酿酒酵母RNA聚合酶特异亚基的研究进展
作者:
作者单位:

河北农业大学 生命科学学院,河北 保定

作者简介:

杨欣怡:文献的检索与归纳,撰写全文及修改;李盼:全文指导及修改;曾凡力:获取基金,全文指导及修改。

基金项目:

河北省杰出青年自然科学基金(C2023204155)


Research progress in specific subunits of RNA polymerase III in Saccharomyces cerevisiae
Author:
Affiliation:

College of Life Sciences, Hebei Agricultural University, Baoding, Hebei, China

Fund Project:

This work was supported by Natural Science Foundation of Hebei Province for Outstanding Youth (C2023204155).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [84]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    酿酒酵母(Saccharomyces cerevisiae)是研究真核生物细胞生化机制的经典模式生物。真核生物中主要存在3种RNA聚合酶(RNA polymerase),分别为RNA聚合酶Ⅰ (RNAPI)、RNA聚合酶Ⅱ (RNAPII)和RNA聚合酶Ⅲ (RNAPIII)。其中,RNA聚合酶Ⅲ的结构最为复杂,包含17个亚基,主要负责合成转运RNA (transfer RNA, tRNA)。相较于包含12个亚基的RNAPII,RNAPⅢ含有一组独特的异三聚体Rpc82/31/34,以及一对与RNAPI同源的异二聚体Rpc53/37。本文综述了RNAPIII中异三聚体和异二聚体的结构与功能,为深入研究酿酒酵母RNAPⅢ特异亚基修饰机制和组装过程提供了理论依据。

    Abstract:

    Saccharomyces cerevisiae is a classic model organism for studying the biochemical mechanisms of eukaryotic cells. Eukaryotes have three main types of RNA polymerases: RNA polymerase I (RNAPI), RNA polymerase II (RNAPII), and RNA polymerase III (RNAPIII). Among them, RNAPIII has the most complex structure, consisting of 17 subunits, and it is primarily responsible for the synthesis of transfer RNA (tRNA). Compared with RNAPII consisting of 12 subunits, RNAPIII contains a unique heterotrimer Rpc82/31/34 and a heterodimer Rpc53/37 which is homologous to the counterpart of RNAPI. This paper reviews the structures and functions of the specific heterotrimer and heterodimer in RNAPIII, aiming to lay a theoretical foundation for further studies on the modification mechanisms and assembly processes of specific subunits of RNAPIII in S. cerevisiae.

    参考文献
    [1] ROEDER RG, RUTTER WJ. Multiple forms of DNA-dependent RNA polymerase in eukaryotic organisms[J]. Nature, 1969, 224(5216): 234-237.
    [2] YOUNG RA. RNA polymerase II[J]. Annual Review of Biochemistry, 1991, 60: 689-715.
    [3] HAAG JR, PIKAARD CS. Multisubunit RNA polymerases IV and V: purveyors of non-coding RNA for plant gene silencing[J]. Nature Reviews Molecular Cell Biology, 2011, 12(8): 483-492.
    [4] WHITE RJ. Transcription by RNA polymerase III: more complex than we thought[J]. Nature Reviews Genetics, 2011, 12(7): 459-463.
    [5] VANNINI A, CRAMER P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries[J]. Molecular Cell, 2012, 45(4): 439-446.
    [6] B?RNER T, ALEYNIKOVA AY, ZUBO YO, KUSNETSOV VV. Chloroplast RNA polymerases: role in chloroplast biogenesis[J]. Biochimica Et Biophysica Acta, 2015, 1847(9): 761-769.
    [7] KHATTER H, VORL?NDER MK, MüLLER CW. RNA polymerase I and III: similar yet unique[J]. Current Opinion in Structural Biology, 2017, 47: 88-94.
    [8] BARSHAD G, MAROM S, COHEN T, MISHMAR D. Mitochondrial DNA transcription and its regulation: an evolutionary perspective[J]. Trends in Genetics, 2018, 34(9): 682-692.
    [9] HILLEN HS, TEMIAKOV D, CRAMER P. Structural basis of mitochondrial transcription[J]. Nature Structural and Molecular Biology, 2018, 25(9): 754-765.
    [10] BASU U, BOSTWICK AM, DAS K, DITTENHAFER-REED KE, PATEL SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation[J]. Journal of Biological Chemistry, 2020, 295(52): 18406-18425.
    [11] SENTENAC A. Eukaryotic RNA polymerases[J]. CRC Critical Reviews in Biochemistry, 1985, 18(1): 31-90.
    [12] CRAMER P. Multisubunit RNA polymerases[J]. Current Opinion in Structural Biology, 2002, 12(1): 89-97.
    [13] WILD T, CRAMER P. Biogenesis of multisubunit RNA polymerases[J]. Trends in Biochemical Sciences, 2012, 37(3): 99-105.
    [14] WEI YY, CHEN HT. Functions of the TFIIE-related tandem winged-helix domain of Rpc34 in RNA polymerase III initiation and elongation[J]. Molecular and Cellular Biology, 2018, 38(4): e00105-17.
    [15] SCHIER AC, TAATJES DJ. Structure and mechanism of the RNA polymerase II transcription machinery[J]. Genes and Development, 2020, 34(7/8): 465-488.
    [16] ISHIGURO A, KASSAVETIS GA, GEIDUSCHEK EP. Essential roles of Bdp1, a subunit of RNA polymerase III initiation factor TFIIIB, in transcription and tRNA processing[J]. Molecular and Cellular Biology, 2002, 22(10): 3264-3275.
    [17] KASSAVETIS GA, BARDELEBEN C, KUMAR A, RAMIREZ E, GEIDUSCHEK EP. Domains of the Brf component of RNA polymerase III transcription factor IIIB (TFIIIB): functions in assembly of TFIIIB-DNA complexes and recruitment of RNA polymerase to the promoter[J]. Molecular and Cellular Biology, 1997, 17(9): 5299-5306.
    [18] KASSAVETIS GA, DRISCOLL R, GEIDUSCHEK EP. Mapping the principal interaction site of the Brf1 and Bdp1 subunits of Saccharomyces cerevisiae TFIIIB[J]. Journal of Biological Chemistry, 2006, 281(20): 14321-14329.
    [19] KUMAR A, GROVE A, KASSAVETIS GA, GEIDUSCHEK EP. Transcription factor IIIB: the architecture of its DNA complex, and its roles in initiation of transcription by RNA polymerase III[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63: 121-129.
    [20] KUMAR A, KASSAVETIS GA, GEIDUSCHEK EP, HAMBALKO M, BRENT CJ. Functional dissection of the B" component of RNA polymerase III transcription factor IIIB: a scaffolding protein with multiple roles in assembly and initiation of transcription[J]. Molecular and Cellular Biology, 1997, 17(4): 1868-1880.
    [21] LIBRIZZI MD, BRENOWITZ M, WILLIS IM. The TATA element and its context affect the cooperative interaction of TATA-binding protein with the TFIIB-related factor, TFIIIB70[J]. Journal of Biological Chemistry, 1998, 273(8): 4563-4568.
    [22] SA?DA F. Structural characterization of the interaction between TFIIIB components Bdp1 and Brf1[J]. Biochemistry, 2008, 47(50): 13197-13206.
    [23] GOUGE J, GUTHERTZ N, KRAMM K, DERGAI O, ABASCAL-PALACIOS G, SATIA K, COUSIN P, HERNANDEZ N, GROHMANN D, VANNINI A. Molecular mechanisms of Bdp1 in TFIIIB assembly and RNA polymerase III transcription initiation[J]. Nature Communications, 2017, 8(1): 130.
    [24] KASSAVETIS GA, KUMAR A, LETTS GA, GEIDUSCHEK EP. A post-recruitment function for the RNA polymerase III transcription-initiation factor IIIB[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(16): 9196-9201.
    [25] KASSAVETIS GA, KUMAR A, RAMIREZ E, GEIDUSCHEK EP. Functional and structural organization of Brf, the TFIIB-related component of the RNA polymerase III transcription initiation complex[J]. Molecular and Cellular Biology, 1998, 18(9): 5587-5599.
    [26] HAHN S, ROBERTS S. The zinc ribbon domains of the general transcription factors TFIIB and Brf: conserved functional surfaces but different roles in transcription initiation[J]. Genes and Development, 2000, 14(6): 719-730.
    [27] WU CC, LIN YC, CHEN HT. The TFIIF-like Rpc37/53 dimer lies at the center of a protein network to connect TFIIIC, Bdp1, and the RNA polymerase III active center[J]. Molecular and Cellular Biology, 2011, 31(13): 2715-2728.
    [28] CHéDIN S, FERRI ML, PEYROCHE G, ANDRAU JC, JOURDAIN S, LEFEBVRE O, WERNER M, CARLES C, SENTENAC A. The yeast RNA polymerase III transcription machinery: a paradigm for eukaryotic gene activation[J]. Cold Spring Harbor Symposia on Quantitative Biology, 1998, 63: 381-389.
    [29] GEIDUSCHEK EP, KASSAVETIS GA. The RNA polymerase III transcription apparatus[J]. Journal of Molecular Biology, 2001, 310(1): 1-26.
    [30] SCHRAMM L, HERNANDEZ N. Recruitment of RNA polymerase III to its target promoters[J]. Genes and Development, 2002, 16(20): 2593-2620.
    [31] CHURCHMAN LS, WEISSMAN JS. Nascent transcript sequencing visualizes transcription at nucleotide resolution[J]. Nature, 2011, 469(7330): 368-373.
    [32] GREIVE SJ, von HIPPEL PH. Thinking quantitatively about transcriptional regulation[J]. Nature Reviews Molecular Cell Biology, 2005, 6(3): 221-232.
    [33] KHOO SK, WU CC, LIN YC, CHEN HT. The TFIIE-related Rpc82 subunit of RNA polymerase III interacts with the TFIIB-related transcription factor Brf1 and the polymerase cleft for transcription initiation[J]. Nucleic Acids Research, 2018, 46(3): 1157-1166.
    [34] CARTER R, DROUIN G. The increase in the number of subunits in eukaryotic RNA polymerase III relative to RNA polymerase II is due to the permanent recruitment of general transcription factors[J]. Molecular Biology and Evolution, 2010, 27(5): 1035-1043.
    [35] PERSINGER J, BARTHOLOMEW B. Mapping the contacts of yeast TFIIIB and RNA polymerase III at various distances from the major groove of DNA by DNA photoaffinity labeling[J]. Journal of Biological Chemistry, 1996, 271(51): 33039-33046.
    [36] BRUN I, SENTENAC A, WERNER M. Dual role of the C34 subunit of RNA polymerase III in transcription initiation[J]. EMBO Journal, 1997, 16(18): 5730-5741.
    [37] STETTLER S, MARIOTTE S, RIVA M, SENTENAC A, THURIAUX P. An essential and specific subunit of RNA polymerase III (C) is encoded by gene RPC34 in Saccharomyces cerevisiae[J]. Journal of Biological Chemistry, 1992, 267(30): 21390-21395.
    [38] KHOO SK, WU CC, LIN YC, LEE JC, CHEN HT. Mapping the protein interaction network for TFIIB-related factor Brf1 in the RNA polymerase III preinitiation complex[J]. Molecular and Cellular Biology, 2014, 34(3): 551-559.
    [39] ANDRAU JC, SENTENAC A, WERNER M. Mutagenesis of yeast TFIIIB70 reveals C-terminal residues critical for interaction with TBP and C34[J]. Journal of Molecular Biology, 1999, 288(4): 511-520.
    [40] THUILLIER V, STETTLER S, SENTENAC A, THURIAUX P, WERNER M. A mutation in the C31 subunit of Saccharomyces cerevisiae RNA polymerase III affects transcription initiation[J]. EMBO Journal, 1995, 14(2): 351-359.
    [41] DAVIS RB, LIKHITE N, JACKSON CA, LIU T, YU MC. Robust repression of tRNA gene transcription during stress requires protein arginine methylation[J]. Life Science Alliance, 2019, 2(3): e201800261.
    [42] UPADHYA R, LEE J, WILLIS IM. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription[J]. Molecular Cell, 2002, 10(6): 1489-1494.
    [43] BOGUTA M. Maf1, a general negative regulator of RNA polymerase III in yeast[J]. Biochimica et Biophysica Acta, 2013, 1829(3/4): 376-384.
    [44] WILLIS IM, MOIR RD. Signaling to and from the RNA polymerase III transcription and processing machinery[J]. Annual Review of Biochemistry, 2018, 87: 75-100.
    [45] VANNINI A, RINGEL R, KUSSER AG, BERNINGHAUSEN O, KASSAVETIS GA, CRAMER P. Molecular basis of RNA polymerase III transcription repression by Maf1[J]. Cell, 2010, 143(1): 59-70.
    [46] SHEKHAR AC, SUN YE, KHOO SK, LIN YC, MALAU EB, CHANG WH, CHEN HT. Site-directed biochemical analyses reveal that the switchable C-terminus of Rpc31 contributes to RNA polymerase III transcription initiation[J]. Nucleic Acids Research, 2023, 51(9): 4223-4236.
    [47] MOSRIN C, RIVA M, BELTRAME M, CASSAR E, SENTENAC A, THURIAUX P. The RPC31 gene of Saccharomyces cerevisiae encodes a subunit of RNA polymerase C (III) with an acidic tail[J]. Molecular and Cellular Biology, 1990, 10(9): 4737-4743.
    [48] LOEWITH R, HALL MN. Target of rapamycin (TOR) in nutrient signaling and growth control[J]. Genetics, 2011, 189(4): 1177-1201.
    [49] MOIR RD, WILLIS IM. Regulation of pol III transcription by nutrient and stress signaling pathways[J]. Biochimica et Biophysica Acta, 2013, 1829(3/4): 361-375.
    [50] LEE J, MOIR RD, WILLIS IM. Regulation of RNA polymerase III transcription involves SCH9-dependent and SCH9-independent branches of the target of rapamycin (TOR) pathway[J]. Journal of Biological Chemistry, 2009, 284(19): 12604-12608.
    [51] WILSON VG. SUMO Regulation of Cellular Processes[M]. New York: Springer, 2009: 1-12.
    [52] CHANG HM, YEH ETH. SUMO: from bench to bedside[J]. Physiological Reviews, 2020, 100(4): 1599-1619.
    [53] CHYMKOWITCH P, AURéLIE NP, ENSERINK JM. SUMO-regulated transcription: challenging the dogma[J]. BioEssays, 2015, 37(10): 1095-1105.
    [54] HENDRIKS IA, D’SOUZA RC, YANG B, VERLAAN-DE VRIES M, MANN M, VERTEGAAL AC. Uncovering global SUMOylation signaling networks in a site-specific manner[J]. Nature Structural and Molecular Biology, 2014, 21(10): 927-936.
    [55] CHYMKOWITCH P, NGUéA PA, AANES H, ROBERTSON J, KLUNGLAND A, ENSERINK JM. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(5): 1039-1044.
    [56] CHYMKOWITCH P, ENSERINK JM. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits[J]. Biochimica et Biophysica Acta, 2018, 1861(4): 310-319.
    [57] LEE J, MOIR RD, WILLIS IM. Differential phosphorylation of RNA polymerase III and the initiation factor TFIIIB in Saccharomyces cerevisiae[J]. PLoS One, 2015, 10(5): e0127225.
    [58] SOULARD A, CREMONESI A, MOES S, SCHüTZ F, JEN? P, HALL MN. The rapamycin-sensitive phosphoproteome reveals that TOR controls protein kinase A toward some but not all substrates[J]. Molecular Biology of the Cell, 2010, 21(19): 3475-3486.
    [59] ARIMBASSERI AG, MARAIA RJ. Mechanism of transcription termination by RNA polymerase III utilizes a non-template strand sequence-specific signal element[J]. Molecular Cell, 2015, 58(6): 1124-1132.
    [60] DVIR A, CONAWAY JW, CONAWAY RC. Mechanism of transcription initiation and promoter escape by RNA polymerase II[J]. Current Opinion in Genetics and Development, 2001, 11(2): 209-214.
    [61] KEENE RG, LUSE DS. Initially transcribed sequences strongly affect the extent of abortive initiation by RNA polymerase II[J]. Journal of Biological Chemistry, 1999, 274(17): 11526-11534.
    [62] KIREEVA ML, KOMISSAROVA N, WAUGH DS, KASHLEV M. The 8-nucleotide-long RNA: DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex[J]. Journal of Biological Chemistry, 2000, 275(9): 6530-6536.
    [63] SIDORENKOV I, KOMISSAROVA N, KASHLEV M. Crucial role of the RNA: DNA hybrid in the processivity of transcription[J]. Molecular Cell, 1998, 2(1): 55-64.
    [64] GILMOUR DS, FAN R. Derailing the locomotive: transcription termination[J]. Journal of Biological Chemistry, 2008, 283(2): 661-664.
    [65] McCRACKEN S, FONG N, YANKULOV K, BALLANTYNE S, PAN G, GREENBLATT J, PATTERSON SD, WICKENS M, BENTLEY DL. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription[J]. Nature, 1997, 385(6614): 357-361.
    [66] DICHTL B, BLANK D, SADOWSKI M, HüBNER W, WEISER S, KELLER W. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination[J]. EMBO Journal, 2002, 21(15): 4125-4135.
    [67] ZHANG ZQ, FU JH, GILMOUR DS. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11[J]. Genes and Development, 2005, 19(13): 1572-1580.
    [68] ALéN C, KENT NA, JONES HS, O’SULLIVAN J, ARANDA A, PROUDFOOT NJ. A role for chromatin remodeling in transcriptional termination by RNA polymerase II[J]. Molecular Cell, 2002, 10(6): 1441-1452.
    [69] DYE MJ, PROUDFOOT NJ. Multiple transcript cleavage precedes polymerase release in termination by RNA polymerase II[J]. Cell, 2001, 105(5): 669-681.
    [70] LANDRIEUX E, ALIC N, DUCROT C, ACKER J, RIVA M, CARLES C. A subcomplex of RNA polymerase III subunits involved in transcription termination and reinitiation[J]. EMBO Journal, 2006, 25(1): 118-128.
    [71] EVERS R, GRUMMT I. Molecular coevolution of mammalian ribosomal gene terminator sequences and the transcription termination factor TTF-I[J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(13): 5827-5831.
    [72] JANSA P, GRUMMT I. Mechanism of transcription termination: PTRF interacts with the largest subunit of RNA polymerase I and dissociates paused transcription complexes from yeast and mouse[J]. Molecular and General Genetics, 1999, 262(3): 508-514.
    [73] COZZARELLI NR, GERRARD SP, SCHLISSEL M, BROWN DD, BOGENHAGEN DF. Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes[J]. Cell, 1983, 34(3): 829-835.
    [74] MATSUZAKI H, KASSAVETIS GA, GEIDUSCHEK EP. Analysis of RNA chain elongation and termination by Saccharomyces cerevisiae RNA polymerase III[J]. Journal of Molecular Biology, 1994, 235(4): 1173-1192.
    [75] ARIMBASSERI AG, MARAIA RJ. Distinguishing core and holoenzyme mechanisms of transcription termination by RNA polymerase III[J]. Molecular and Cellular Biology, 2013, 33(8): 1571-1581.
    [76] RIJAL K, MARAIA RJ. RNA polymerase III mutants in TFIIFα-like C37 that cause terminator readthrough with no decrease in transcription output[J]. Nucleic Acids Research, 2013, 41(1): 139-155.
    [77] SHEKHAR AC, WU WJ, CHEN HT. Mutational and biophysical analyses reveal a TFIIIC binding region in the TFIIF-related Rpc53 subunit of RNA polymerase III[J]. Journal of Biological Chemistry, 2023, 299(7): 104859.
    [78] VORL?NDER MK, KHATTER H, WETZEL R, HAGEN WJH, MüLLER CW. Molecular mechanism of promoter opening by RNA polymerase III[J]. Nature, 2018, 553(7688): 295-300.
    [79] LEE J, MOIR RD, McINTOSH KB, WILLIS IM. TOR signaling regulates ribosome and tRNA synthesis via LAMMER/Clk and GSK-3 family kinases[J]. Molecular Cell, 2012, 45(6): 836-843.
    [80] LIU XQ, XIE DB, HUA Y, ZENG P, MA LJ, ZENG FL. Npa3 interacts with Gpn3 and assembly factor Rba50 for RNA polymerase II biogenesis[J]. FASEB Journal, 2020, 34(11): 15547-15558.
    [81] MA LJ, XIE DB, ZHAO XD, WANG L, HOU LF, LIU XQ, LI ZY, CHENG HQ, ZHANG J, GAO MD, ZENG FL. Npa3-Gpn3 cooperate to assemble RNA polymerase II and prevent clump of its subunits in the cytoplasm[J]. International Journal of Biological Macromolecules, 2022, 206: 837-848.
    [82] MA LJ, WANG L, GAO MD, ZHANG XJ, ZHAO XD, XIE DB, ZHANG J, WANG Z, HOU LF, ZENG FL. Rtr1 is required for Rpb1-Rpb2 assembly of RNAPII and prevents their cytoplasmic clump formation[J]. FASEB Journal, 2022, 36(11): e22585.
    [83] XIE DB, ZHAO XD, MA LJ, WANG L, LI P, CHENG HQ, LI ZY, ZENG P, ZHANG J, ZENG FL. Rba50 and Gpn2 recruit the second largest subunits for the assembly of RNA polymerase II and III[J]. International Journal of Biological Macromolecules, 2022, 204: 565-575.
    [84] ZENG FL, HUA Y, LIU XQ, LIU SJ, LAO KJ, ZHANG Z, KONG DC. Gpn2 and Rba50 directly participate in the assembly of the Rpb3 subcomplex in the biogenesis of RNA polymerase II[J]. Molecular and Cellular Biology, 2018, 38(13): e00091-18.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨欣怡,李盼,曾凡力. 酿酒酵母RNA聚合酶特异亚基的研究进展[J]. 微生物学报, 2025, 65(7): 2854-2863

复制
分享
文章指标
  • 点击次数:54
  • 下载次数: 119
  • HTML阅读次数: 60
  • 引用次数: 0
历史
  • 收稿日期:2025-01-02
  • 在线发布日期: 2025-07-04
文章二维码