真菌凋亡样细胞死亡和靶向药物的研究进展
作者:
作者单位:

黑龙江大学 生命科学学院,农业微生物技术教育部工程研究中心,黑龙江省寒区植物基因与生物发酵重点 实验室,黑龙江省普通高校微生物重点实验室,黑龙江 哈尔滨

作者简介:

王柳茜:绘制图片以及文章的撰写和整理;李珑捷:绘制图片以及参与论文选题讨论;田庆庆:文献收集及整理;杜春梅:论文选题、撰写、修改和审阅。

基金项目:

国家自然科学基金(32172468)


Advances in fungal apoptosis-like cell death and targeted drugs
Author:
  • WANG Liuxi

    WANG Liuxi

    Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology in Colleges and Universities of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LI Longjie

    LI Longjie

    Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology in Colleges and Universities of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • TIAN Qingqing

    TIAN Qingqing

    Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology in Colleges and Universities of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • DU Chunmei

    DU Chunmei

    Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology in Colleges and Universities of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, Key Laboratory of Microbiology in Colleges and Universities of Heilongjiang Province, School of Life Science, Heilongjiang University, Harbin, Heilongjiang, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32172468).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [143]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目前,治疗真菌感染的药物数量有限且已产生脱靶效应,研发新型抗真菌药物迫在眉睫。真菌凋亡样细胞死亡(apoptosis-like cell death, ALCD)是生物体在正常发育阶段细胞发生的死亡现象。本文概述了真菌ALCD的特征、所涉及的信号通路及关键因子,介绍了可诱导真菌凋亡的天然药物和人工合成药物。其中,天然药物包括来自微生物源的脂肽、法尼醇、他汀类、生物碱,来自植物源的有机酸、精油,以及来自昆虫的蜂毒素,并绘制了药物诱导真菌ALCD的基础分子景观。本文为制定新的抗病原真菌策略和研发靶向抗真菌药物提供了理论依据。

    Abstract:

    Currently, the drugs available for treating fungal infections show limited number and off-target effects. Thus, there is an urgent need to develop new antifungal drugs. Fungal apoptosis-like cell death (ALCD) is a cell death phenomenon that occurs during the normal development stage of organisms. This article summarizes the characteristics, signaling pathways, and key factors involved in fungal ALCD and introduces the natural and synthetic drugs that can induce fungal apoptosis. The natural drugs include lipid peptides, farnesol, statins, and alkaloids from microorganisms, organic acids and essential oils from plants, and melittins from insects. Furthermore, this article establishes the basic molecular landscape of drug-induced fungal ALCD. This article provides a theoretical basis for formulating a new strategy for resisting pathogenic fungi and developing targeted antifungal drugs.

    参考文献
    [1] SCHUSTER M, KILARU S, STEINBERG G. Azoles activate type I and type Ⅱ programmed cell death pathways in crop pathogenic fungi[J]. Nature Communications, 2024, 15: 4357.
    [2] LEITER é, CSERNOCH L, PóCSI I. Programmed cell death in human pathogenic fungi: possible therapeutic target[J]. Expert Opinion on Therapeutic Targets, 2018, 22(12): 1039-1048.
    [3] KULKARNI M, STOLP ZD, HARDWICK JM. Targeting intrinsic cell death pathways to control fungal pathogens[J]. Biochemical Pharmacology, 2019, 162: 71-78.
    [4] WANI MY, ALGHAMIDI MSS, SRIVASTAVA V, AHMAD A, AQLAN FM, AL-BOGAMI AS. Click synthesis of pyrrolidine-based 1,2,3-triazole derivatives as antifungal agents causing cell cycle arrest and apoptosis in Candida auris[J]. Bioorganic Chemistry, 2023, 136: 106562.
    [5] BUGEDA A, GARRIGUES S, GANDíA M, MANZANARES P, MARCOS JF, COCA M. The antifungal protein AfpB induces regulated cell death in its parental fungus Penicillium digitatum[J]. Msphere, 2020, 5(4): e00595-20.
    [6] BOJSEN R, REGENBERG B, FOLKESSON A. Persistence and drug tolerance in pathogenic yeast[J]. Current Genetics, 2017, 63(1): 19-22.
    [7] BERMAN J, KRYSAN DJ. Drug resistance and tolerance in fungi[J]. Nature Reviews Microbiology, 2020, 18(6): 319-331.
    [8] BONGOMIN F, GAGO S, OLADELE RO, DENNING DW. Global and multi-national prevalence of fungal diseases-estimate precision[J]. Journal of Fungi, 2017, 3(4): 57.
    [9] RICO-RAMíREZ AM, GONALVES AP, GLASS NL. Fungal cell death: the beginning of the end[J]. Fungal Genetics and Biology, 2022, 159: 103671.
    [10] SHLEZINGER N, GOLDFINGER N, SHARON A. Apoptotic-like programed cell death in fungi: the benefits in filamentous species[J]. Frontiers in Oncology, 2012, 2: 97.
    [11] HARDWICK JM. Do fungi undergo apoptosis-like programmed cell death[J]. mBio, 2018, 9(4): e00948-18.
    [12] LASTAUSKIEN? E, NOVICKIJ V, ZINKEVI?IEN? A, GIRKONTAIT? I, PA?KEVI?IUS A, ?VEDIEN? J, MARKOVSKAJA S, NOVICKIJ J. Application of pulsed electric fields for the elimination of highly drug-resistant Candida grown under modelled microgravity conditions[J]. International Journal of Astrobiology, 2019, 18(5): 405-411.
    [13] LI XZ, LIU M, HUANG TG, YANG KL, ZHOU SH, LI YX, TIAN J. Antifungal effect of nerol via transcriptome analysis and cell growth repression in sweet potato spoilage fungi Ceratocystis fimbriata[J]. Postharvest Biology and Technology, 2021, 171: 111343.
    [14] N?SSING C, RYAN KM. 50 years on and still very much alive: ‘Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics’[J]. British Journal of Cancer, 2023, 128(3): 426-431.
    [15] TANG QY, BIE XM, LU ZX, LV FX, TAO Y, QU XX. Effects of fengycin from Bacillus subtilis fmbJ on apoptosis and necrosis in Rhizopus stolonifer[J]. Journal of Microbiology, 2014, 52(8): 675-680.
    [16] DENG YJ, CHEN Z, CHEN YP, WANG JP, XIAO RF, WANG X, LIU B, CHEN MC, HE J. Lipopeptide C fengycin B exhibits a novel antifungal mechanism by triggering metacaspase-dependent apoptosis in Fusarium oxysporum[J]. Journal of Agricultural and Food Chemistry, 2024, 72(14): 7943-7953.
    [17] ZHANG LL, SUN CM. Fengycins, cyclic lipopeptides from marine Bacillus subtilis strains, kill the plant-pathogenic fungus Magnaporthe grisea by inducing reactive oxygen species production and chromatin condensation[J]. Applied Environmental Microbiology, 2018, 84(18): e00445-18.
    [18] QI GF, ZHU FY, DU P, YANG XF, QIU DW, YU ZN, CHEN JY, ZHAO XY. Lipopeptide induces apoptosis in fungal cells by a mitochondria-dependent pathway[J]. Peptides, 2010, 31(11): 1978-1986.
    [19] MUZAFFAR S, BOSE C, BANERJI A, NAIR BG, CHATTOO BB. Anacardic acid induces apoptosis-like cell death in the rice blast fungus Magnaporthe oryzae[J]. Applied Microbiology and Biotechnology, 2016, 100(1): 323-335.
    [20] GON?ALVES AP, HELLER J, DASKALOV A, VIDEIRA A, GLASS NL. Regulated forms of cell death in fungi[J]. Frontiers in Microbiology, 2017, 8: 1837.
    [21] H?CKER G. Apoptosis in infection[J]. Microbes Infection, 2018, 20(9-10): 552-559.
    [22] CARMONA-GUTIERREZ D, EISENBERG T, BüTTNER S, MEISINGER C, KROEMER G, MADEO F. Apoptosis in yeast: triggers, pathways, subroutines[J]. Cell Death & Differentiation, 2010, 17(5): 763-773.
    [23] SCHECKHUBER CQ, HAMANN A, BRUST D, OSIEWACZ HD. Cellular homeostasis in fungi: impact on the aging process[J]. Subcellular Biochemistry, 2012, 57: 233-250.
    [24] GULER EM, BOZALI K. Synthesised thymoquinone-oxime induces cytotoxicity, genotoxicity and apoptosis in hepatocellular cancer cells: in vitro study[J]. Natural Product Research, 2024, 38(10): 1695-1703.
    [25] PERRONE GG, TAN SX, DAWES IW. Reactive oxygen species and yeast apoptosis[J]. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2008, 1783(7): 1354-1368.
    [26] COLL NS, VERCAMMEN D, SMIDLER A, CLOVER C, VAN BREUSEGEM F, DANGL JL, EPPLE P. Arabidopsis type I metacaspases control cell death[J]. Science, 2010, 330(6009): 1393-1397.
    [27] GUPTA SS, TON VK, BEAUDRY V, RULLI S, CUNNINGHAM K, RAO R. Antifungal activity of amiodarone is mediated by disruption of calcium homeostasis[J]. Journal of Biological Chemistry, 2003, 278(31): 28831-28839.
    [28] KALKAVAN H, GREEN DR. MOMP, cell suicide as a BCL-2 family business[J]. Cell Death & Differentiation, 2018, 25(1): 46-55.
    [29] MENDEZ DL, AKEY IV, AKEY CW, KRANZ RG. Oxidized or reduced cytochrome c and axial ligand variants all form the apoptosome in vitro[J]. Biochemistry, 2017, 56(22): 2766-2769.
    [30] BURGESS RC, BURMAN B, KRUHLAK MJ, MISTELI T. Activation of DNA damage response signaling by condensed chromatin[J]. Cell Reports, 2014, 9(5): 1703-1717.
    [31] DORTER I, MOMANY M. Fungal cell cycle: a unicellular versus multicellular comparison[J]. Microbiology Spectrum, 2016, 4(6): FUNK-0025-2016.
    [32] DICHTL K, EBEL F, DIRR F, ROUTIER FH, HEESEMANN J, WAGENER J. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus[J]. Molecular microbiology, 2010, 76(5): 1191-1204.
    [33] 蔡永超. 细胞壁完整性信号途径的磷酸化平衡调控稻瘟病菌生长发育和致病力的机制研究[D]. 南京: 南京农业大学博士学位论文, 2022.CAI YC. Homeostasis of cell wall integrity pathway phosphorylation regulates the growth and pathogenicity of rice blast fungus Magnaporthe oryzae[D]. Nanjing: Doctoral Dissertation of Nanjing Agricultural University, 2022 (in Chinese).
    [34] 张小华, 孙业盈, 卞伟华, 许聪, 武玉永, 刘向勇. 真菌细胞壁抑制剂刚果红诱导酵母细胞凋亡及其机制研究[J]. 河南农业科学, 2015, 44(12): 65-69.ZHANG XH, SUN YY, BIAN WH, XU C, WU YY, LIU XY. Fungal cell wall-perturbing agent Congo Red-induced yeast apoptosis and its underlying mechanisms[J]. Journal of Henan Agricultural Sciences, 2015, 44(12): 65-69 (in Chinese).
    [35] SANZ AB, GARCíA R, RODRíGUEZ-PE?A JM, ARROYO J. The CWI pathway: regulation of the transcriptional adaptive response to cell wall stress in yeast[J]. Journal of Fungi, 2017, 4(1): 1.
    [36] DENG HQ, CHEN WY, ZHANG BY, ZHANG YW, HAN LY, ZHANG QP, YAO S, WANG HW, SHEN XL. Excessive ER-phagy contributes to ochratoxin A-induced apoptosis[J]. Food and Chemical Toxicology, 2023, 176: 113793.
    [37] KHOI CS, LIN YW, CHEN JH, LIU BH, LIN TY, HUNG KY, CHIANG CK. Selective activation of endoplasmic reticulum stress by reactive-oxygen-species-mediated ochratoxin A-induced apoptosis in tubular epithelial cells[J]. International Journal of Molecular Sciences, 2021, 22(20): 10951.
    [38] D’ARCY MS. Cell death: a review of the major forms of apoptosis, necrosis and autophagy[J]. Cell Biology International, 2019, 43(6): 582-592.
    [39] MUKHERJEE D, GUPTA S, SARAN N, DATTA R, GHOSH A. Induction of apoptosis-like cell death and clearance of stress-induced intracellular protein aggregates: dual roles for Ustilago maydis metacaspase Mca1[J]. Molecular Microbiology, 2017, 106(5): 815-831.
    [40] BRUST D, HAMANN A, OSIEWACZ HD. Deletion of PaAif2 and PaAmid2, two genes encoding mitochondrial AIF-like oxidoreductases of Podospora anserina, leads to increased stress tolerance and lifespan extension[J]. Current Genetics, 2010, 56(3): 225-235.
    [41] NOVO N, FERREIRA P, MEDINA M. The apoptosis-inducing factor family: moonlighting proteins in the crosstalk between mitochondria and nuclei[J]. IUBMB Life, 2021, 73(3): 568-581.
    [42] NAGAMINE T. Apoptotic arms races in insect-baculovirus coevolution[J]. Physiological Entomology, 2022, 47(1): 1-10.
    [43] SU CH, HO YC, LEE MW, TSENG CC, LEE SS, HSIEH MK, CHEN HH, LEE CY, WU SW, KUAN YH. 1-nitropyrene induced reactive oxygen species-mediated apoptosis in macrophages through AIF nuclear translocation and AMPK/Nrf-2/HO-1 pathway activation[J]. Oxidative Medicine and Cellular Longevity, 2021: 9314342.
    [44] HERRMANN JM, RIEMER J. Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death[J]. Biological Chemistry, 2021, 402(3): 289-297.
    [45] SEMIGHINI CP, AVERETTE AF, PERFECT JR, HEITMAN J. Deletion of Cryptococcus neoformans AIF ortholog promotes chromosome aneuploidy and fluconazole-resistance in a metacaspase-independent manner[J]. PLoS Pathogens, 2011, 7(11): e1002364.
    [46] MA FY, ZHANG YQ, WANG YZ, WAN YJ, MIAO YH, MA TY, YU QL, LI MC. Role of Aif1 in regulation of cell death under environmental stress in Candida albicans[J]. Yeast, 2016, 33(9): 493-506.
    [47] CARNEIRO P, DUARTE M, VIDEIRA A. Characterization of apoptosis-related oxidoreductases from Neurospora crassa[J]. PLoS One, 2012, 7(3): e34270.
    [48] ELGUINDY MM, NAKAMARU-OGISO E. Apoptosis-inducing factor (AIF) and its family member protein, AMID, are rotenone-sensitive NADH: ubiquinone oxidoreductases (NDH-2)[J]. Journal of Biological Chemistry, 2015, 290(34): 20815-20826.
    [49] DINAMARCO TM, PIMENTEL BDE C, SAVOLDI M, MALAVAZI I, SORIANI FM, UYEMURA SA, LUDOVICO P, GOLDMAN MHS, GOLDMAN GH. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance[J]. Fungal Genetics and Biology, 2010, 47(12): 1055-1069.
    [50] FAGNANI E, COCOMAZZI P, PELLEGRINO S, TEDESCHI G, SCALVINI FG, COSSU F, VELA S DA, ALIVERTI A, MASTRANGELO E, MILANI M. CHCHD4 binding affects the active site of apoptosis inducing factor (AIF): structural determinants for allosteric regulation[J]. Structure, 2024, 32(5): 594-602.
    [51] DELAVALLéE L, CABON L, GALáN-MALO P, LORENZO HK, SUSIN SA. AIF-mediated caspase-independent necroptosis: a new chance for targeted therapeutics[J]. IUBMB Life, 2011, 63(4): 221-232.
    [52] AZZOPARDI M, FARRUGIA G, BALZAN R. Cell-cycle involvement in autophagy and apoptosis in yeast[J]. Mechanisms of Ageing and Development, 2017, 161: 211-224.
    [53] FANG JN, ZHOU G, ZHAO HF, XIE DD, ZHANG JN, KüES U, XIAO YZ, FANG ZM, LIU JJ. An apoptosis-inducing factor controls programmed cell death and laccase expression during fungal interactions[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 135.
    [54] HANGEN E, BLOMGREN K, BENIT P, KROEMER G, MODJTAHEDI N. Life with or without AIF[J]. Trends in Biochemical Sciences, 2010, 35(5): 278-287.
    [55] JOZA N. Genetic elucidation of the roles of apoptosis-inducing factor (AIF) in mitochondrial respiration and programmed cell death[D]. Canada: Doctoral Dissertation of University of Toronto, 2005.
    [56] AMADOR-GARCíA A, ZAPICO I, BORRAJO A, MALMSTR?M J, MONTEOLIVA L, GIL C. Extending the proteomic characterization of Candida albicans exposed to stress and apoptotic inducers through data-independent acquisition mass spectrometry[J]. Msystems, 2021, 6(5): e0094621.
    [57] SHARON A, FINKELSTEIN A, SHLEZINGER N, HATAM I. Fungal apoptosis: function, genes and gene function[J]. FEMS Microbiology Reviews, 2009, 33(5): 833-854.
    [58] UREN AG, O’ROURKE K, ARAVIND LA, PISABARRO MT, SESHAGIRI S, KOONIN EV, DIXIT VM. Identification of paracaspases and metacaspases two ancient families of caspase-like proteins, one of which plays a key role in MALT lymphoma[J]. Molecular Cell, 2000, 6(4): 961-967.
    [59] LI LJ, DU CM. Fungal apoptosis-related proteins[J]. Microorganisms, 2024, 12(11): 2289.
    [60] WATANABE N, LAM E. Two Arabidopsis metacaspases AtMCP1b and AtMCP2b are arginine/lysine-specific cysteine proteases and activate apoptosis-like cell death in yeast[J]. The Journal of Biological Chemistry, 2005, 280(15): 14691-14699.
    [61] MCLUSKEY K, MOTTRAM JC. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases[J]. Biochemical Journal, 2015, 466(2): 219-232.
    [62] TSIATSIANI L, van BREUSEGEM F, GALLOIS P, ZAVIALOV A, LAM E, BOZHKOV PV. Metacaspases[J]. Cell Death and Differentiation, 2011, 18(8): 1279-1288.
    [63] MADEO F, HERKER E, MALDENER C, WISSING S, L?CHELT S, HERLAN M, FEHR M, LAUBER K, SIGRIST SJ, WESSELBORG S, FR?HLICH KU. A caspase-related protease regulates apoptosis in yeast[J]. Molecular Cell, 2002, 9(4): 911-917.
    [64] QI FL, ZHANG C, JIANG SS, WANG Q, KUERBAN K, LUO M, DONG MX, ZHOU XG, WU LM, JIANG B, YE L. S-ethyl ethanethiosulfinate, a derivative of allicin, induces metacaspase-dependent apoptosis through ROS generation in Penicillium chrysogenum[J]. Bioscience Reports, 2019, 39(6): BSR20190167.
    [65] 厉晓东, 卢建平, 刘小红, 林福呈. 稻瘟病菌(Magnaporthe oryzae)的凋亡诱导和检测[J]. 植物病理学报, 2011, 41(4): 361-370.LI XD, LU JP, LIU XH, LIN FC. Induction and detection of apoptosis in rice blast fungus, Magnaporthe oryzae[J]. Acta Phytopathologica Sinica, 2011, 41(4): 361-370 (in Chinese).
    [66] HILL SM, HAO X, LIU B, NYSTR?M T. Life-span extension by a metacaspase in the yeast Saccharomyces cerevisiae[J]. Science, 2014, 344(6190): 1389-1392.
    [67] SHLEZINGER N, IRMER H, DHINGRA S, BEATTIE SR, CRAMER RA, BRAUS GH, SHARON A, HOHL TM. Sterilizing immunity in the lung relies on targeting fungal apoptosis-like programmed cell death[J]. Science, 2017, 357(6355): 1037-1041.
    [68] GUIRAO-ABAD JP, WEICHERT M, ASKEW DS. Cell death induction in Aspergillus fumigatus: accentuating drug toxicity through inhibition of the unfolded protein response (UPR)[J]. Current Research in Microbial Sciences, 2022, 3: 100119.
    [69] AMARE MG, WESTRICK NM, KELLER NP, KABBAGE M. The conservation of IAP-like proteins in fungi, and their potential role in fungal programmed cell death[J]. Fungal Genetics and Biology, 2022, 162: 103730.
    [70] FERNANDEZ J, LOPEZ V, KINCH L, PFEIFER MA, GRAY H, GARCIA N, GRISHIN NV, KHANG CH, ORTH K. Role of two metacaspases in development and pathogenicity of the rice blast fungus Magnaporthe oryzae[J]. mBio, 2021, 12(1): e03471-20.
    [71] HAMANN A, BRUST D, OSIEWACZ HD. Deletion of putative apoptosis factors leads to lifespan extension in the fungal ageing model Podospora anserina[J]. Molecular Microbiology, 2007, 65(4): 948-958.
    [72] ABBAS R, LARISCH S. Killing by degradation: regulation of apoptosis by the ubiquitin-proteasome-system[J]. Cells, 2021, 10(12): 3465.
    [73] LALAOUI N, VAUX DL. Recent advances in understanding inhibitor of apoptosis proteins[J]. F1000Research, 2018, 7.
    [74] HRDINKA M, YABAL M. Inhibitor of apoptosis proteins in human health and disease[J]. Genes and Immunity, 2019, 20(8): 641-650.
    [75] GAO T, MAGNANO S, RYNNE A, O’KANE L, BARROETA PH, ZISTERER DM. Targeting inhibitor of apoptosis proteins (IAPs) enhances susceptibility of oral squamous carcinoma cells to cisplatin[J]. Experimental Cell Research, 2024, 437(1): 113995.
    [76] MANAVALAN JS, PAL I, PURSLEY A, WARD GA, SMYTH T, SIMS M, TAYLOR JA, FEITH DJ, LOUGHRAN TP, O’CONNOR OA, MARCHI E. Tolinapant, a non-peptidomimetic antagonist of inhibitors of apoptosis proteins, cIAP1/2 and XIAP, in combination with the hypomethylating agents, azacytidine and decitabine are highly synergistic in in vitro models of T cell lymphoma[J]. Blood, 2022, 140(Sup 1): 11552-11553.
    [77] KUMAR S, FAIRMICHAEL C, LONGLEY DB, TURKINGTON RC. The multiple roles of the IAP super-family in cancer[J]. Pharmacology & Therapeutics, 2020, 214: 107610.
    [78] ZHANG J, WEBSTER JD, DUGGER DL, GONCHAROV T, ROOSE-GIRMA M, HUNG J, KWON YC, VUCIC D, NEWTON K, DIXIT VM. Ubiquitin ligases cIAP1 and cIAP2 limit cell death to prevent inflammation[J]. Cell Reports, 2019, 27(9): 2679-2689.
    [79] DUMéTIER B, ZADOROZNYJ A, DUBREZ L. IAP-mediated protein ubiquitination in regulating cell signaling[J]. Cells, 2020, 9(5): 1118.
    [80] AMARE MG. Negating death: the role of fungal inhibitors of apoptosis proteins in regulating programmed cell death and other fundamental processes in fungi[D]. Madison: The University of Wisconsin-Madison, 2023.
    [81] CHEN LL, MA YM, PENG MY, CHEN WB, XIA HQ, ZHAO JY, ZHANG YK, FAN Z, XING XP, LI HL. Analysis of apoptosis-related genes reveals that apoptosis functions in conidiation and pathogenesis of Fusarium pseudograminearum[J]. mSphere, 2021, 6(1):e01140-20 .
    [82] GAO K, XIONG Q, XU J, WANG KJ, WANG KR. CpBir1 is required for conidiation, virulence and anti-apoptotic effects and influences hypovirus transmission in Cryphonectria parasitica[J]. Fungal Genetics and Biology, 2013, 51: 60-71.
    [83] ZHANG LS, ZHONG KL, LV RL, ZHENG XB, ZHANG ZG, ZHANG HF. The inhibitor of apoptosis protein MoBir1 is involved in the suppression of hydrogen peroxide-induced fungal cell death, reactive oxygen species generation, and pathogenicity of rice blast fungus[J]. Applied Microbiology and Biotechnology, 2019, 103(16): 6617-6627.
    [84] SHLEZINGER N, MINZ A, GUR Y, HATAM I, DAGDAS YF, TALBOT NJ, SHARON A. Anti-apoptotic machinery protects the necrotrophic fungus Botrytis cinerea from host-induced apoptotic-like cell death during plant infection[J]. PLoS Pathogens, 2011, 7(8): e1002185.
    [85] DREMEL SE, DELUCA NA. Herpes simplex viral nucleoprotein creates a competitive transcriptional environment facilitating robust viral transcription and host shut off[J]. eLife, 2019, 8: e51109.
    [86] CONG H, XU LJ, WU YG, QU Z, BIAN TF, ZHANG WN, XING CG, ZHUANG CL. Inhibitor of apoptosis protein (IAP) antagonists in anticancer agent discovery: current status and perspectives[J]. Journal of Medicinal Chemistry, 2019, 62(12): 5750-5772.
    [87] VASUDEVAN D, RYOO HD. Regulation of cell death by IAPs and their antagonists[J]. Current Topics in Developmental Biology, 2015, 114: 185-208.
    [88] YANG C, DAVIS JL, ZENG R, VORA P, SU XM, COLLINS LI, VANGVERAVONG S, MACH RH, PIWNICA-WORMS D, WEILBAECHER KN, FACCIO R, NOVACK DV. Antagonism of inhibitor of apoptosis proteins increases bone metastasis via unexpected osteoclast activation[J]. Cancer Discovery, 2013, 3(2): 212-223.
    [89] WALTER D, WISSING S, MADEO F, FAHRENKROG B. The inhibitor-of-apoptosis protein Bir1p protects against apoptosis in S. cerevisiae and is a substrate for the yeast homologue of Omi/HtrA2[J]. Journal of Cell Science, 2006, 119(9): 1843-1851.
    [90] FINKELSHTEIN A, SHLEZINGER N, BUNIS O, SHARON A. Botrytis cinerea BcNma is involved in apoptotic cell death but not in stress adaptation[J]. Fungal Genetics and Biology, 2011, 48(6): 621-630.
    [91] ZHU J, KROM BP, SANGLARD D, INTAPA C, DAWSON CC, PETERS BM, SHIRTLIFF ME, JABRA-RIZK MA. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione[J]. PLoS One, 2011, 6(12): e28830.
    [92] IESSI E, MARCONI M, MANGANELLI V, SORICE M, MALORNI W, GAROFALO T, MATARRESE P. On the role of sphingolipids in cell survival and death[J]. International Review of Cell and Molecular Biology, 2020, 351: 149-195.
    [93] PILáTOVá MB, SOLáROVá Z, MEZENCEV R, SOLáR P. Ceramides and their roles in programmed cell death[J]. Advances in Medical Sciences, 2023, 68(2): 417-425.
    [94] 卓少恩, 林瀛栩, 胡琪, 曾斌, 蒋春苗. 真菌鞘糖脂的生物学功能及应用研究进展[J]. 微生物学杂志, 2023, 43(4): 109-121.ZHUO SE, LIN YX, HU Q, ZENG B, JIANG CM. Advances in biological functions and applications of fungal glycosphingolipids[J]. Journal of Microbiology, 2023, 43(4): 109-121 (in Chinese).
    [95] CASTRO A, LEMOS C, FALC?O A, GLASS NL, VIDEIRA A. Increased resistance of complex I mutants to phytosphingosine-induced programmed cell death[J]. Journal of Biological Chemistry, 2008, 283(28): 19314-19321.
    [96] 戴宝娣, 曹颖瑛, 徐勇刚, 高平挥, 王彦, 姜远英. 致病真菌凋亡机制的研究进展[J]. 第二军医大学学报, 2008, 11: 1390-1394.DAI BD, CAO YY, XU YG, GAO PH, WANG Y, JIANG YY. Apoptotic mechanism of pathogenic fungi: recent progress[J]. Academic Journal of Naval Medical University, 2008, 11: 1390-1394 (in Chinese).
    [97] YUN DG, LEE DG. Silibinin triggers yeast apoptosis related to mitochondrial Ca2+ influx in Candida albicans[J]. International Journal of Biochemistry & Cell Biology, 2016, 80: 1-9.
    [98] ABOU-GHALI M, STIBAN J. Regulation of ceramide channel formation and disassembly: Insights on the initiation of apoptosis[J]. Saudi Journal of Biological Sciences, 2015, 22(6): 760-772.
    [99] 余小婷, 张展鹏, 张宏. 新型抗真菌药物靶点研究进展[J]. 中国真菌学杂志, 2024, 19(1): 100-103, 108.YU XT, ZHANG ZP, ZHANG H. Research progress of new antifungal drug targets[J]. Chinese Journal of Mycology, 2024, 19(1): 100-103, 108 (in Chinese).
    [100] 初芍洁, 郑岩, 苏霜霜, 吴雪松, 闫闳, 陈少欣, 王宏博. 天然来源抗真菌药物的研究进展[J]. 药学学报, 2025, 60(1): 48-57.CHU SJ, ZHENG Y, SU SS, WU XS, YAN H, CHEN SX, WANG HB. Research progress of antifungal drugs from natural sources[J]. Acta Pharmaceutica Sinica, 2025, 60(1): 48-57 (in Chinese).
    [101] 徐贝雪, 刘泉波. 抗真菌药物临床应用及研究进展[J]. 现代医药卫生, 2022, 38(14): 2435-2440.XU BX, LIU QB. Clinical application and research progress of antifungal drugs[J]. Journal of Modern Medicine & Health, 2022, 38(14): 2435-2440 (in Chinese).
    [102] 宋晓婷, 赵作涛, 王爱平. 新型系统性抗真菌药物研究进展[J]. 中国真菌学杂志, 2023, 18(4): 370-376.SONG XT, ZHAO ZT, WANG AP. Research progress of novel systemic antifungal agents[J]. Chinese Journal of Mycology, 2023, 18(4): 370-376 (in Chinese).
    [103] 车斌, 谢为民. 抗真菌药物的分类及研究进展概述[J]. 海峡药学, 2008, 20(12): 111-114.CHE B, XIE WM. Classification and research progress of antifungal drugs[J]. Strait Pharmaceutical Journal, 2008, 20(12): 111-114 (in Chinese).
    [104] KAVAK??O?LU B, TARHAN L. Yeast caspase-dependent apoptosis in Saccharomyces cerevisiae BY4742 induced by antifungal and potential antitumor agent clotrimazole[J]. Archives of Microbiology, 2018, 200: 97-106.
    [105] YAAKOV D BEN, SHADKCHAN Y, ALBERT N, KONTOYIANNIS DP, OSHEROV N. The quinoline bromoquinol exhibits broad-spectrum antifungal activity and induces oxidative stress and apoptosis in Aspergillus fumigatus[J]. Journal of Antimicrobial Chemotherapy, 2017, 72(8): 2263-2272.
    [106] IYER KR, WHITESELL L, PORCO JA, HENKEL T, BROWN LE, ROBBINS N, COWEN LE. Translation inhibition by rocaglates activates a species-specific cell death program in the emerging fungal pathogen Candida auris[J]. mBio, 2020, 11(2): e03329-19.
    [107] PARK SC, KIM JY, KIM EJ, CHEONG GW, LEE Y, CHOI W, LEE JR, JANG MK. Hydrophilic linear peptide with histidine and lysine residues as a key factor affecting antifungal activity[J]. International Journal of Molecular Sciences, 2018, 19(12): 3781.
    [108] VEERANA M, KIM HC, MITRA S, ADHIKARI BC, PARK G, HUH S, KIM SJ, KIM Y. Analysis of the effects of Cu-MOFs on fungal cell inactivation[J]. RSC Advances, 2021, 11(2): 1057-1065.
    [109] HAFEEZ R, GUO J, AHMED T, IBRAHIM E, MA ALI, RIZWAN M, IJAZ M, AN Q, WANG Y, WANG J, LI B. Integrative transcriptomic and metabolomic analyses reveals the toxicity and mechanistic insights of bioformulated chitosan nanoparticles against Magnaporthe oryzae[J]. Chemosphere, 2024, 356: 141904.
    [110] CHAVES-LOPEZ C, NGUYEN HN, OLIVEIRA RC, NADRES ET, PAPARELLA A, RODRIGUES DF. A morphological, enzymatic and metabolic approach to elucidate apoptotic-like cell death in fungi exposed to h- and α-molybdenum trioxide nanoparticles[J]. Nanoscale, 2018, 10(44): 20702-20716.
    [111] 厉晓东, 卢建平, 李海娇, 林福呈. 丝状真菌的细胞凋亡[J]. 微生物学通报, 2011, 38(2): 242-249.LI XD, LU JP, LI HJ, LIN FC. Apoptosis in filamentous fungi[J]. Microbiology China, 2011, 38(2): 242-249 (in Chinese).
    [112] RAMESH S, ROY U, ROY S, RUDRAMURTHY SM. A promising antifungal lipopeptide from Bacillus subtilis: its characterization and insight into the mode of action[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 161.
    [113] WANG S, XU M, HAN Y, ZHOU Z. Exploring mechanisms of antifungal lipopeptide iturin A from Bacillus against Aspergillus niger[J]. Journal of Fungi, 2024, 10(3): 172.
    [114] CHEN MC, DENG YJ, ZHENG MX, XIAO RF, WANG X, LIU B, HE J, WANG JP. Lipopeptides from Bacillus velezensis induced apoptosis-like cell death in the pathogenic fungus Fusarium concentricum[J]. Journal of Applied Microbiology, 2024, 135(3): lxae048.
    [115] ROUTHU SR, RAGI NC, YEDLA P, SHAIK AB, VENKATARAMAN G, CHEEMALAMARRI C, CHITYALA GK, AMANCHY R, SRIPADI P, KAMAL A. Identification, characterization and evaluation of novel antifungal cyclic peptides from Neobacillus drentensis[J]. Bioorganic Chemistry, 2021, 115: 105180.
    [116] ZHANG Q, ZHANG MX, WANG YC, ZHEN TT, WANG RJ, WANG SH, DU Y, YU RR, YI P, SONG YF, ZHI YS, SONG X, GUO YP, HE ZD, CHEN T, LI CY. Natural compound 2-chloro-1,3-dimethoxy-5-methylbenzene, isolated from Hericium Erinaceus, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Journal of Agricultural and Food Chemistry, 2022, 70(21): 6444-6454.
    [117] BELLANGER AP, TATARA AM, SHIRAZI F, GEBREMARIAM T, ALBERT ND, LEWIS RE, IBRAHIM AS, KONTOYIANNIS DP. Statin concentrations below the minimum inhibitory concentration attenuate the virulence of Rhizopus oryzae[J]. The Journal of Infectious Diseases, 2016, 214(1): 114-121.
    [118] WANG JW, PING Y, LIU W, HE X, DU CM. Improvement of lipopeptide production in Bacillus subtilis HNDF2-3 by overexpression of the sfp and ComA genes[J]. Preparative Biochemistry & Biotechnology, 2024, 54(2): 184-192.
    [119] 王家雯. 链霉菌产生的脂肽对稻瘟病菌细胞自噬和凋亡的影响[D]. 哈尔滨: 黑龙江大学硕士学位论文, 2024.WANG JW. Effects of lipopeptides produced by Streptomyces on autophagy and apoptosis in blast cells[D]. Harbin: Master’s Thesis of Heilongjiang University, 2024 (in Chinese).
    [120] NASSIMI Z, TAHERI P, TARIGHI S. Farnesol altered morphogenesis and induced oxidative burst-related responses in Rhizoctonia solani AG1-IA[J]. Mycologia, 2019, 111(3): 359-370.
    [121] GONCALVES AP, CORDEIRO JM, MONTEIRO J, MUNOZ A, CORREIA-DE-Sá P, READ ND, VIDEIRA A. Activation of a TRP-like channel and intracellular Ca2+ dynamics during phospholipase-C-mediated cell death[J]. Journal of Cell Science, 2014, 127(17): 3817-3829.
    [122] GON?ALVES AP, CORDEIRO JM, MONTEIRO J, LUCCHI C, CORREIA-DE-Sá P, VIDEIRA A. Involvement of mitochondrial proteins in calcium signaling and cell death induced by staurosporine in Neurospora crassa[J]. Biochimica et Biophysica Acta, 2015, 1847(10): 1064-1074.
    [123] SANTOS FC, LOBO GM, FERNANDES AS, VIDEIRA A, DE ALMEIDA RFMD. Changes in the biophysical properties of the cell membrane are involved in the response of Neurospora crassa to staurosporine[J]. Frontiers in Physiology, 2018, 9: 1375.
    [124] GON?ALVES AP, HALL C, KOWBEL DJ, GLASS NL, VIDEIRA A. CZT-1 is a novel transcription factor controlling cell death and natural drug resistance in Neurospora crassa[J]. G3, 2014, 4(6): 1091-1102.
    [125] ZHONG XJ, LIU SR, ZHANG CW, ZHAO YS, SAYED A, RAJOKA MS, HE ZD, SONG X. Natural alkaloid coptisine, isolated from Coptis chinensis, inhibits fungal growth by disrupting membranes and triggering apoptosis[J]. Pharmacological Research - Modern Chinese Medicine, 2024, 10: 100383.
    [126] ITO S, IHARA T, TAMURA H, TANAKA S, IKEDA T, KAJIHARA H, DISSANAYAKE C, ABDEL-MOTAAL FF, EL-SAYED MA. α-tomatine, the major saponin in tomato, induces programmed cell death mediated by reactive oxygen species in the fungal pathogen Fusarium oxysporum[J]. FEBS Letters, 2007, 581(17): 3217-3222.
    [127] 施高翔, 严园园, 邵菁, 汪天明, 汪长中. 白念珠菌凋亡诱导研究进展[J]. 微生物学通报, 2014, 41(2): 376-383.SHI GX, YAN YY, SHAO J, WANG TM, WANG CZ. Advances in apoptosis induction in Candida albicans[J]. Microbiology China, 2014, 41(2): 376-383 (in Chinese).
    [128] ROCHA DA SILVA C, LGDAV Sá, DOS SANTOS EV, FERREIRA TL, COUTINHO TDNP, MOREIRA LEA, DE SOUSA CAMPOS R, DE ANDRADE CR, BARBOSA DA SILVA WM, DE Sá CARNEIRO I, SILVA J, DOS SANTOS HS, MARINHO ES, CAVALCANTI BC, DE MORAES MO, JúNIOR HVN, ANDRADE NETO JB. Evaluation of the antifungal effect of chlorogenic acid against strains of Candida spp. resistant to fluconazole: apoptosis induction and in silico analysis of the possible mechanisms of action[J]. Journal of Medical Microbiology, 2022, 71(5): 001526.
    [129] WANG J, YANG CL, HU XF, YAO XL, HAN L, WU XM, LI RY, WEN TC, MING L. Lauric acid induces apoptosis of rice sheath blight disease caused by Rhizoctonia solani by affecting fungal fatty acid metabolism and destroying the dynamic equilibrium of reactive oxygen species[J]. Journal of Fungi, 2022, 8(2): 153.
    [130] CHEN L, WANG Z, LIU L, QU S, MAO YY, PENG X, LI YX, TIAN J. Cinnamaldehyde inhibits Candida albicans growth by causing apoptosis and its treatment on vulvovaginal candidiasis and oropharyngeal candidiasis[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 9037-9055.
    [131] OLIVEIRA RC, CARVAJAL-MORENO M, CORREA B, ROJO-CALLEJAS F. Cellular, physiological and molecular approaches to investigate the antifungal and anti-aflatoxigenic effects of thyme essential oil on Aspergillus flavus[J]. Food Chemistry, 2020, 315: 126096.
    [132] TIAN H, QU S, WANG YZ, LU ZQ, ZHANG M, GAN YY, ZHANG P, TIAN J. Calcium and oxidative stress mediate perillaldehyde-induced apoptosis in Candida albicans[J]. Applied Microbiology and Biotechnology, 2017, 101(8): 3335-3345.
    [133] QU S, CHEN L, TIAN H, WANG Z, WANG F, WANG LQ, LI JT, JI H, XI LR, FENG ZJ, TIAN J, FENG ZZ. Effect of perillaldehyde on prophylaxis and treatment of vaginal candidiasis in a murine model[J]. Frontiers in Microbiology, 2019, 10: 1466.
    [134] LONE SA, WANI MY, FRU P, AHMAD A. Cellular apoptosis and necrosis as therapeutic targets for novel eugenol tosylate congeners against Candida albicans[J]. Scientific Reports, 2020, 10: 1191.
    [135] 杨懿, 宁玉梅. 白色念珠菌凋亡机制现代研究进展[J]. 西部中医药, 2012, 25(1): 106-109.YANG Y, NING YM. Advances of modern study on apoptosis mechanism of Candida albicans[J]. Western Journal of Traditional Chinese Medicine, 2012, 25(1): 106-109 (in Chinese).
    [136] LI X, CAI M. Inactivation of the cyclin-dependent kinase Cdc28 abrogates cell cycle arrest induced by DNA damage and disassembly of mitotic spindles in Saccharomyces cerevisiae[J]. Molecular and cellular biology, 1997, 17(5): 2723-2734.
    [137] 施高翔, 汪天明, 吴生兵, 汪云霞, 邵菁, 周美启, 汪长中. 艾叶挥发油诱导白念珠菌凋亡[J]. 中国中药杂志, 2017, 42(18): 3572-3577.SHI GX, WANG TM, WU SB, WANG YX, SHAO J, ZHOU MQ, WANG CZ. Activity of essential oil extracted from Artemisia argyi in inducing apoptosis of Candida albicans[J]. China Journal of Chinese Materia Medica, 2017, 42(18): 3572-3577 (in Chinese).
    [138] KHANI S, SEYEDJAVADI SS, HOSSEINI HM, GOUDARZI M, VALADBEIGI S, KHATAMI S, AJDARY S, ESLAMIFAR A, AMANI J, IMANI FOOLADI AA, RAZZAGHI-ABYANEH M. Effects of the antifungal peptide Skh-AMP1 derived from Satureja khuzistanica on cell membrane permeability, ROS production, and cell morphology of conidia and hyphae of Aspergillus fumigatus[J]. Peptides, 2020, 123: 170195.
    [139] TSANG W, WONG P, YANG HP, LI NF. Purpurin triggers caspase-independent apoptosis in Candida dubliniensis biofilms[J]. PLoS One, 2013, 8(12): e86032.
    [140] 汪长中, 韩宁, 徐振华, 程惠娟, 官妍, 云云, 王艳. 穿心莲内酯诱导白念珠菌生物膜分散细胞凋亡的研究[J]. 中国中药杂志, 2012, 37(3): 362-365.WANG CZ, HAN N, XU ZH, CHENG HJ, GUAN Y, YUN Y, WANG Y. Study on andrographolide-induced apoptosis of Candida albicans biofilm dispersion cells[J]. China Journal of Chinese Materia Medica, 2012, 37(3): 362-365 (in Chinese).
    [141] MEMARIANI H, MEMARIANI M. Anti-fungal properties and mechanisms of melittin[J]. Applied Microbiology and Biotechnology, 2020, 104(15): 6513-6526.
    [142] CHOI H, HWANG JS, LEE DG. Identification of a novel antimicrobial peptide, scolopendin 1, derived from centipede Scolopendra subspinipes mutilans and its antifungal mechanism[J]. Insect Molecular Biology, 2014, 23(6): 788-799.
    [143] 崔杨. 壳寡糖诱导交链孢菌细胞凋亡及毒素抑制的研究[D]. 天津: 天津科技大学硕士学位论文, 2015.CUI Y. The research that oligosaccharide induce the Alternaria and inhibit the toxins[D]. Tianjin: Master’s Thesis of Tianjin University of Science and Technology, 2015 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王柳茜,李珑捷,田庆庆,杜春梅. 真菌凋亡样细胞死亡和靶向药物的研究进展[J]. 微生物学报, 2025, 65(7): 2811-2829

复制
分享
文章指标
  • 点击次数:46
  • 下载次数: 77
  • HTML阅读次数: 54
  • 引用次数: 0
历史
  • 收稿日期:2024-12-19
  • 在线发布日期: 2025-07-04
文章二维码