SH. Improvement of shikimic acid production in Escherichia coli with growth phase-dependent regulation in the biosynthetic pathway from glycerol[J]. World Journal of Microbiology & Biotechnology, 2017, 33(2): 25.
    [82] 吴伟斌. 高产L-苯丙氨酸大肠杆菌代谢工程育种及其发酵工艺研究[D]. 福州: 福建师范大学博士学位论文, 2018.WU WB. Study on metabolic engineering breeding and fermentation technology of high-yield L-phenylalanine Escherichia coli[D]. Fuzhou: Doctoral Dissertation of Fujian Normal University, 2018 (in Chinese).
    [83] LEE HN, SEO SY, KIM HJ, PARK JH, PARK E, CHOI SS, LEE SJ, KIM ES. Artificial cell factory design for shikimate production in Escherichia coli[J]. Journal of Industrial Microbiology & Biotechnology, 2021, 48(9/10): kuab043.
    [84] CHANDRAN SS, YI J, DRATHS KM, von DAENIKEN R, WEBER W, FROST JW. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid[J]. Biotechnology Progress, 2003, 19(3): 808-814.
    [85] MUNDHADA H, SEOANE JM, SCHNEIDER K, KOZA A, CHRISTENSEN HB, KLEIN T, PHANEUF PV, HERRGARD M, FEIST AM, NIELSEN AT. Increased production of L-serine in Escherichia coli through adaptive laboratory evolution[J]. Metabolic Engineering, 2017, 39: 141-150.
    [86] LIU XL, LIN J, HU HF, ZHOU B, ZHU BQ. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields[J]. Enzyme and Microbial Technology, 2016, 82: 96-104.
    [87] MARTíNEZ JA, RODRIGUEZ A, MORENO F, FLORES N, LARA AR, RAMíREZ OT, GOSSET G, BOLIVAR F. Metabolic modeling and response surface analysis of an Escherichia coli strain engineered for shikimic acid production[J]. BMC Systems Biology, 2018, 12(1): 102.
    [88] 江晶洁, 刘涛, 林双君. 基于莽草酸途径微生物合成芳香族化合物及其衍生物的研究进展[J]. 生命科学, 2019, 31(5): 430-448.JIANG JJ, LIU T, LIN SJ. Research progress on the biosynthesis of aromatic compounds by microorganisms[J]. Chinese Bulletin of Life Sciences, 2019, 31(5): 430-448 (in Chinese).
    [89] KUBOTA T, TANAKA Y, TAKEMOTO N, WATANABE A, HIRAGA K, INUI M, YUKAWA H. Chorismate-dependent transcriptional regulation of quinate/shikimate utilization genes by LysR-type transcriptional regulator QsuR in Corynebacterium glutamicum: carbon flow control at metabolic branch point[J]. Molecular Microbiology, 2014, 92(2): 356-368.
    [90] SATO N, KISHIDA M, NAKANO M, HIRATA Y, TANAKA T. Metabolic engineering of shikimic acid-producing Corynebacterium glutamicum from glucose and cellobiose retaining its phosphotransferase system function and pyruvate kinase activities[J]. Frontiers in Bioengineering and Biotechnology, 2020, 8: 569406.
    [91] PAMBOUKIAN CRD, FACCIOTTI MCR. Production of the antitumoral retamycin during continuous fermentations of Streptomyces olindensis[J]. Process Biochemistry, 2004, 39(12): 2249-2255.
    [92] SANCHEZ S, DEMAIN AL. Metabolic regulation of fermentation processes[J]. Enzyme and Microbial Technology, 2002, 31(7): 895-906.
    [93] CHEN LP, WANG CL, SU JY. Understanding the effect of different glucose concentrations in the oligotrophic bacterium Bacillus subtilis BS-G1 through transcriptomics analysis[J]. Microorganisms, 2023, 11(10): 2401.
    [94] 赵现方, 王艳婕, 武忠伟, 王振河, 陈冰冰. 莽草酸发酵培养基的最佳碳氮源筛选[J]. 河南科技学院学报(自然科学版), 2011, 39(6): 16-18.ZHAO XF, WANG YJ, WU ZW, WANG ZH, CHEN BB. Screening of the optimal carbon and nitrogen source of the medium for shikimic acid fermentation[J]. Journal of Henan Institute of Science and Technology (Natural Sciences Edition), 2011, 39(6): 16-18 (in Chinese).
    [95] 隋雪. 大肠杆菌中戊二酸的生物合成及其发酵优化[D]. 无锡: 江南大学硕士学位论文, 2020.SUI X. Biosynthesis and fermentation optimization of glutaric acid in Escherichia coli[D]. Wuxi: Master’s Thesis of Jiangnan University, 2020 (in Chinese).
    [96] 朱文龙. 甘露糖: 6: 磷酸的合成工艺研究[D]. 北京: 北京化工大学硕士学位论文, 2020.ZHU WL. Study on synthesis technology of mannose-6-phosphate[D]. Beijing: Master’s Thesis of Beijing University of Chemical Technology, 2020 (in Chinese).
    [97] 郭谦. 代谢工程改造大肠杆菌生产L-蛋氨酸[D]. 无锡: 江南大学硕士学位论文, 2014.GUO Q. Metabolic engineering transformation of Escherichia coli to produce L-methionine[D]. Wuxi: Master’s Thesis of Jiangnan University, 2014 (in Chinese).
    [98] 孙家凯, 吴晓娇, 史建明, 徐庆阳, 谢希贤, 陈宁. pH值对大肠杆菌发酵异亮氨酸的影响[J]. 食品与发酵工业, 2012, 38(3): 12-16.SUN JK, WU XJ, SHI JM, XU QY, XIE XX, CHEN N. Effect of pH on the process of Escherichia coli L-isoleucine fermentation[J]. Food and Fermentation Industries, 2012, 38(3): 12-16 (in Chinese).
    [99] 宗媛, 伊进行, 王雪慧, 王静, 王晓超, 陈宁, 王小楠. 代谢工程改造大肠杆菌合成莽草酸及培养基优化[J]. 食品与发酵工业, 2024. https://doi.org/10.13995/j.cnki.11-1802/ts.038735.ZONG Y, YI JH, WANG XH, WANG J, WANG XC, CHEN N, WANG XN. Metabolic engineering for the synthesis of shikimic acid in Escherichia coli and optimization of culture medium. Food and Fermentation Industries, 2024. https://doi.org/10.13995/j.cnki.11-1802/ts.038735(in Chinese).
    [100] TRIPATHI P, RAWAT G, YADAV S, SAXENA RK. Fermentative production of shikimic acid: a paradigm shift of production concept from plant route to microbial route[J]. Bioprocess and Biosystems Engineering, 2013, 36(11): 1665-1673.
    [101] RAWAT G, TRIPATHI P, YADAV S, SAXENA RK. An interactive study of influential parameters for shikimic acid production using statistical approach, scale up and its inhibitory action on different lipases[J]. Bioresource Technology, 2013, 144: 675-679.
    [102] TRIPATHI P, RAWAT G, YADAV S, SAXENA RK. Shikimic acid, a base compound for the formulation of swine/avian flu drug: statistical optimization, fed-batch and scale up studies along with its application as an antibacterial agent[J]. Antonie Van Leeuwenhoek, 2015, 107(2): 419-431.
    [103] 徐柳杰. 发酵液中莽草酸的分离纯化工艺研究[D]. 福州: 福建师范大学硕士学位论文, 2021.XU LJ. Study on separation and purification technology of shikimic acid in fermentation broth[D]. Fuzhou: Master’s Thesis of Fujian Normal University, 2021 (in Chinese).
    [104] PAL D, TRIPATHY RK, TEJA MS, KUMAR M, BANERJEE UC, PANDE AH. Antibiotic-free expression system for the production of human interferon-beta protein[J]. 3 Biotech, 2018, 8(1): 36.
    [105] LUKE JM, VINCENT JM, DU SX, GERDEMANN U, LEEN AM, WHALEN RG, HODGSON CP, WILLIAMS JA. Improved antibiotic-free plasmid vector design by incorporation of transient expression enhancers[J]. Gene Therapy, 2011, 18(4): 334-343.
    [106] KO YS, KIM JW, LEE JA, HAN T, KIM GB, PARK JE, LEE SY. Tools and strategies of systems metabolic engineering for the development of microbial cell factories for chemical production[J]. Chemical Society Reviews, 2020, 49(14): 4615-4636.
    [107] ZHANG FZ, KEASLING J. Biosensors and their applications in microbial metabolic engineering[J]. Trends in Microbiology, 2011, 19(7): 323-329.
    [108] CHEUNG J, HENDRICKSON WA. Sensor domains of two-component regulatory systems[J]. Current Opinion in Microbiology, 2010, 13(2): 116-123.
    [109] LIM WA. Designing customized cell signalling circuits[J]. Nature Reviews Molecular Cell Biology, 2010, 11(6): 393-403.
    [110] LIENERT F, LOHMUELLER JJ, GARG A, SILVER PA. Synthetic biology in mammalian cells: next generation research tools and therapeutics[J]. Nature Reviews Molecular Cell Biology, 2014, 15(2): 95-107.
    [111] ROGERS JK, CHURCH GM. Genetically encoded sensors enable real-time observation of metabolite production[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(9): 2388-2393.
    [112] LIU C, ZHANG B, LIU YM, YANG KQ, LIU SJ. New intracellular shikimic acid biosensor for monitoring shikimate synthesis in Corynebacterium glutamicum[J]. ACS Synthetic Biology, 2018, 7(2): 591-601.
    [113] STEIN V, ALEXANDROV K. Synthetic protein switches: design principles and applications[J]. Trends in Biotechnology, 2015, 33(2): 101-110.
    [114] KOMERA I, GAO C, GUO L, HU GP, CHEN XL, LIU LM. Bifunctional optogenetic switch for improving shikimic acid production in E. coli[J]. Biotechnology for Biofuels and Bioproducts, 2022, 15(1): 13.
    [115] GAO C, HOU JS, XU P, GUO L, CHEN XL, HU GP, YE C, EDWARDS H, CHEN J, CHEN W, LIU LM. Programmable biomolecular switches for rewiring flux in Escherichia coli[J]. Nature Communications, 2019, 10(1): 3751.
    [116] DING Q, LI ZD, GUO L, SONG W, WU J, CHEN XL, LIU LM, GAO C. Engineering Escherichia coli asymmetry distribution-based synthetic consortium for shikimate production[J]. Biotechnology and Bioengineering, 2022, 119(11): 3230-3240.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

夏煌慧,崔树梅,黄建忠. 莽草酸的生物合成研究进展[J]. 微生物学报, 2025, 65(3): 916-938

复制
分享
文章指标
  • 点击次数:20
  • 下载次数: 34
  • HTML阅读次数: 21
  • 引用次数: 0
历史
  • 收稿日期:2024-10-16
  • 在线发布日期: 2025-03-10
文章二维码