微生物降解聚酯和聚碳酸酯类地膜的研究进展
作者:
作者单位:

1.西安建筑科技大学 环境与市政工程学院,陕西 西安;2.陕西省微生物研究所,陕西 西安;3.陕西省秦岭生态安全重点实验室,陕西 西安;4.山西农业大学 农业经济管理学院,山西 太原

作者简介:

王玉:论文资料检索、论文撰写;王琰:论文构思和设计、论文修订;聂红云:论文资料收集、审阅和修订;姚建民:论文构思、审阅和修订;李瑞珍:论文审阅;万一:论文审阅和修订。

基金项目:

国家重点研发计划(2018YFD1001000);陕西省秦岭生态安全重点实验室开放基金(QLES202501);中国科学院西安分院“西部之光”人才培养计划(2022S-1);山西省重点研发计划(202102140601011)


Advances in microbial degradation of polyester and polycarbonate-based mulch films
Author:
Affiliation:

1.School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an, Shaanxi, China;2.Shaanxi Institute of Microbiology, Xi’an, Shaanxi, China;3.Shaanxi Key Laboratory of Qinling Ecological Security, Xi’an, Shaanxi, China;4.College of Agricultural Economics and Management, Shanxi Agricultural University, Taiyuan, Shanxi, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2018YFD1001000), the Key Laboratory Project of Shaanxi Provincial of Qinling Ecological Security (QLES202501), the “Light of the West” Talent Cultivation Program of Xi’an Branch of the Chinese Academy of Sciences (2022S-1), and the Key Research and Development Program of Shanxi Province (202102140601011).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [105]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    生物可降解地膜(biodegradable mulch films, BDMs)以其广阔的应用前景和生态友好特性正逐步取代传统地膜,被视为解决“白色污染”问题最具潜力的途径。近年来,我国在生物可降解地膜的生产技术领域取得了显著成就,为其规模化生产和广泛应用奠定了坚实基础。尽管前景广阔,生物可降解地膜在降解过程中的复杂性、可控性以及其对生态环境的潜在影响仍是必须高度关注的重点。基于此,本文综合分析了5种极具应用前景的聚酯类和聚碳酸酯类生物可降解地膜,深入探讨了这些地膜的主要降解微生物及其降解机制,并对其土壤生态影响的研究现状进行了总结。本文为挖掘高效降解微生物资源、明确降解过程中的关键限速步骤、加强长周期生态效应研究提供了理论参考,为生物可降解地膜的大规模安全应用提供了新的解决思路和解决方案。

    Abstract:

    Biodegradable mulch films (BDMs), distinguished by their extensive application potential and ecological friendliness, are progressively supplanting traditional mulch film and considered as a highly promising approach to address “white pollution”. China has witnessed notable advancements in the production technology of BDMs in recent years, establishing a strong foundation for their large-scale manufacturing and widespread application. Despite the great prospects of BDMs, the complexity and controllability of their degradation process, alongside their potential impacts on the eco-environment, remain highly concerned. This paper comprehensively analyzes five promising polyester and polycarbonate-based BDMs and delves into the primary degrading microorganisms and their degradation mechanisms. Furthermore, this paper summarizes the current research regarding the impacts of BDMs on the soil environment. This review aims to lay a theoretical foundation for discovering efficient microbial degraders, pinpointing key rate-limiting steps in degradation, and enhancing long-term ecological effect studies, thus providing new perspectives and solutions for the large-scale and safe utilization of BDMs.

    参考文献
    [1] 李伟, 李明军, 赵恒章, 孙冬霞, 李树兵, 韩小伟. 地膜覆盖种植技术及残膜污染防控[J]. 农业工程, 2024, 14(6): 65-71.LI W, LI MJ, ZHAO HZ, SUN DX, LI SB, HAN XW. Plastic film covering planting technology and residual film pollution prevention and control[J]. Agricultural Engineering, 2024, 14(6): 65-71 (in Chinese).
    [2] 赵佳佳. 新中国成立以来种子事业的发展历程与经验启示[J]. 当代中国史研究, 2021, 28(6): 47-65, 158.ZHAO JJ. The developmental course, experience and enlightenment of the seed industry since the founding of new China[J]. Contemporary China History Studies, 2021, 28(6): 47-65, 158 (in Chinese).
    [3] 李真, 秦丽娟, 何文清, 刘勤, 刘恩科, 严昌荣. 应用可降解地膜, 推动农业清洁生产[J]. 蔬菜, 2017(8): 1-7.LI Z, QIN LJ, HE WQ, LIU Q, LIU EK, YAN CR. Application of degradable plastic film to promote agricultural cleaner production[J]. Vegetables, 2017(8): 1-7 (in Chinese).
    [4] 严昌荣, 何文清, 薛颖昊, 刘恩科, 刘勤. 生物降解地膜应用与地膜残留污染防控[J]. 生物工程学报, 2016, 32(6): 748-760.YAN CR, HE WQ, XUE YH, LIU EK, LIU Q. Application of biodegradable plastic film to reduce plastic film residual pollution in Chinese agriculture[J]. Chinese Journal of Biotechnology, 2016, 32(6): 748-760 (in Chinese).
    [5] 张美, 刘金铜, 付同刚, 高会. 农田残留地膜累积生态效应研究进展[J]. 生态毒理学报, 2023, 18(3): 223-237.ZHANG M, LIU JT, FU TG, GAO H. Review on cumulative ecological effects of mulching film residues in farmland[J]. Asian Journal of Ecotoxicology, 2023, 18(3): 223-237 (in Chinese).
    [6] 朱文悦, 吴景贵, 王蒙. 残留地膜对土壤物理性质及玉米根系生长的影响[J]. 环境科学与技术, 2019, 42(12): 33-38.ZHU WY, WU JG, WANG M. Effects of residual mulch on soil physical properties and root growth of maize[J]. Environmental Science & Technology, 2019, 42(12): 33-38 (in Chinese).
    [7] 严昌荣, 侯靖岳, 徐运赟, 洪志杰, 马志刚, 崔吉晓. 发达国家地膜应用及回收处理[J]. 农业环境科学学报, 2024, 43(6): 1288-1293.YAN CR, HOU JY, XU YY, HONG ZJ, MA ZG, CUI JX. Plastic mulch film application and management: experience from developed countries[J]. Journal of Agro-Environment Science, 2024, 43(6): 1288-1293 (in Chinese).
    [8] YU YX, VELANDIA M, HAYES DG, DEVETTER LW, MILES CA, FLURY M. Chapter Three: Biodegradable Plastics as Alternatives for Polyethylene Mulch Films, Advances in Agronomy[M]. United States: Elsevier Science & Technology, 2024: 121-192.
    [9] 毕昕媛, 姚建民. 聚碳酸亚丙酯生物降解渗水地膜的研制及性能分析[J]. 中国塑料, 2021, 35(10): 21-25.BI XY, YAO JM. Preparation and performance analysis of PPC-based biodegradable water-permeable mulch film[J]. China Plastics, 2021, 35(10): 21-25 (in Chinese).
    [10] 黄瑶珠, 高旭华, 谢东, 陈明周, 张文桦. 生物降解地膜田间应用降解效果及对后茬早稻产量的影响[J]. 现代农业科技, 2018(23): 1-3.HUANG YZ, GAO XH, XIE D, CHEN MZ, ZHANG WH. Degradation effects of biodegradable mulch film applied in field and its effect on yield of succeeding crop early rice[J]. Modern Agricultural Science and Technology, 2018(23): 1-3 (in Chinese).
    [11] 张会平, 谢东, 李发勇, 陈明周. 生物降解地膜及其应用研究进展[J]. 甘蔗糖业, 2018, 47(3): 60-64.ZHANG HP, XIE D, LI FY, CHEN MZ. Research progress of biodegradable plastic film and its application[J]. Sugarcane and Canesugar, 2018, 47(3): 60-64 (in Chinese).
    [12] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 全生物降解农用地面覆盖薄膜: GB/T 35795—2017[S]. 北京: 中国标准出版社, 2017.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Biodegradable mulching film for agricultural uses: GB/T 35795—2017[S]. Beijing: Standards Press of China, 2017 (in Chinese).
    [13] BRANNIGAN RP, DOVE AP. Synthesis, properties and biomedical applications of hydrolytically degradable materials based on aliphatic polyesters and polycarbonates[J]. Biomaterials Science, 2017, 5(1): 9-21.
    [14] ALHARBI N, GUTHOLD M. Mechanical properties of hydrated electrospun polycaprolactone (PCL) nanofibers[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2024, 155: 106564.
    [15] INKINEN S, HAKKARAINEN M, ALBERTSSON AC, S?DERG?RD A. From lactic acid to poly(lactic acid) (PLA): characterization and analysis of PLA and its precursors[J]. Biomacromolecules, 2011, 12(3): 523-532.
    [16] 陈国强, 刘心怡, 刘絮. 聚羟基脂肪酸酯在组织工程中的应用[J]. 同济大学学报(自然科学版), 2023, 51(11): 1657-1662.CHEN GQ, LIU XY, LIU X. Application of polyhydroxyalkanoates in tissue engineering[J]. Journal of Tongji University (Natural Science Edition), 2023, 51(11): 1657-1662 (in Chinese).
    [17] 杨志海, 谢众, 任鑫祺, 庄启昕. 生物可降解PHB材料的研究[J]. 中国塑料, 2023, 37(4): 95-103.YANG ZH, XIE Z, REN XQ, ZHUANG QX. Research progress in biodegradable PHB materials[J]. China Plastics, 2023, 37(4): 95-103 (in Chinese).
    [18] MANDRAGUTTI T, JARSO TS, GODI S, BEGUM SS, BEULAH K. Physicochemical characterization of polyhydroxybutyrate (PHB) produced by the rare halophile Brachybacterium paraconglomeratum MTCC 13074[J]. Microbial Cell Factories, 2024, 23(1): 59.
    [19] RAHMAYANTI W, NAGARAJAN S, SU CC, NURKHAMIDAH S, LEE LT, WOO EM. Nano-assembly architectures and structural iridescence in poly(3-hydroxybutyric acid-co-3-hydroxyvaleric)[J]. ACS Applied Polymer Materials, 2024, 6(11): 6229-6240.
    [20] 李鑫, 李想, 杨浦. PBAT基降解薄膜的阻隔性能[J]. 塑料, 2024, 53(6): 102-105.LI X, LI X, YANG P. Barrier properties of PBAT-based degradable films[J]. Plastics, 2024, 53(6): 102-105 (in Chinese).
    [21] 王美珍, 张玉, 孟兵, 邓晶晶. PBAT的加工性能与降解性能[J]. 工程塑料应用, 2023, 51(5): 68-74.WANG MZ, ZHANG Y, MENG B, DENG JJ. Processing performance and degradability of PBAT[J]. Engineering Plastics Application, 2023, 51(5): 68-74 (in Chinese).
    [22] TROFIMCHUK ES, CHERNOV IV, TOMS RV, RZHEVSKIY SA, ASACHENKO AF, PLUTALOVA AV, SHANDRYUK GA, CHERNIKOVA EV, BELETSKAYA IP. Novel simple approach for production of elastic poly(propylene carbonate)[J]. Polymers, 2024, 16(23): 3248.
    [23] 金琰, 蔡凡凡, 王立功, 宋超, 金文雄, 孙俊芳, 刘广青, 陈畅. 生物可降解塑料在不同环境条件下的降解研究进展[J]. 生物工程学报, 2022, 38(5): 1784-1808.JIN Y, CAI FF, WANG LG, SONG C, JIN WX, SUN JF, LIU GQ, CHEN C. Advance in the degradation of biodegradable plastics in different environments[J]. Chinese Journal of Biotechnology, 2022, 38(5): 1784-1808 (in Chinese).
    [24] TYAGI P, AGATE S, VELEV OD, LUCIA L, PAL L. A Critical review of the performance and soil biodegradability profiles of biobased natural and chemically synthesized polymers in industrial applications[J]. Environmental Science & Technology, 2022, 56(4): 2071-2095.
    [25] 张莉娟, 陈洁, 敖瑞雪, 赵秀兰. 土壤中生物降解塑料的降解过程及其对土壤动物的影响[J]. 环境科学, 2025, 46(2): 1145-1154.ZHANG LJ, CHEN J, AO RX, ZHAO XL. Degradation processes of biodegradable plastics in soil and their effects on soil animals[J]. Environmental Science, 2025, 46(2): 1145-1154 (in Chinese).
    [26] HOSNI AS AL, PITTMAN JK, ROBSON GD. Microbial degradation of four biodegradable polymers in soil and compost demonstrating polycaprolactone as an ideal compostable plastic[J]. Waste Management, 2019, 97: 105-114.
    [27] SOULENTHONE P, SUZUKI M, TACHIBANA Y, FURUKORI M, SAITO T, KAWAMURA R, BANKOLE PO, KASUYA KI. Halopseudomonas sp. MFKK-1: a marine-derived bacterium capable of degrading poly(butylene succinate-co-adipate), poly(ε-caprolactone), and poly(butylene adipate-co-terephthalate) in marine ecosystems[J]. Polymer Degradation and Stability, 2025, 232: 111161.
    [28] HAIDER TP, V?LKER C, KRAMM J, LANDFESTER K, WURM FR. Plastics of the future The impact of biodegradable polymers on the environment and on society[J]. Angewandte Chemie (International Ed), 2019, 58(1): 50-62.
    [29] 贾骏, 段嫄嫄, 周建学, 张少锋. 聚己内酯电纺纤维支架材料对骨髓基质细胞增殖及分化的影响[J]. 第四军医大学学报, 2007(13): 1153-1155.JIA J, DUAN YY, ZHOU JX, ZHANG SF. Effect of polycaprolactone-based electrospun nanofibrous framework on proliferation and differentiation of bone marrow stromal cells in vitro[J]. Journal of the Fourth Military Medical University, 2007(13): 1153-1155 (in Chinese).
    [30] MA QF, SHI K, SU TT, WANG ZY. Biodegradation of polycaprolactone (PCL) with different molecular weights by Candida antarctica lipase[J]. Journal of Polymers and the Environment, 2020, 28(11): 2947-2955.
    [31] FENG SS, YUE Y, CHEN JF, ZHOU J, LI YW, ZHANG QZ. Biodegradation mechanism of polycaprolactone by a novel esterase MGS0156: a QM/MM approach[J]. Environmental Science Processes & Impacts, 2020, 22(12): 2332-2344.
    [32] 于丹, 付晓, 李凡, 陈珊. 一株可降解聚己内酯的细菌菌株选育及其生物降解过程[J]. 吉林农业大学学报, 2017, 39(5): 539-543.YU D, FU X, LI F, CHEN S. Breeding and biodegradation of a PCL degradable bacterial strain[J]. Journal of Jilin Agricultural University, 2017, 39(5): 539-543 (in Chinese).
    [33] TSENG M, HOANG KC, YANG MK, YANG SF, CHU WS. Polyester-degrading thermophilic Actinomycetes isolated from different environment in Taiwan, China[J]. Biodegradation, 2007, 18(5): 579-583.
    [34] IKURA Y, KUDO T. Isolation of a microorganism capable of degrading poly-(l-lactide)[J]. The Journal of General and Applied Microbiology, 1999, 45(5): 247-251.
    [35] PRANAMUDA H, TOKIWA Y, TANAKA H. Polylactide degradation by an Amycolatopsis sp.[J]. Applied and Environmental Microbiology, 1997, 63(4): 1637-1640.
    [36] NAKAMURA K, TOMITA T, ABE N, KAMIO Y. Purification and Characterization of an extracellular poly(l-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1[J]. Applied and Environmental Microbiology, 2001, 67(1): 345-353.
    [37] LI F, WANG S, LIU WF, CHEN GJ. Purification and characterization of poly(l-lactic acid)-degrading enzymes from Amycolatopsis orientalis ssp. orientalis[J]. FEMS Microbiology Letters, 2008, 282(1): 52-58.
    [38] WILLIAMS DF. Enzymic hydrolysis of polylactic acid[J]. Engineering in Medicine, 1981, 10(1): 5-7.
    [39] ODA Y, YONETSU A, URAKAMI T, TONOMURA K. Degradation of Polylactide by Commercial Proteases[J]. Journal of Polymers and the Environment, 2000, 8(1): 29-32.
    [40] MATSUDA E, ABE N, TAMAKAWA H, KANEKO J, KAMIO Y. Gene cloning and molecular characterization of an extracellular poly(l-lactic acid) depolymerase from Amycolatopsis sp. Strain K104-1[J]. Journal of Bacteriology, 2005, 187(21): 7333-7340.
    [41] KHANDARE SD, CHAUDHARY DR, JHA B. Marine bacterial biodegradation of low-density polyethylene (LDPE) plastic[J]. Biodegradation, 2021, 32(2): 127-143.
    [42] BUBPACHAT T, SOMBATSOMPOP N, PRAPAGDEE B. Isolation and role of polylactic acid-degrading bacteria on degrading enzymes productions and PLA biodegradability at mesophilic conditions[J]. Polymer Degradation and Stability, 2018, 152: 75-85.
    [43] AKUTSU Y, NAKAJIMA-KAMBE T, NOMURA N, NAKAHARA T. Purification and properties of a polyester polyurethane-degrading enzyme from Comamonas acidovorans TB-35[J]. Applied and Environmental Microbiology, 1998, 64(1): 62-67.
    [44] AKUTSU-SHIGENO Y, TEERAPHATPORNCHAI T, TEAMTISONG K, NOMURA N, UCHIYAMA H, NAKAHARA T, NAKAJIMA-KAMBE T. Cloning and sequencing of a poly(dl-lactic acid) depolymerase gene from Paenibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli[J]. Applied and Environmental Microbiology, 2003, 69(5): 2498-2504.
    [45] WATANABE T, SUZUKI K, SHINOZAKI Y, YARIMIZU T, YOSHIDA S, SAMESHIMA-YAMASHITA Y, KOITABASHI M, KITAMOTO HK. A UV-induced mutant of Cryptococcus flavus GB-1 with increased production of a biodegradable plastic-degrading enzyme[J]. Process Biochemistry, 2015, 50(11): 1718-1724.
    [46] SHALEM A, YEHEZKELI O, FISHMAN A. Enzymatic degradation of polylactic acid (PLA)[J]. Applied Microbiology and Biotechnology, 2024, 108(1): 413.
    [47] 张宗豪, 何宏韬, 张旭, 郑爽, 郑陶然, 刘絮, 陈国强. 塑料的降解与可降解塑料: 聚羟基脂肪酸酯的合成[J]. 生物工程学报, 2023, 39(5): 2053-2069.ZHANG ZH, HE HT, ZHANG X, ZHENG S, ZHENG TR, LIU X, CHEN GQ. The degradation of plastics and the production of polyhydroxyalkanoates (PHA)[J]. Chinese Journal of Biotechnology, 2023, 39(5): 2053-2069 (in Chinese).
    [48] PéREZ-ARAUZ AO, AGUILAR-RABIELA AE, VARGAS-TORRES A, RODRíGUEZ-HERNáNDEZ AI, CHAVARRíA-HERNáNDEZ N, VERGARA-PORRAS B, LóPEZ-CUELLAR MR. Production and characterization of biodegradable films of a novel polyhydroxyalkanoate (PHA) synthesized from peanut oil[J]. Food Packaging and Shelf Life, 2019, 20: 100297.
    [49] CHHETRI G, KIM HJ, JEON JM, YOON JJ. Isolation of Massilia species capable of degrading poly(3-hydroxybutyrate) isolated from eggplant (Solanum melongena L.) field[J]. Chemosphere, 2024, 368: 143776.
    [50] ABE H, DOI Y. Structural effects on enzymatic degradabilities for poly[(R)-3-hydroxybutyric acid] and its copolymers[J]. International Journal of Biological Macromolecules, 1999, 25(1/2/3): 185-192.
    [51] LUSTY CJ, DOUDOROFF M. Poly-beta-hydroxybutyrate depolymerases of Pseudomonas lemoignei[J]. Proceedings of the National Academy of Sciences of the United States of America, 1966, 56(3): 960-965.
    [52] MUKAI K, YAMADA K, DOI Y. Efficient hydrolysis of polyhydroxyalkanoates by Pseudomonas stutzeri YM1414 isolated from lake water[J]. Polymer Degradation and Stability, 1994, 43(3): 319-327.
    [53] TANIO T, FUKUI T, SHIRAKURA Y, SAITO T, TOMITA K, KAIHO T, MASAMUNE S. An extracellular poly(3-hydroxybutyrate) depolymerase from Alcaligenes faecalis[J]. European Journal of Biochemistry, 1982, 124(1): 71-77.
    [54] MUKAI K, YAMADA K, DOI Y. Enzymatic degradation of poly(hydroxyalkanoates) by a marine bacterium[J]. Polymer Degradation and Stability, 1993, 41(1): 85-91.
    [55] KASUYA K, INOUE Y, TANAKA T, AKEHATA T, IWATA T, FUKUI T, DOI Y. Biochemical and molecular characterization of the polyhydroxybutyrate depolymerase of Comamonas acidovorans YM1609, isolated from freshwater[J]. Applied and Environmental Microbiology, 1997, 63(12): 4844-4852.
    [56] CHEK MF, KIM SY, MORI T, ARSAD H, SAMIAN MR, SUDESH K, HAKOSHIMA T. Structure of polyhydroxyalkanoate (PHA) synthase PhaC from Chromobacterium sp. USM2, producing biodegradable plastics[J]. Scientific Reports, 2017, 7: 5312.
    [57] 侯丽君. 不同类型塑料降解菌的筛选及降解机理初探[D]. 杨凌: 西北农林科技大学硕士学位论文, 2020.HOU LJ. Screening of different types of plastic degrading bacteria and preliminary study on degradation mechanism[D]. Yangling: Master’s Thesis of Northwest A&F University, 2020 (in Chinese).
    [58] BANDOPADHYAY S, LIQUET Y GONZáLEZ JE, HENDERSON KB, ANUNCIADO MB, HAYES DG, DEBRUYN JM. Soil microbial communities associated with biodegradable plastic mulch films[J]. Frontiers in Microbiology, 2020, 11: 587074.
    [59] 刘佳茜, 侯丽君, 刘婷婷, 王沛媛, 高祥, 林雁冰. PBAT地膜降解菌的筛选及其降解特性研究[J]. 农业环境科学学报, 2021, 40(1): 129-136.LIU JX, HOU LJ, LIU TT, WANG PY, GAO X, LIN YB. Isolation of PBAT plastic-degrading bacteria and their degradation characteristics[J]. Journal of Agro-Environment Science, 2021, 40(1): 129-136 (in Chinese).
    [60] SUN WX, ZHANG YZ, ZHANG H, WU H, LIU Q, YANG F, HOU MZ, Qi YJ, ZHANG WB. Exploitation of Enterobacter hormaechei for biodegradation of multiple plastics[J]. Science of the Total Environment, 2024, 907: 167708.
    [61] JIA XB, ZHAO K, ZHAO J, LIN CQ, ZHANG H, CHEN LJ, CHEN JC, FANG Y. Degradation of poly(butylene adipate-co-terephthalate) films by Thermobifida fusca FXJ-1 isolated from compost[J]. Journal of Hazardous Materials, 2023, 441: 129958.
    [62] 张敏, 孟庆阳, 刁晓倩, 翁云宣. PLA/PBAT共混物的降解性能研究[J]. 中国塑料, 2016, 30(8): 79-86.ZHANG M, MENG QY, DIAO XQ, WENG YX. Biodegradation behavior of PLA/PBAT blends[J]. China Plastics, 2016, 30(8): 79-86 (in Chinese).
    [63] QIU YZ, WANG P, ZHANG LX, LI CM, LU JX, REN LH. Enhancing biodegradation efficiency of PLA/PBAT-ST20 bioplastic using thermophilic bacteria co-culture system: new insight from structural characterization, enzyme activity, and metabolic pathways[J]. Journal of Hazardous Materials, 2024, 477: 135426.
    [64] ZHANG YL, GAO W, MO AY, JIANG J, HE DF. Degradation of polylactic acid/polybutylene adipate films in different ratios and the response of bacterial community in soil environments[J]. Environmental Pollution, 2022, 313: 120167.
    [65] HAN YJ, TENG Y, WANG X, REN WJ, WANG XM, LUO YM, ZHANG HM, CHRISTIE P. Soil type driven change in microbial community affects poly(butylene adipate-co-terephthalate) degradation potential[J]. Environmental Science & Technology, 2021, 55(8): 4648-4657.
    [66] DRESLER K, van den HEUVEL J, MüLLER RJ, DECKWER WD. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli[J]. Bioprocess and Biosystems Engineering, 2006, 29(3): 169-183.
    [67] GOUDA MK, KLEEBERG I, VAN DEN HEUVEL J, MüLLER RJ, DECKWER WD. Production of a polyester degrading extracellular hydrolase from Thermomonospora fusca[J]. Biotechnology Progress, 2002, 18(5): 927-934.
    [68] WALLACE PW, HAERNVALL K, RIBITSCH D, ZITZENBACHER S, SCHITTMAYER M, STEINKELLNER G, GRUBER K, GUEBITZ GM, BIRNER-GRUENBERGER R. PpEst is a novel PBAT degrading polyesterase identified by proteomic screening of Pseudomonas pseudoalcaligenes[J]. Applied Microbiology and Biotechnology, 2017, 101(6): 2291-2303.
    [69] YANG Y, MIN J, XUE T, JIANG PC, LIU X, PENG RM, HUANG JW, QU YY, LI X, MA N, TSAI FC, DAI LH, ZHANG Q, LIU YL, CHEN CC, GUO RT. Complete bio-degradation of poly(butylene adipate-co-terephthalate) via engineered cutinases[J]. Nature Communications, 2023, 14(1): 1645.
    [70] 陶剑, 胡丹, 刘莉, 孔梅梅, 宋存江, 王淑芳. PLA, PPC和PHBV共混物的热性能、力学性能和生物降解性能研究[J]. 离子交换与吸附, 2010, 26(1): 59-67.TAO J, HU D, LIU L, KONG MM, SONG CJ, WANG SF. Thermal characteristics, mechanical properties and degradability of PLA/PPC/PHBV blends[J]. Ion Exchange and Adsorption, 2010, 26(1): 59-67 (in Chinese).
    [71] DU LC, MENG YZ, WANG SJ, TJONG SC. Synthesis and degradation behavior of poly(propylene carbonate) derived from carbon dioxide and propylene oxide[J]. Journal of Applied Polymer Science, 2004, 92(3): 1840-1846.
    [72] LIANG J, ZHANG JF, YAO ZM, LUO SY, TIAN L, TIAN CJ, SUN Y. Preliminary findings of polypropylene carbonate (PPC) plastic film mulching effects on the soil microbial community[J]. Agriculture, 2022, 12(3): 406.
    [73] 张加凡. PPC地膜对土壤群落的影响及促降解菌株的筛选[D]. 长春: 吉林农业大学, 2022.ZHANG JF. Effects of PPC film mulching on soil community and screening of pro-degrading strains[D]. Changchun: Jilin Agricultural University, 2022 (in Chinese).
    [74] 孙雨, 张加凡, 田春杰. 一种高效降解PPC地膜的方法: CN114570751A[P]. 2022-06-03.
    [75] TSUBOI S, HOSHINO YT, YAMAMOTO-TAMURA K, UENISHI H, OMAE N, MORITA T, SAMESHIMA-YAMASHITA Y, KITAMOTO H, KISHIMOTO-MO AW. Enhanced biodegradable polyester film degradation in soil by sequential cooperation of yeast-derived esterase and microbial community[J]. Environmental Science and Pollution Research International, 2024, 31(9): 13941-13953.
    [76] BONIFER KS, WEN XF, HASIM S, PHILLIPS EK, DUNLAP RN, GANN ER, DEBRUYN JM, REYNOLDS TB. Bacillus pumilus B12 degrades polylactic acid and degradation is affected by changing nutrient conditions[J]. Frontiers in Microbiology, 2019, 10: 2548.
    [77] PANYACHANAKUL T, KITPREECHAVANICH V, TOKUYAMA S, KRAJANGSANG S. Poly(dl-lactide)-degrading enzyme production by immobilized Actinomadura keratinilytica strain T16-1 in a 5-L fermenter under various fermentation processes[J]. Electronic Journal of Biotechnology, 2017, 30: 71-76.
    [78] OLIVEIRA J, ALMEIDA PL, SOBRAL RG, LOUREN?O ND, GAUDêNCIO SP. Marine-derived Actinomycetes: biodegradation of plastics and formation of PHA bioplastics: a circular bioeconomy approach[J]. Marine Drugs, 2022, 20(12): 760.
    [79] CHATHALINGATH N, KINGSLY JS, GUNASEKAR A. Biosynthesis and biodegradation of poly(3-hydroxybutyrate) from Priestia flexa: a promising mangrove halophyte towards the development of sustainable eco-friendly bioplastics[J]. Microbiological Research, 2023, 267: 127270.
    [80] WANG YJ, HU T, ZHANG WT, LIN JW, WANG ZY, LYU SX, TONG HB. Biodegradation of polylactic acid by a mesophilic bacteria Bacillus safensis[J]. Chemosphere, 2023, 318: 137991.
    [81] HUANG QY, HIYAMA M, KABE T, KIMURA S, IWATA T. Enzymatic self-biodegradation of poly(l-lactic acid) films by embedded heat-treated and immobilized proteinase K[J]. Biomacromolecules, 2020, 21(8): 3301-3307.
    [82] SABAPATHY PC, DEVARAJ S, PARTHIPAN A, KATHIRVEL P. Polyhydroxyalkanoate production from statistically optimized media using rice mill effluent as sustainable substrate with an analysis on the biopolymer’s degradation potential[J]. International Journal of Biological Macromolecules, 2019, 126: 977-986.
    [83] CHAN CM, VANDI LJ, PRATT S, HALLEY P, RICHARDSON D, WERKER A, LAYCOCK B. Insights into the biodegradation of PHA/wood composites: micro- and macroscopic changes[J]. Sustainable Materials and Technologies, 2019, 21: e00099.
    [84] SONG ZW, ZHAO L, BI JG, TANG QY, WANG GD, LI YX. Classification of degradable mulch films and their promotional effects and limitations on agricultural production[J]. Agriculture, 2024, 14(8): 1235.
    [85] 张敬勋. 聚碳酸亚丙酯在膜制品中的应用研究[D]. 青岛: 青岛科技大学硕士学位论文, 2017.ZHANG JX. Study on the application of polypropylene carbonate in film products[D]. Qingdao: Master’s Thesis of Qingdao University of Science & Technology, 2017 (in Chinese).
    [86] SKARIYACHAN S, TASKEEN N, KISHORE AP, KRISHNA BV. Recent advances in plastic degradation: from microbial consortia-based methods to data sciences and computational biology driven approaches[J]. Journal of Hazardous Materials, 2022, 426: 128086.
    [87] SANDER M. Biodegradation of polymeric mulch films in agricultural soils: concepts, knowledge gaps, and future research directions[J]. Environmental Science & Technology, 2019, 53(5): 2304-2315.
    [88] JU ZC, DU XF, FENG K, LI SZ, GU SS, JIN DC, DENG Y. The succession of bacterial community attached on biodegradable plastic mulches during the degradation in soil[J]. Frontiers in Microbiology, 2021, 12: 785737.
    [89] ROMANO I, VENTORINO V, SCHETTINO M, MAGARACI G, PEPE O. Changes in soil microbial communities induced by biodegradable and polyethylene mulch residues under three different temperatures[J]. Microbial Ecology, 2024, 87(1): 101.
    [90] XIONG XB, WANG PY, ZHAO ZY, WANG J, LIU ST, MEI FJ, WANG WY, WANG YB, FANG XW, ZHU Y, ZHANG JL, WANG N, JIN JM, TAO HY, XIONG YC. Can biodegradable film replace polyethylene film to obtain similar mulching effects on soil functions and maize productivity in irrigation region A three-year experimental appraisal[J]. Journal of Cleaner Production, 2025, 486: 144473.
    [91] HUO YX, DIJKSTRA FA, POSSELL M, SINGH B. Mineralisation and priming effects of a biodegradable plastic mulch film in soils: influence of soil type, temperature and plastic particle size[J]. Soil Biology and Biochemistry, 2024, 189: 109257.
    [92] PISCHEDDA A, TOSIN M, DEGLI-INNOCENTI F. Biodegradation of plastics in soil: the effect of temperature[J]. Polymer Degradation and Stability, 2019, 170: 109017.
    [93] DI MOLA I, VENTORINO V, COZZOLINO E, OTTAIANO L, ROMANO I. Biodegradable mulching vs traditional polyethylene film for sustainable solarization: chemical properties and microbial community response to soil management[J]. Applied Soil Ecology, 2021, 163: 103921.
    [94] 闫靖华, 费政军. 降解地膜对棉花农艺性状及土壤养分的影响[J]. 农业科技通讯, 2019(5): 133-135, 137.YAN JH, FEI ZJ. Effects of degradable plastic film on agronomic traits of cotton and soil nutrients[J]. Bulletin of Agricultural Science and Technology, 2019(5): 133-135, 137 (in Chinese).
    [95] 魏宏磊. 冷凉地区不同地膜覆盖对玉米田土壤温度、养分和酶活性的影响[D]. 长春: 吉林农业大学硕士学位论文, 2021.WEI HL. Effects of different plastic film mulching on soil temperature, nutrient and enzyme activity in corn field in cold region[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2021 (in Chinese).
    [96] 王卫星, 杨娟, 杨斌. 大豆覆盖PBAT全生物降解地膜种植效果[J]. 农业工程技术, 2024, 44(1): 18-19, 31.WANG WX, YANG J, YANG B. Planting effect of soybean covered with PBAT biodegradable plastic film[J]. Agricultural Engineering Technology, 2024, 44(1): 18-19, 31 (in Chinese).
    [97] 赵军, 李金海. PBAT型全生物降解地膜对棉花产量及土壤理化性质的影响[J]. 中国沼气, 2022, 40(3): 43-49.ZHAO J, LI JH. Effects of PBAT type biodegradable plastic film on plant yield and soil physical and chemical properties[J]. China Biogas, 2022, 40(3): 43-49 (in Chinese).
    [98] WANG A, CHANG QT, CHEN CS, ZHONG XQ, YUAN KX, YANG MH, WU W. Degradation characteristics of biodegradable film and its effects on soil nutrients in tillage layer, growth and development of taro and yield formation[J]. AMB Express, 2022, 12(1): 81.
    [99] 齐英, 董彰, 田尧甫, 冯志新, 江艳, 李静, 熊瑞冰, 张军帅. 可降解地膜覆盖对花生产量影响及土壤残膜存留效应研究[J]. 农业工程技术, 2024, 44(21): 43-46.
    [100] PALSIKOWSKI PA, ROBERTO MM, SOMMAGGIO LRD, SOUZA PMS, MORALES AR, MARIN-MORALES MA. Ecotoxicity Evaluation of the biodegradable polymers PLA, PBAT and its blends using Allium cepa as test organism[J]. Journal of Polymers and the Environment, 2018, 26(3): 938-945.
    [101] MUROI F, TACHIBANA Y, KOBAYASHI Y, SAKURAI T, KASUYA KI. Influences of poly(butylene adipate-co-terephthalate) on soil microbiota and plant growth[J]. Polymer Degradation and Stability, 2016, 129: 338-346.
    [102] SATTI SM, SHAH AA. Polyester-based biodegradable plastics: an approach towards sustainable development[J]. Letters in Applied Microbiology, 2020, 70(6): 413-430.
    [103] BALESTRI E, MENICAGLI V, LIGORINI V, FULIGNATI S, RASPOLLI GALLETTI AM, LARDICCI C. Phytotoxicity assessment of conventional and biodegradable plastic bags using seed germination test[J]. Ecological Indicators, 2019, 102: 569-580.
    [104] SCH?PFER L, MENZEL R, SCHNEPF U, RUESS L, MARHAN S, BRüMMER F, PAGEL H, KANDELER E. Microplastics effects on reproduction and body length of the soil-dwelling nematode Caenorhabditis elegans[J]. Frontiers in Environmental Science, 2020, 8: 41.
    [105] SUN YZ, DUAN CX, CAO N, DING CF, HUANG Y, WANG J. Biodegradable and conventional microplastics exhibit distinct microbiome, functionality, and metabolome changes in soil[J]. Journal of Hazardous Materials, 2022, 424: 127282.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王玉,王琰,聂红云,姚建民,李瑞珍,万一. 微生物降解聚酯和聚碳酸酯类地膜的研究进展[J]. 微生物学报, 2025, 65(6): 2365-2381

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 136
  • HTML阅读次数: 109
  • 引用次数: 0
历史
  • 收稿日期:2025-01-15
  • 在线发布日期: 2025-06-05
文章二维码