CsgD对沙门氏菌生物膜形成的调控作用及其影响因素的研究进展
作者:
作者单位:

1.郑州大学 公共卫生学院,河南 郑州;2.解放军疾病预防控制中心,北京

作者简介:

黄颖:整体构思与设计,负责收集和整理相关文献,参与文献筛选和数据整理工作,并对文献中的相关数据进行综合分析;彭玉倩:参与相关文献的筛选与整理,在论点构建过程中提供重要支持;王琪:负责图表设计和排版,协助进行校对和语言润色;邱少富:提供专业建议,协助审稿和修改,确保内容的科学性和准确性;向莹:提供专业建议,协助审稿和修改,确保内容的科学性和准确性。

基金项目:

国家自然科学基金(82202538, 82173580)


Research progress in the mechanism and influencing factors of CsgD regulating the biofilm formation of Salmonella
Author:
Affiliation:

1.College of Public Health, Zhengzhou University, Zhengzhou, Henan, China;2.The Chinese PLA Center for Disease Control and Prevention, Beijing, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (82202538, 82173580).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    CsgD作为沙门氏菌生物膜形成的核心调控蛋白,通过调控生物膜的关键组成成分——纤维素和卷曲菌毛的表达,进而影响生物膜的形成。近年来,科学界在剖析沙门氏菌CsgD蛋白的调控网络及其复杂影响因素方面取得了较大进展。本文聚焦于CsgD在沙门氏菌生物膜形成过程中的调控功能,系统梳理了环境因素如何影响CsgD的功能表达,并全面分析了多种调控因子对CsgD的多层次调控作用,旨在加深对沙门氏菌生物膜形成机制及其调控网络的理解,并为后续研究提供可能的方向。

    Abstract:

    CsgD, a core regulatory protein for the biofilm formation of Salmonella, exerts its function by regulating the expression of key components (curli and cellulose) of the biofilm. In recent years, significant progress has been achieved in analyzing the regulatory network of Salmonella CsgD protein and its complex influencing factors. Focusing on the regulatory function of CsgD in the biofilm formation of Salmonella, this paper systematically introduces how environmental factors affect the CsgD expression and comprehensively analyzes the multi-level regulatory effects of various regulatory factors on CsgD, aiming to enrich our understanding about the mechanism and regulatory network of the biofilm formation of Salmonella and provide possible research directions.

    参考文献
    [1] DARWIN KH, MILLER VL. Molecular basis of the interaction of Salmonella with the intestinal mucosa[J]. Clinical Microbiology Reviews, 1999, 12(3): 405-428.
    [2] 李月华, 赵格, 赵建梅, 刘俊辉, 王君玮. 欧盟、美国及国内畜禽屠宰环节沙门氏菌监控现状[J]. 中国动物检疫, 2021, 38(6): 69-75.LI YH, ZHAO G, ZHAO JM, LIU JH, WANG JW. Discussion on the monitoring status of Salmonella during livestock and poultry slaughtering in EU, the United Sstate and China[J]. China Animal Health Inspection, 2021, 38(6): 69-75 (in Chinese).
    [3] KIRK MD, PIRES SM, BLACK RE, CAIPO M, CRUMP JA, DEVLEESSCHAUWER B, D?PFER D, FAZIL A, FISCHER-WALKER CL, HALD T, HALL AJ, KEDDY KH, LAKE RJ, LANATA CF, TORGERSON PR, HAVELAAR AH, ANGULO FJ. World health organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: a data synthesis[J]. PLoS Medicine, 2015, 12(12): e1001921.
    [4] WANG ZN, HUANG CH, LIU YH, CHEN JQ, YIN R, JIA CH, KANG XM, ZHOU X, LIAO SH, JIN XY, FENG MY, JIANG ZJ, SONG Y, ZHOU HY, YAO YC, TENG L, WANG BK, LI Y, YUE M. Salmonellosis outbreak archive in China: data collection and assembly[J]. Scientific Data, 2024, 11(1): 244.
    [5] ZHANG YW, LIU KK, ZHANG ZB, TIAN S, LIU ML, LI XG, HAN YR, ZHU KP, LIU HB, YANG CJ, LIU HB, DU XY, WANG Q, WANG H, YANG MJ, WANG LG, SONG HB, YANG HY, XIANG Y, QIU SF. A severe gastroenteritis outbreak of Salmonella enterica serovar enteritidis linked to contaminated egg fried rice, China, 2021[J]. Frontiers in Microbiology, 2021, 12: 779749.
    [6] LI HQ, LI WW, DAI Y, JIANG YY, LIANG JH, WANG ST, ZHUANG MQ, HUANG Z, XU LZ, XUE B, LIU JK, HAN HH, PIRES SM, FU P, GUO YC. Characteristics of settings and etiologic agents of foodborne disease outbreaks—China, 2020[J]. China CDC Weekly, 2021, 3(42): 889-893.
    [7] MacKENZIE KD, PALMER MB, K?STER WL, WHITE AP. Examining the link between biofilm formation and the ability of pathogenic Salmonella strains to colonize multiple host species[J]. Frontiers in Veterinary Science, 2017, 4: 138.
    [8] WALDNER LL, MacKENZIE KD, K?STER W, WHITE AP. From exit to entry: long-term survival and transmission of Salmonella[J]. Pathogens, 2012, 1(2): 128-155.
    [9] GERSTEL U, R?MLING U. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium[J]. Environmental Microbiology, 2001, 3(10): 638-648.
    [10] ZOGAJ X, NIMTZ M, ROHDE M, BOKRANZ W, R?MLING U. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix[J]. Molecular Microbiology, 2001, 39(6): 1452-1463.
    [11] UHLICH GA, KEEN JE, ELDER RO. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7[J]. Applied and Environmental Microbiology, 2001, 67(5): 2367-2370.
    [12] R?MLING U, SIERRALTA WD, ERIKSSON K, NORMARK S. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter[J]. Molecular Microbiology, 1998, 28(2): 249-264.
    [13] GRANTCHAROVA N, PETERS V, MONTEIRO C, ZAKIKHANY K, R?MLING U. Bistable expression of CsgD in biofilm development of Salmonella enterica serovar typhimurium[J]. Journal of Bacteriology, 2010, 192(2): 456-466.
    [14] MA ZM, LI NA, NING CC, LIU YC, GUO Y, JI CH, ZHU XZ, MENG QL, XIA XZ, ZHANG XX, CAI XP, CAI KJ, JUN Q. A novel LysR family factor STM0859 is associated with the responses of Salmonella typhimurium to environmental stress and biofilm formation[J]. Polish Journal of Microbiology, 2021, 70(4): 479-487.
    [15] YAN CH, CHEN FH, YANG YL, ZHAN YF, HERMAN RA, GONG LC, SHENG S, WANG J. The transcription factor CsgD contributes to engineered Escherichia coli resistance by regulating biofilm formation and stress responses[J]. International Journal of Molecular Sciences, 2023, 24(18): 13681.
    [16] LATASA C, ROUX A, TOLEDO-ARANA A, GHIGO JM, GAMAZO C, PENADéS JR, LASA I. BapA, a large secreted protein required for biofilm formation and host colonization of Salmonella enterica serovar enteritidis[J]. Molecular Microbiology, 2005, 58(5): 1322-1339.
    [17] SOLANO C, GARCíA B, VALLE J, BERASAIN C, GHIGO JM, GAMAZO C, LASA I. Genetic analysis of Salmonella enteritidis biofilm formation: critical role of cellulose[J]. Molecular Microbiology, 2002, 43(3): 793-808.
    [18] BIAN Z, YAN ZQ, HANSSON GK, THORéN P, NORMARK S. Activation of inducible nitric oxide synthase/nitric oxide by curli fibers leads to a fall in blood pressure during systemic Escherichia coli infection in mice[J]. The Journal of Infectious Diseases, 2001, 183(4): 612-619.
    [19] CHEN H, YAN CH, ZHAN YF, GENG LT, ZHU LL, GONG LC, WANG J. Boron derivatives accelerate biofilm formation of recombinant Escherichia coli via increasing quorum sensing system autoinducer-2 activity[J]. International Journal of Molecular Sciences, 2022, 23(15): 8059.
    [20] WHITE AP, GIBSON DL, KIM W, KAY WW, SURETTE MG. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella[J]. Journal of Bacteriology, 2006, 188(9): 3219-3227.
    [21] CUCARELLA C, SOLANO C, VALLE J, AMORENA B, LASA I, PENADéS JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation[J]. Journal of Bacteriology, 2001, 183(9): 2888-2896.
    [22] 张若楠, 徐诺, 陆游, 冯政, 陈素娟, 秦涛, 阴银燕, 彭大新. 生物被膜形成关键基因csgD对鼠伤寒沙门菌黏附侵袭上皮细胞能力的影响[J]. 畜牧与兽医, 2022, 54(11): 65-71.ZHANG RN, XU N, LU Y, FENG Z, CHEN SJ, QIN T, YIN YY, PENG DX. Effects of the key gene csgD related biofilm formation on the abilities of Salmonella typhimurium of adhesion to and invasion into epithelial cells[J]. Animal Husbandry & Veterinary Medicine, 2022, 54(11): 65-71 (in Chinese).
    [23] 陈欢, 耿丽恬, 黄婷, 宫璐婵, 吴福安, 王俊. 转录调控因子CsgD强化重组大肠埃希菌生物被膜催化转化桑树黄酮苷的研究[J]. 蚕业科学, 2023, 49(6): 533-543.CHEN H, GENG LT, HUANG T, GONG LC, WU FA, WANG J. Study on enhancing conversion of mulberry flavonoid glycoside catalyzed by accelerating recombinant Escherichia coli biofilm formation via transcriptional regulator CsgD[J]. Acta Sericologica Sinica, 2023, 49(6): 533-543 (in Chinese).
    [24] BARNHART MM, CHAPMAN MR. Curli biogenesis and function[J]. Annual Review of Microbiology, 2006, 60: 131-147.
    [25] ROBINSON LS, ASHMAN EM, HULTGREN SJ, CHAPMAN MR. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein[J]. Molecular Microbiology, 2006, 59(3): 870-881.
    [26] EVANS ML, CHORELL E, TAYLOR JD, ?DEN J, G?THESON A, LI F, KOCH M, SEFER L, MATTHEWS SJ, WITTUNG-STAFSHEDE P, ALMQVIST F, CHAPMAN MR. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation[J]. Molecular Cell, 2015, 57(3): 445-455.
    [27] LIU Z, NIU H, WU SY, HUANG R. CsgD regulatory network in a bacterial trait-altering biofilm formation[J]. Emerging Microbes & Infections, 2014, 3(1): e1.
    [28] ZORRAQUINO V, GARCíA B, LATASA C, ECHEVERZ M, TOLEDO-ARANA A, VALLE J, LASA I, SOLANO C. Coordinated cyclic-di-GMP repression of Salmonella motility through YcgR and cellulose[J]. Journal of Bacteriology, 2013, 195(3): 417-428.
    [29] AHMAD I, CIMDINS A, BESKE T, R?MLING U. Detailed analysis of c-di-GMP mediated regulation of csgD expression in Salmonella typhimurium[J]. BMC Microbiology, 2017, 17(1): 27.
    [30] ZOGAJ X, BOKRANZ W, NIMTZ M, R?MLING U. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract[J]. Infection and Immunity, 2003, 71(7): 4151-4158.
    [31] GERSTEL U, PARK C, R?MLING U. Complex regulation of csgD promoter activity by global regulatory proteins[J]. Molecular Microbiology, 2003, 49(3): 639-654.
    [32] MILLER AL, PASTERNAK JA, MEDEIROS NJ, NICASTRO LK, TURSI SA, HANSEN EG, KROCHAK R, SOKARIBO AS, MacKENZIE KD, PALMER MB, HERMAN DJ, WATSON NL, ZHANG Y, WILSON HL, WILSON RP, WHITE AP, TüKEL ?. In vivo synthesis of bacterial amyloid curli contributes to joint inflammation during S. typhimurium infection[J]. PLoS Pathogens, 2020, 16(7): e1008591.
    [33] JACKSON DW, SIMECKA JW, ROMEO T. Catabolite repression of Escherichia coli biofilm formation[J]. Journal of Bacteriology, 2002, 184(12): 3406-3410.
    [34] ARNQVIST A, OLSéN A, NORMARK S. Sigma S-dependent growth-phase induction of the csgBA promoter in Escherichia coli can be achieved in vivo by sigma 70 in the absence of the nucleoid-associated protein H-NS[J]. Molecular Microbiology, 1994, 13(6): 1021-1032.
    [35] 吴建菊, 冯守帅. 蓝光调控生物膜关键基因提高大肠杆菌耐酸性[J]. 食品与发酵工业, 2024, 50(15): 1-7.WU JJ, FENG SS. Enhancing the acid resistance of Escherichia coli by blue light-regulated biofilm key genes[J]. Food and Fermentation Industries, 2024, 50(15): 1-7 (in Chinese).
    [36] JUBELIN G, VIANNEY A, BELOIN C, GHIGO JM, LAZZARONI JC, LEJEUNE P, DOREL C. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli[J]. Journal of Bacteriology, 2005, 187(6): 2038-2049.
    [37] COLLINSON SK, EM?DY L, MüLLER KH, TRUST TJ, KAY WW. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis[J]. Journal of Bacteriology, 1991, 173(15): 4773-4781.
    [38] PASQUA M, COLUCCIA M, EGUCHI Y, OKAJIMA T, GROSSI M, PROSSEDA G, UTSUMI R, COLONNA B. Roles of two-component signal transduction systems in Shigella virulence[J]. Biomolecules, 2022, 12(9): 1321.
    [39] GOH EB. Discovering new regulon members of the Escherichia coli EnvZ/OmpR two-component signal transduction system[D]. Vancouver: University of British Columbia, 2008.
    [40] SOKARIBO AS, HANSEN EG, McCARTHY M, DESIN TS, WALDNER LL, MacKENZIE KD, MUTWIRI GJr, HERMAN NJ, HERMAN DJ, WANG YJ, WHITE AP. Metabolic activation of CsgD in the regulation of Salmonella biofilms[J]. Microorganisms, 2020, 8(7): 964.
    [41] SIRYAPORN A, GOULIAN M. Cross-talk suppression between the CpxA-CpxR and EnvZ-OmpR two-component systems in E. coli[J]. Molecular Microbiology, 2008, 70(2): 494-506.
    [42] MIKA F, HENGGE R. Small RNAs in the control of RpoS, CsgD, and biofilm architecture of Escherichia coli[J]. RNA Biology, 2014, 11(5): 494-507.
    [43] HAMILTON S, BONGAERTS RJM, MULHOLLAND F, COCHRANE B, PORTER J, LUCCHINI S, LAPPIN-SCOTT HM, HINTON JCD. The transcriptional programme of Salmonella enterica serovar typhimurium reveals a key role for tryptophan metabolism in biofilms[J]. BMC Genomics, 2009, 10: 599.
    [44] OGASAWARA H, YAMADA K, KORI A, YAMAMOTO K, ISHIHAMA A. Regulation of the Escherichia coli csgD promoter: interplay between five transcription factors[J]. Microbiology, 2010, 156(Pt 8): 2470-2483.
    [45] MONTEIRO C, FANG X, AHMAD I, GOMELSKY M, R?MLING U. Regulation of biofilm components in Salmonella enterica serovar typhimurium by lytic transglycosylases involved in cell wall turnover[J]. Journal of Bacteriology, 2011, 193(23): 6443-6451.
    [46] SON JE, PARK SH, CHOI U, LEE CR. Lytic transglycosylase repertoire diversity enables intrinsic antibiotic resistance and daughter cell separation in Escherichia coli under acidic stress[J]. Antimicrobial Agents and Chemotherapy, 2024, 68(7): e0037224.
    [47] GERSTEL U, KOLB A, R?MLING U. Regulatory components at the csgD promoter: additional roles for OmpR and integration host factor and role of the 5′ untranslated region[J]. FEMS Microbiology Letters, 2006, 261(1): 109-117.
    [48] GERSTEL U, R?MLING U. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium[J]. Research in Microbiology, 2003, 154(10): 659-667.
    [49] DORMAN CJ. H-NS: a universal regulator for a dynamic genome[J]. Nature Reviews Microbiology, 2004, 2(5): 391-400.
    [50] 王洁, 董新波, 高丽晓, 周冬生, 殷喆, 张义全. H-NS蛋白对副溶血弧菌hcp1的转录调控[J]. 微生物学报, 2016, 56(1): 143-149.WANG J, DONG XB, GAO LX, ZHOUT D, YIN Z, ZHANG YQ. Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus[J]. Acta Microbiologica Sinica, 2016, 56(1): 143-149.
    [51] KIM EA, BLAIR DF. Function of the histone-like protein H-NS in motility of Escherichia coli: multiple regulatory roles rather than direct action at the flagellar motor[J]. Journal of Bacteriology, 2015, 197(19): 3110-3120.
    [52] R?MLING U, BIAN Z, HAMMAR M, SIERRALTA WD, NORMARK S. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation[J]. Journal of Bacteriology, 1998, 180(3): 722-731.
    [53] XIANG Y, ZHU KP, MIN KY, ZHANG YW, LIU JF, LIU KK, HAN YR, LI XG, DU XY, WANG X, HUANG Y, LI XP, PENG YQ, YANG CJ, LIU HB, LIU HB, LI XY, WANG H, WANG C, WANG Q, et al. Characterization of a Salmonella enterica serovar typhimurium lineage with rough colony morphology and multidrug resistance[J]. Nature Communications, 2024, 15(1): 6123.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄颖,彭玉倩,王琪,邱少富,向莹. CsgD对沙门氏菌生物膜形成的调控作用及其影响因素的研究进展[J]. 微生物学报, 2025, 65(3): 956-967

复制
分享
文章指标
  • 点击次数:96
  • 下载次数: 127
  • HTML阅读次数: 84
  • 引用次数: 0
历史
  • 收稿日期:2024-09-08
  • 在线发布日期: 2025-03-10
文章二维码