土壤病毒的生态学功能研究进展
作者:
作者单位:

1.江西师范大学 生命科学学院,江西 南昌;2.宁波大学植物病毒学研究所,农产品质量安全全国重点实验室,浙江 宁波;3.浙江省土壤生物功能调控与一体化健康国际科技合作基地,浙江 宁波

作者简介:

陈紫婷:论文撰写、绘图和修改;魏亮:参与讨论部分写作;祝贞科:负责对纳入文献进行深度分析;鲁顺保:论文指导和审阅;葛体达:论文指导和审阅;王双:综述选题、论文框架构思和确定、论文审阅和修订、获取基金和项目管理。

基金项目:

国家自然科学基金(42477339, 32260297);国家重点研发计划(2023YFD1701200)


Research progress in ecological functions of soil viruses
Author:
  • CHEN Ziting 1,2,3

    CHEN Ziting

    College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China;National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WEI Liang 2,3

    WEI Liang

    National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Zhenke 2,3

    ZHU Zhenke

    National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LU Shunbao 1

    LU Shunbao

    College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • GE Tida 2,3

    GE Tida

    National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • WANG Shuang 2,3

    WANG Shuang

    National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi, China;2.National Key Laboratory of Agricultural Product Quality and Safety, Ningbo University, Institute of Plant Virology, Ningbo University, Ningbo, Zhejiang, China;3.International Science and Technology Cooperation Base for the Regulation of Soil Biological Functions and One Health of Zhejiang Province, Ningbo, Zhejiang, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (42477339, 32260297) and the National Key Research and Development Program of China (2023YFD1701200).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [133]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    病毒是由蛋白质外壳包被内含遗传物质,必须寄生在活细胞内才能进行增殖的非细胞型生物实体,它是地球上数量最多的生物实体之一。土壤是病毒的重要储藏库,其中以侵染原核生物的噬菌体为主。土壤病毒在调控宿主群落结构、驱动种群进化以及参与土壤元素循环等方面发挥着重要的生态功能。深入理解这些功能及其作用机制,不仅有助于揭示病毒在土壤生态系统中的重要角色,还为高效管理土壤环境的健康发展提供科学依据。本文概括了土壤噬菌体通过选择生存策略调控微生物组成和多样性,同时影响宿主的生存能力和毒力;介导基因水平转移以及与宿主的相互作用,影响微生物种群的进化;通过病毒分流(viral shunt)和携带辅助代谢基因介导元素循环;以及病毒对植物、动物和人体健康的广泛影响。基于上述分析,展望了土壤病毒生态学功能未来研究的重点。

    Abstract:

    Viruses, non-cellular biological entities composed of a protein shell and genetic materials, must parasitize living cells to proliferate and are the most numerous biological entities on Earth. Soil is an important reservoir of viruses, predominantly bacteriophages that infect prokaryotes. Soil viruses play crucial ecological roles in regulating host community structure, driving microbial evolution, and mediating biogeochemical cycles. Delving into these functions and their mechanisms not only elucidates the indispensable role of viruses in soil ecosystems but also underpins sustainable soil management. In this paper, we summarized current knowledge on the ecological functions of soil bacteriophages, including (1) host community modulation: selective survival strategies (e.g., lytic-lysogenic switches) that reshape microbial composition and diversity, while altering host virulence and fitness; (2) evolutionary drivers: horizontal gene transfer mediated by viral vectors and host-pathogen coevolution dynamics; (3) biogeochemical catalysts: the viral shunt mechanism, alongside auxiliary metabolic genes enhancing nutrient cycling; (4) cross-kingdom impacts: direct interactions with plant rhizospheres and indirect effects on human health via zoonotic gene dissemination. According to the research progress, we make an outlook on the future research directions regarding the ecological functions of soil viruses.

    参考文献
    [1] 高瑞川, 胡敏, 李芳柏, 陈冠虹, 方利平. 土壤噬菌体的研究进展及生态功能解析[J]. 华南农业大学学报, 2022, 43(5): 1-11.GAO RC, HU M, LI FB, CHEN GH, FANG LP. Research progress and ecological function of phages in soil[J]. Journal of South China Agricultural University, 2022, 43(5): 1-11 (in Chinese).
    [2] 王光华. 掀开土壤生物“暗物质”: 土壤病毒的神秘面 纱[J]. 中国科学院院刊, 2017, 32(6): 575-584.WANG GH. Lift mysterious veil of soil virus: ‘dark matter’ of soil biota[J]. Bulletin of Chinese Academy of Sciences, 2017, 32(6): 575-584 (in Chinese).
    [3] 王光华, 刘俊杰, 朱冬, 叶茂, 朱永官. 土壤病毒的研究进展与挑战[J]. 土壤学报, 2020, 57(6): 1319-1332.WANG GH, LIU JJ, ZHU D, YE M, ZHU YG. A review of researches on viruses in soil—advancement and challenges[J]. Acta Pedologica Sinica, 2020, 57(6): 1319-1332 (in Chinese).
    [4] LIANG XL, RADOSEVICH M, DeBRUYN JM, WILHELM SW, McDEARIS R, ZHUANG J. Incorporating viruses into soil ecology: a new dimension to understand biogeochemical cycling[J]. Critical Reviews in Environmental Science and Technology, 2024, 54(2): 117-137.
    [5] 徐志伟, 魏云林, 季秀玲. 病毒宏基因组学研究进展[J]. 微生物学通报, 2020, 47(8): 2560-2570.XU ZW, WEI YL, JI XL. Advances in viral metagenomics[J]. Microbiology China, 2020, 47(8): 2560-2570 (in Chinese).
    [6] KUZYAKOV Y, MASON-JONES K. Viruses in soil: nano-scale undead drivers of microbial life, biogeochemical turnover and ecosystem functions[J]. Soil Biology and Biochemistry, 2018, 127: 305-317.
    [7] DELGADO-BAQUERIZO M, REICH PB, TRIVEDI C, ELDRIDGE DJ, ABADES S, ALFARO FD, BASTIDA F, BERHE AA, CUTLER NA, GALLARDO A, GARCíA-VELáZQUEZ L, HART SC, HAYES PE, HE JZ, HSEU ZY, HU HW, KIRCHMAIR M, NEUHAUSER S, PéREZ CA, REED SC, et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes[J]. Nature Ecology & Evolution, 2020, 4(2): 210-220.
    [8] JIA P, LIANG JL, LU JL, ZHONG SJ, XIONG T, FENG SW, WANG YT, WU ZH, YI XZ, GAO SM, ZHENG J, WEN P, LI FL, LI YY, LIAO B, SHU WS, LI JT. Soil keystone viruses are regulators of ecosystem multifunctionality[J]. Environment International, 2024, 191: 108964.
    [9] WILLIAMSON KE, FUHRMANN JJ, WOMMACK KE, RADOSEVICH M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory[J]. Annual Review of Virology, 2017, 4(1): 201-219.
    [10] WANG XF, TANG YK, YUE XF, WANG S, YANG KM, XU YC, SHEN QR, FRIMAN VP, WEI Z. The role of rhizosphere phages in soil health[J]. FEMS Microbiology Ecology, 2024, 100(5): fiae052.
    [11] HAZARD C, ANANTHARAMAN K, HILLARY LS, NERI U, ROUX S, TRUBL G, WILLIAMSON K, PETT-RIDGE J, NICOL GW, EMERSON JB. Beneath the surface: unsolved questions in soil virus ecology[J]. Soil Biology and Biochemistry, 2025, 205: 109780.
    [12] CARREIRA C, L?NBORG C, ACHARYA B, ARYAL L, BUIVYDAITE Z, BORIM CORRêA F, CHEN TT, LORENZEN ELBERG C, EMERSON JB, HILLARY L, KHADKA RB, LANGLOIS V, MASON-JONES K, NETHERWAY T, SUTELA S, TRUBL G, KANG’ERI A WA, WANG RQ, WHITE RA, WINDING A, et al. Integrating viruses into soil food web biogeochemistry[J]. Nature Microbiology, 2024, 9(8): 1918-1928.
    [13] HURWITZ BL, U’REN JM. Viral metabolic reprogramming in marine ecosystems[J]. Current Opinion in Microbiology, 2016, 31: 161-168.
    [14] 严雨亭. 亚热带森林土壤病毒的群落特征及潜在生态功能[D]. 福州: 福建师范大学硕士学位论文, 2023.YAN YT. Community characteristics and potential ecological functions of soil viruses in subtropical forests[D]. Fuzhou: Master’s Thesis of Fujian Normal University, 2023 (in Chinese).
    [15] ZIMMERMAN AE, HOWARD-VARONA C, NEEDHAM DM, JOHN SG, WORDEN AZ, SULLIVAN MB, WALDBAUER JR, COLEMAN ML. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems[J]. Nature Reviews Microbiology, 2019, 18(1): 21-34.
    [16] JANSSON JK, WU RN. Soil viral diversity, ecology and climate change[J]. Nature Reviews Microbiology, 2022, 21(5): 296-311.
    [17] ROUX S, EMERSON JB. Diversity in the soil virosphere: to infinity and beyond?[J]. Trends in Microbiology, 2022, 30(11): 1025-1035.
    [18] LIANG XL, WANG YF, XIE NH, WANG S, ZHANG Y, RADOSEVICH M. Studying soil viral ecology under an ecosystem services framework[J]. Applied Soil Ecology, 2024, 197: 105339.
    [19] 郑晓璇. 有机氯农药污染土壤噬菌体-细菌群落相互作用机制研究[D]. 南京: 南京农业大学硕士学位论文, 2021.ZHENG XX. Interaction mechanism of phage and bacterial communities in organochlorine pesticide contaminated soils[D]. Nanjing: Master’s Thesis of Nanjing Agricultural University, 2021 (in Chinese).
    [20] SAUSSET R, PETIT MA, GABORIAU-ROUTHIAU V, de PAEPE M. New insights into intestinal phages[J]. Mucosal Immunology, 2020, 13(2): 205-215.
    [21] ELOIS MA, da SILVA R, von T?NNEMANN PILATI G, RODRíGUEZ-LáZARO D, FONGARO G. Bacteriophages as biotechnological tools[J]. Viruses, 2023, 15(2): 349.
    [22] BATINOVIC S, WASSEF F, KNOWLER SA, RICE DTF, STANTON CR, ROSE J, TUCCI J, NITTAMI T, VINH A, DRUMMOND GR, SOBEY CG, CHAN HT, SEVIOUR RJ, PETROVSKI S, FRANKS AE. Bacteriophages in natural and artificial environments[J]. Pathogens, 2019, 8(3): 100.
    [23] GUAJARDO-LEIVA S, SANTOS F, SALGADO O, REGEARD C, QUILLET L, DíEZ B. Unveiling ecological and genetic novelty within lytic and lysogenic viral communities of hot spring phototrophic microbial mats[J]. Microbiology Spectrum, 2021, 9(3): e0069421.
    [24] PAYET JP, SUTTLE CA. To kill or not to kill: the balance between lytic and lysogenic viral infection is driven by trophic status[J]. Limnology and Oceanography, 2013, 58(2): 465-474.
    [25] HUANG X, ZHOU ZC, LIU HY, LI YQ, GE TD, TANG XJ, HE Y, MA B, XU JM, ANANTHARAMAN K, LI Y. Soil nutrient conditions alter viral lifestyle strategy and potential function in phosphorous and nitrogen metabolisms[J]. Soil Biology and Biochemistry, 2024, 189: 109279.
    [26] ABDULRAHMAN ASHY R, AGUSTí S. Low host abundance and high temperature determine switching from lytic to lysogenic cycles in planktonic microbial communities in a tropical sea (red sea)[J]. Viruses, 2020, 12(7): 761.
    [27] ZHANG J, SHANG JY, LIU BB, ZHU D, LI QF, YIN L, OHORE OE, WEN SB, DING CF, ZHANG YC, YUE ZF, ZOU YK. Hot spots of resistance: transit centers as breeding grounds for airborne ARG-carrying bacteriophages[J]. Journal of Hazardous Materials, 2024, 480: 136165.
    [28] LENOIR L, PERSSON T, BENGTSSON J, WALLANDER H, WIRéN A. Bottom-up or top-down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation[J]. Biology and Fertility of Soils, 2007, 43(3): 281-294.
    [29] HOWARD-VARONA C, HARGREAVES KR, ABEDON ST, SULLIVAN MB. Lysogeny in nature: mechanisms, impact and ecology of temperate phages[J]. The ISME Journal, 2017, 11(7): 1511-1520.
    [30] LIAO HP, LIU C, AI CF, GAO T, YANG QE, YU Z, GAO SM, ZHOU SG, FRIMAN VP. Mesophilic and thermophilic viruses are associated with nutrient cycling during hyperthermophilic composting[J]. The ISME Journal, 2023, 17(6): 916-930.
    [31] SANTOS-MEDELLíN C, BLAZEWICZ SJ, PETT-RIDGE J, FIRESTONE MK, EMERSON JB. Viral but not bacterial community successional patterns reflect extreme turnover shortly after rewetting dry soils[J]. Nature Ecology & Evolution, 2023, 7(11): 1809-1822.
    [32] CROWTHER TW, STANTON DWG, THOMAS SM, A’BEAR AD, HISCOX J, JONES TH, VO?í?KOVá J, BALDRIAN P, BODDY L. Top-down control of soil fungal community composition by a globally distributed keystone consumer[J]. Ecology, 2013, 94(11): 2518-2528.
    [33] 韩丽丽, 曹苗苗, 毕丽, 张丽梅, 贺纪正. 土壤病毒的研究进展与应用前景[J]. 科技导报, 2022, 40(3): 75-86.HAN LL, CAO MM, BI L, ZHANG LM, HE JZ. Research advances and application prospect of soil viruses[J]. Science & Technology Review, 2022, 40(3): 75-86 (in Chinese).
    [34] SUTTLE CA. Viruses in the sea[J]. Nature, 2005, 437(7057): 356-361.
    [35] THINGSTAD TF. Elements of a theory for the mechanisms controlling abundance, diversity, and biogeochemical role of lytic bacterial viruses in aquatic systems[J]. Limnology and Oceanography, 2000, 45(6): 1320-1328.
    [36] WINTER C, BOUVIER T, WEINBAUER MG, THINGSTAD TF. Trade-offs between competition and defense specialists among unicellular planktonic organisms: the “killing the winner” hypothesis revisited[J]. Microbiology and Molecular Biology Reviews, 2010, 74(1): 42-57.
    [37] Van GOETHEM MW, SWENSON TL, TRUBL G, ROUX S, NORTHEN TR. Characteristics of wetting-induced bacteriophage blooms in biological soil crust[J]. mBio, 2019, 10(6): e02287-19.
    [38] CHEVALLEREAU A, PONS BJ, van HOUTE S, WESTRA ER. Interactions between bacterial and phage communities in natural environments[J]. Nature Reviews Microbiology, 2021, 20(1): 49-62.
    [39] ZHAO XL, LIANG XL, ZHU ZK, YUAN ZF, YU SX, LIU YL, WANG JK, MASON-JONES K, KUZYAKOV Y, CHEN JP, GE TD, WANG S. Phages affect soil dissolved organic matter mineralization by shaping bacterial communities[J]. Environmental Science & Technology, 2025, 59(4): 2070-2081.
    [40] BRAGA LPP, SPOR A, KOT W, BREUIL MC, HANSEN LH, SETUBAL JC, PHILIPPOT L. Impact of phages on soil bacterial communities and nitrogen availability under different assembly scenarios[J]. Microbiome, 2020, 8(1): 52.
    [41] ZHANG R, WEINBAUER MG, QIAN PY. Viruses and flagellates sustain apparent richness and reduce biomass accumulation of bacterioplankton in coastal marine waters[J]. Environmental Microbiology, 2007, 9(12): 3008-3018.
    [42] WANG XF, WANG S, HUANG MC, HE YL, GUO SS, YANG KM, WANG NQ, SUN TY, YANG HW, YANG TJ, XU YC, SHEN QR, FRIMAN VP, WEI Z. Phages enhance both phytopathogen density control and rhizosphere microbiome suppressiveness[J]. mBio, 2024, 15(6): e0301623.
    [43] THAPA MAGAR R, LEE SY, SONG YR, LEE SW, OH CS. Minimal adverse effects of exogenous phage treatment on soil bacterial communities[J]. Applied Soil Ecology, 2024, 195: 105250.
    [44] 吴汉卿, 阮楚晋, 韩苗, 王钢. 土壤病毒之奥秘: 研究进展、挑战及未来展望[J]. 微生物学报, 2024, 64(6): 1824-1847.WU HQ, RUAN CJ, HAN M, WANG G. Mystery of soil viruses: advances, challenges, and perspectives[J]. Acta Microbiologica Sinica, 2024, 64(6): 1824-1847 (in Chinese).
    [45] LIANG XL, ZHANG YY, WOMMACK KE, WILHELM SW, DeBRUYN JM, SHERFY AC, ZHUANG J, RADOSEVICH M. Lysogenic reproductive strategies of viral communities vary with soil depth and are correlated with bacterial diversity[J]. Soil Biology and Biochemistry, 2020, 144: 107767.
    [46] 祁慧鹓, 郑晓璇, 孙明明, 王金锋, 马迎飞, 朱冬, 王风贺, 蒋新, 叶茂. 土壤宏病毒组的研究方法与进展[J]. 土壤学报, 2021, 58(3): 568-577.QI HY, ZHENG XX, SUN MM, WANG JF, MA YF, ZHU D, WANG FH, JIANG X, YE M. Review in the soil virus metagenome analytical methods and progress[J]. Acta Pedologica Sinica, 2021, 58(3): 568-577 (in Chinese).
    [47] SEGOBOLA J, ADRIAENSSENS E, TSEKOA T, RASHAMUSE K, COWAN D. Exploring viral diversity in a unique South African soil habitat[J]. Scientific Reports, 2018, 8: 111.
    [48] CASTLEDINE M, BUCKLING A. Critically evaluating the relative importance of phage in shaping microbial community composition[J]. Trends in Microbiology, 2024, 32(10): 957-969.
    [49] SAMADDAR S, GREWAL RK, SINHA S, GHOSH S, ROY S, GUPTA SK DAS. Dynamics of mycobacteriophage-mycobacterial host interaction: evidence for secondary mechanisms for host lethality[J]. Applied and Environmental Microbiology, 2015, 82(1): 124-133.
    [50] SRINIVASIAH S, LOVETT J, GHOSH D, ROY K, FUHRMANN JJ, RADOSEVICH M, WOMMACK KE. Dynamics of autochthonous soil viral communities parallels dynamics of host communities under nutrient stimulation[J]. FEMS Microbiology Ecology, 2015, 91(7): fiv063.
    [51] WANG XF, WEI Z, YANG KM, WANG JN, JOUSSET A, XU YC, SHEN QR, FRIMAN VP. Phage combination therapies for bacterial wilt disease in tomato[J]. Nature Biotechnology, 2019, 37(12): 1513-1520.
    [52] ELWIN A, BUKOSKI JJ, JINTANA V, ROBINSON EJZ, CLARK JM. Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds[J]. Scientific Reports, 2019, 9: 18275.
    [53] MORELLA NM, GOMEZ AL, WANG G, LEUNG MS, KOSKELLA B. The impact of bacteriophages on phyllosphere bacterial abundance and composition[J]. Molecular Ecology, 2018, 27(8): 2025-2038.
    [54] FEDERICI S, NOBS SP, ELINAV E. Phages and their potential to modulate the microbiome and immunity[J]. Cellular & Molecular Immunology, 2020, 18(4): 889-904.
    [55] FUHRMAN JA. Marine viruses and their biogeochemical and ecological effects[J]. Nature, 1999, 399(6736): 541-548.
    [56] MIDDELBOE M, RIEMANN L, STEWARD GF, HANSEN V, NYBROE O. Virus-induced transfer of organic carbon between marine bacteria in a model community[J]. Aquatic Microbial Ecology, 2003, 33: 1-10.
    [57] QI HY, LV JH, LIAO JQ, JIN JH, REN Y, TAO Y, WANG DS, ALVAREZ PJJ, YU PF. Metagenomic insights into microalgae-bacterium-virus interactions and viral functions in phycosphere facing environmental fluctuations[J]. Water Research, 2025, 268: 122676.
    [58] 蒋艳, 赵炳梓. 细菌生长过程中的病毒消失行为研究[J]. 土壤, 2013, 45(3): 522-528.JIANG Y, ZHAO BZ. Effects of bacterial growth process on virus removal[J]. Soils, 2013, 45(3): 522-528 (in Chinese).
    [59] MIRZAEI MK, MAURICE CF. Ménage à trois in the human gut: interactions between host, bacteria and phages[J]. Nature Reviews Microbiology, 2017, 15(7): 397-408.
    [60] HUANG BB, GE L, XIANG D, TAN G, LIU LJ, YANG L, JING YF, LIU QS, CHEN W, LI Y, HE HX, SUN HZ, PAN Q, YI K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt[J]. Frontiers in Microbiology, 2024, 15: 1396213.
    [61] VOIGT E, RALL BC, CHATZINOTAS A, BROSE U, ROSENBAUM B. Phage strategies facilitate bacterial coexistence under environmental variability[J]. PeerJ, 2021, 9: e12194.
    [62] HUANG D, YU PF, YE M, SCHWARZ C, JIANG X, ALVAREZ PJJ. Enhanced mutualistic symbiosis between soil phages and bacteria with elevated chromium-induced environmental stress[J]. Microbiome, 2021, 9(1): 150.
    [63] HWANG Y, RAHLFF J, SCHULZE-MAKUCH D, SCHLOTER M, PROBST AJ. Diverse viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil[J]. mSystems, 2021, 6(3): e00385-21.
    [64] LI J, SUN YC, ZHANG QF, LIU SN, LIU P, ZHANG XX. Unveiling the potential role of virus-encoded polyphosphate kinases in enhancing phosphorus removal in activated sludge systems[J]. Water Research, 2025, 268: 122678.
    [65] LIANG RH, YE ZW, QIN ZZ, XIE YB, YANG XM, SUN HR, DU QH, LUO P, TANG KM, HU BD, CAO JL, WONG XH, LING GS, CHU H, SHEN JG, YIN FF, JIN DY, CHAN JF, YUEN KY, YUAN SF. PMI-controlled mannose metabolism and glycosylation determines tissue tolerance and virus fitness[J]. Nature Communications, 2024, 15: 2144.
    [66] GULER P, BENDORI SO, BORENSTEIN T, AFRAMIAN N, KESSEL A, ELDAR A. Arbitrium communication controls phage lysogeny through non-lethal modulation of a host toxin-antitoxin defence system[J]. Nature Microbiology, 2024, 9(1): 150-160.
    [67] BOYD EF. Chapter 4 bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions[J]. Advances in Virus Research, 2012, 82: 91-118.
    [68] GREENROD STE, STOYCHEVA M, ELPHINSTONE J, FRIMAN VP. Global diversity and distribution of prophages are lineage-specific within the Ralstonia solanacearum species complex[J]. BMC Genomics, 2022, 23(1): 689.
    [69] HULIN MT, RABIEY M, ZENG ZY, VADILLO DIEGUEZ A, BELLAMY S, SWIFT P, MANSFIELD JW, JACKSON RW, HARRISON RJ. Genomic and functional analysis of phage-mediated horizontal gene transfer in Pseudomonas syringae on the plant surface[J]. New Phytologist, 2023, 237(3): 959-973.
    [70] 黎庶, 胡福泉. 前噬菌体[J]. 微生物学通报, 2009, 36(3): 432-438.LI S, HU FQ. Prophages[J]. Microbiology China, 2009, 36(3): 432-438 (in Chinese).
    [71] Van HOUTE S, BUCKLING A, WESTRA ER. Evolutionary ecology of prokaryotic immune mechanisms[J]. Microbiology and Molecular Biology Reviews, 2016, 80(3): 745-763.
    [72] AHMAD AA, ADDY HS, HUANG Q. Biological and molecular characterization of a jumbo bacteriophage infecting plant pathogenic Ralstonia solanacearum species complex strains[J]. Frontiers in Microbiology, 2021, 12: 741600.
    [73] LUO JY, DAI DJ, LV LQ, AHMED T, CHEN L, WANG YL, AN QL, SUN GC, LI B. Advancements in the use of bacteriophages to combat the kiwifruit canker phytopathogen Pseudomonas syringae pv. actinidiae[J]. Viruses, 2022, 14(12): 2704.
    [74] FERNáNDEZ L, GUTIéRREZ D, RODRíGUEZ A, GARCíA P. Application of bacteriophages in the agro-food sector: a long way toward approval[J]. Frontiers in Cellular and Infection Microbiology, 2018, 8: 296.
    [75] CHANTAPAKUL B, SABARATNAM S, WANG SY. Isolation and characterization of bacteriophages for controlling Rhizobium radiobacter-causing stem and crown gall of highbush blueberry[J]. Frontiers in Microbiology, 2024, 15: 1437536.
    [76] LI Y, WATANABE T, MURASE J, ASAKAWA S, KIMURA M. Identification of the major capsid gene (g23) of T4-type bacteriophages that assimilate substrates from root cap cells under aerobic and anaerobic soil conditions using a DNA-SIP approach[J]. Soil Biology and Biochemistry, 2013, 63: 97-105.
    [77] 夏蓉, 郑晓璇, 叶茂, 朱冬, 张辉, 朱春梧, 胡锋, 孙明明. 噬菌体对土壤碳氮元素循环转化影响的研究进展[J]. 土壤, 2021, 53(4): 661-671.XIA R, ZHENG XX, YE M, ZHU D, ZHANG H, ZHU CW, HU F, SUN MM. Advances in effects of bacteriophages on transformation of carbon and nitrogen in soil[J]. Soils, 2021, 53(4): 661-671 (in Chinese).
    [78] ROY K, GHOSH D, DeBRUYN JM, DASGUPTA T, WOMMACK KE, LIANG XL, WAGNER RE, RADOSEVICH M. Temporal dynamics of soil virus and bacterial populations in agricultural and early plant successional soils[J]. Frontiers in Microbiology, 2020, 11: 1494.
    [79] JOVER LF, EFFLER TC, BUCHAN A, WILHELM SW, WEITZ JS. The elemental composition of virus particles: implications for marine biogeochemical cycles[J]. Nature Reviews Microbiology, 2014, 12(7): 519-528.
    [80] ZHAO XL, WANG S, WANG L, ZHU ZK, LIU YL, WANG JK, CHEN JP, GE TD. Contrasting viral diversity and potential biogeochemical impacts in paddy and upland soils[J]. Applied Soil Ecology, 2024, 199: 105399.
    [81] ZHOU ZY, LIANG XL, ZHANG N, XIE NH, HUANG YS, ZHOU YH, LI BX. The impact of soil viruses on organic carbon mineralization and microbial biomass turnover[J]. Applied Soil Ecology, 2024, 202: 105554.
    [82] HAN LL, YU DT, BI L, DU S, SILVEIRA C, GüEMES AGC, ZHANG LM, HE JZ, ROHWER F. Distribution of soil viruses across China and their potential role in phosphorous metabolism[J]. Environmental Microbiome, 2022, 17(1): 6.
    [83] WANG YJ, LIU Y, WU YX, WU N, LIU WW, WANG XF. Heterogeneity of soil bacterial and bacteriophage communities in three rice agroecosystems and potential impacts of bacteriophage on nutrient cycling[J]. Environmental Microbiome, 2022, 17(1): 17.
    [84] WEI XM, GE TD, WU CF, WANG S, MASON-JONES K, LI Y, ZHU ZK, HU YJ, LIANG C, SHEN JL, WU JS, KUZYAKOV Y. T4-like phages reveal the potential role of viruses in soil organic matter mineralization[J]. Environmental Science & Technology, 2021, 55(9): 6440-6448.
    [85] OSBURN ED, BAER SG, EVANS SE, McBRIDE SG, STRICKLAND MS. Effects of experimentally elevated virus abundance on soil carbon cycling across varying ecosystem types[J]. Soil Biology and Biochemistry, 2024, 198: 109556.
    [86] TONG D, WANG YJ, YU HD, SHEN HJ, DAHLGREN RA, XU JM. Viral lysing can alleviate microbial nutrient limitations and accumulate recalcitrant dissolved organic matter components in soil[J]. The ISME Journal, 2023, 17(8): 1247-1256.
    [87] HUANG X, BRAGA LPP, DING CX, YANG BK, GE TD, DI HJ, HE Y, XU JM, PHILIPPOT L, LI Y. Impact of viruses on prokaryotic communities and greenhouse gas emissions in agricultural soils[J]. Advanced Science, 2024, 11(48): 2407223.
    [88] WANG S, YU SX, ZHAO XY, ZHAO XL, MASON-JONES K, ZHU ZK, REDMILE-GORDON M, LI Y, CHEN JP, KUZYAKOV Y, GE TD. Experimental evidence for the impact of phages on mineralization of soil-derived dissolved organic matter under different temperature regimes[J]. Science of The Total Environment, 2022, 846: 157517.
    [89] COOK R, HOOTON S, TRIVEDI U, KING L, DODD CER, HOBMAN JL, STEKEL DJ, JONES MA, MILLARD AD. Hybrid assembly of an agricultural slurry virome reveals a diverse and stable community with the potential to alter the metabolism and virulence of veterinary pathogens[J]. Microbiome, 2021, 9(1): 65.
    [90] SHARON I, BATTCHIKOVA N, ARO EM, GIGLIONE C, MEINNEL T, GLASER F, PINTER RY, BREITBART M, ROHWER F, BéJà O. Comparative metagenomics of microbial traits within oceanic viral communities[J]. The ISME Journal, 2011, 5(7): 1178-1190.
    [91] LIANG XL, WAGNER RE, ZHUANG J, DeBRUYN JM, WILHELM SW, LIU F, YANG L, STATON ME, SHERFY AC, RADOSEVICH M. Viral abundance and diversity vary with depth in a southeastern United States agricultural ultisol[J]. Soil Biology and Biochemistry, 2019, 137: 107546.
    [92] JIN M, GUO X, ZHANG R, QU W, GAO BL, ZENG RY. Diversities and potential biogeochemical impacts of mangrove soil viruses[J]. Microbiome, 2019, 7(1): 58.
    [93] BI L, YU DT, DU S, ZHANG LM, ZHANG LY, WU CF, XIONG C, HAN LL, HE JZ. Diversity and potential biogeochemical impacts of viruses in bulk and rhizosphere soils[J]. Environmental Microbiology, 2021, 23(2): 588-599.
    [94] PETERS DL, LYNCH KH, STOTHARD P, DENNIS JJ. The isolation and characterization of two Stenotrophomonas maltophilia bacteriophages capable of cross-taxonomic order infectivity[J]. BMC Genomics, 2015, 16(1): 664.
    [95] 韩丽丽, 贺纪正. 病毒生态学研究进展[J]. 生态学报, 2016, 36(16): 4988-4996.HAN LL, HE JZ. Advances in viral ecology research[J]. Acta Ecologica Sinica, 2016, 36(16): 4988-4996 (in Chinese).
    [96] JANG J, SAKAI Y, SENOO K, ISHII S. Potentially mobile denitrification genes identified in Azospirillum sp. strain TSH58[J]. Applied and Environmental Microbiology, 2019, 85(2): e02474-18.
    [97] STARR EP, NUCCIO EE, PETT-RIDGE J, BANFIELD JF, FIRESTONE MK. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(51): 25900-25908.
    [98] 陈莫莲, 安新丽, 杨凯, 朱永官. 土壤噬菌体及其介导的抗生素抗性基因水平转移研究进展[J]. 应用生态学报, 2021, 32(6): 2267-2274.CHEN ML, AN XL, YANG K, ZHU YG. Soil phage and their mediation on the horizontal transfer of antibiotic resistance genes: a review[J]. Chinese Journal of Applied Ecology, 2021, 32(6): 2267-2274 (in Chinese).
    [99] MUNIESA M, COLOMER-LLUCH M, JOFRE J. Could bacteriophages transfer antibiotic resistance genes from environmental bacteria to human-body associated bacterial populations?[J]. Mobile Genetic Elements, 2013, 3(4): e25847.
    [100] MOLINA F, MENOR-FLORES M, FERNáNDEZ L, VEGA-RODRíGUEZ MA, GARCíA P. Systematic analysis of putative phage-phage interactions on minimum-sized phage cocktails[J]. Scientific Reports, 2022, 12: 2458.
    [101] CHEN ML, AN XL, LIAO H, YANG K, SU JQ, ZHU YG. Viral community and virus-associated antibiotic resistance genes in soils amended with organic fertilizers[J]. Environmental Science & Technology, 2021, 55(20): 13881-13890.
    [102] TAZZYMAN SJ, HALL AR. Lytic phages obscure the cost of antibiotic resistance in Escherichia coli[J]. The ISME Journal, 2015, 9(4): 809-820.
    [103] XIA R, YIN XL, BALCAZAR JL, HUANG D, LIAO JQ, WANG DS, ALVAREZ PJJ, YU PF. Bacterium-phage symbiosis facilitates the enrichment of bacterial pathogens and antibiotic-resistant bacteria in the plastisphere[J]. Environmental Science & Technology, 2025, 59(6): 2948-2960.
    [104] KANG YT, WANG J, ZHU CZ, ZHENG MQ, LI ZJ. Unveiling the genomic diversity and ecological impact of phage communities in hospital wastewater[J]. Journal of Hazardous Materials, 2024, 477: 135353.
    [105] DION MB, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.
    [106] LIU JL, LIU P, FENG FL, ZHANG JX, LI FL, WANG MZ, SUN YX. Evaluation of potential ARG packaging by two environmental T7-like phage during phage-host interaction[J]. Viruses, 2020, 12(10): 1060.
    [107] TOUCHON M, MOURA de SOUSA JA, ROCHA EP. Embracing the enemy: the diversification of microbial gene repertoires by phage-mediated horizontal gene transfer[J]. Current Opinion in Microbiology, 2017, 38: 66-73.
    [108] BERNHEIM A, SOREK R. The pan-immune system of bacteria: antiviral defence as a community resource[J]. Nature Reviews Microbiology, 2019, 18(2): 113-119.
    [109] STERN A, SOREK R. The phage-host arms race: shaping the evolution of microbes[J]. BioEssays, 2011, 33(1): 43-51.
    [110] BRUM JR, SULLIVAN MB. Rising to the challenge: accelerated pace of discovery transforms marine virology[J]. Nature Reviews Microbiology, 2015, 13(3): 147-159.
    [111] ZHANG YY, HUANG CX, YANG J, JIAO NZ. Interactions between marine microorganisms and their phages[J]. Chinese Science Bulletin, 2011, 56(17): 1770-1777.
    [112] BEZUIDT OKI, LEBRE PH, PIERNEEF R, LEóN-SOBRINO C, ADRIAENSSENS EM, COWAN DA, van de PEER Y, MAKHALANYANE TP. Phages actively challenge niche communities in Antarctic soils[J]. mSystems, 2020, 5(3): e00234-20.
    [113] ROST?L JT, MARRAFFINI L. (ph)ighting phages: how bacteria resist their parasites[J]. Cell Host & Microbe, 2019, 25(2): 184-194.
    [114] LABRIE SJ, SAMSON JE, MOINEAU S. Bacteriophage resistance mechanisms[J]. Nature Reviews Microbiology, 2010, 8(5): 317-327.
    [115] HAMPTON HG, WATSON BNJ, FINERAN PC. The arms race between bacteria and their phage foes[J]. Nature, 2020, 577(7790): 327-336.
    [116] GAO LA, WILKINSON ME, STRECKER J, MAKAROVA KS, MACRAE RK, KOONIN EV, ZHANG F. Prokaryotic innate immunity through pattern recognition of conserved viral proteins[J]. Science, 2022, 377(6607): eabm4096.
    [117] KOSKELLA B, BROCKHURST MA. Bacteria-phage coevolution as a driver of ecological and evolutionary processes in microbial communities[J]. FEMS Microbiology Reviews, 2014, 38(5): 916-931.
    [118] MUSCATT G, HILTON S, RAGUIDEAU S, TEAKLE G, LIDBURY IDEA, WELLINGTON EMH, QUINCE C, MILLARD A, BENDING GD, JAMESON E. Crop management shapes the diversity and activity of DNA and RNA viruses in the rhizosphere[J]. Microbiome, 2022, 10(1): 181.
    [119] AHKAMI AH, ALLEN WHITE R, HANDAKUMBURA PP, JANSSON C. Rhizosphere engineering: enhancing sustainable plant ecosystem productivity[J]. Rhizosphere, 2017, 3: 233-243.
    [120] WANI AK, RAHAYU F, ALKAHTANI AM, ALRESHIDI MA, YADAV KK, PARNIDI, FAUZIAH L, MURIANINGRUM M, AKHTAR N, MUFIDAH E, SUPRIYADI, RAHAYU DM, SINGH R. Metagenomic profiling of rhizosphere microbiota: unraveling the plant-soil dynamics[J]. Physiological and Molecular Plant Pathology, 2024, 133: 102381.
    [121] HORST AM TER. Soil- and plant-associated viral ecology in natural and managed systems [D]. Davis: University of California, Davis, 2023.
    [122] SANTOS-MEDELLIN C, ZINKE LA, HORST AM TER, GELARDI DL, PARIKH SJ, EMERSON JB. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities[J]. The ISME Journal, 2021, 15(7): 1956-1970.
    [123] KOSKELLA B, TAYLOR TB. Multifaceted impacts of bacteriophages in the plant microbiome[J]. Annual Review of Phytopathology, 2018, 56: 361-380.
    [124] BANERJEE S, van der HEIJDEN MGA. Soil microbiomes and one health[J]. Nature Reviews Microbiology, 2022, 21(1): 6-20.
    [125] LU J, YU ZG, NGIAM L, GUO JH. Microplastics as potential carriers of viruses could prolong virus survival and infectivity[J]. Water Research, 2022, 225: 119115.
    [126] THOMPSON RC, COURTENE-JONES W, BOUCHER J, PAHL S, RAUBENHEIMER K, KOELMANS AA. Twenty years of microplastic pollution research—What have we learned?[J]. Science, 2024, 386(6720): eadl2746.
    [127] 丁佳妍, 刘翔宇, 陈旭文, 汤磊, 高彦征. 环境中微塑料的微生物降解机制与生物强化[J]. 地学前缘, 2025, 32(3): 248-262.DING JY, LIU XY, CHEN XW, TANG L, GAO YZ. Biodegradation mechanisms and biological enhancement of microplastics in the environment[J]. Earth Science Frontiers, 2025, 32(3): 248-262 (in Chinese).
    [128] LIU ML, FENG JG, SHEN YW, ZHU B. Microplastics effects on soil biota are dependent on their properties: a meta-analysis[J]. Soil Biology and Biochemistry, 2023, 178: 108940.
    [129] SONG Y, CAO CJ, QIU R, HU JN, LIU MT, LU SB, SHI HH, RALEY-SUSMAN KM, HE DF. Uptake and adverse effects of polyethylene terephthalate microplastics fibers on terrestrial snails (Achatina fulica) after soil exposure[J]. Environmental Pollution, 2019, 250: 447-455.
    [130] HUERTA LWANGA E, GERTSEN H, GOOREN H, PETERS P, SALáNKI T, van der PLOEG M, BESSELING E, KOELMANS AA, GEISSEN V. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685-2691.
    [131] WANG G, OR D. Aqueous films limit bacterial cell motility and colony expansion on partially saturated rough surfaces[J]. Environmental Microbiology, 2010, 12(5): 1363-1373.
    [132] FLAMHOLZ ZN, BILLER SJ, KELLY L. Large language models improve annotation of prokaryotic viral proteins[J]. Nature Microbiology, 2024, 9(2): 537-549.
    [133] HOU X, HE Y, FANG P, MEI SQ, XU Z, WU WC, TIAN JH, ZHANG S, ZENG ZY, GOU QY, XIN GY, LE SJ, XIA YY, ZHOU YL, HUI FM, PAN YF, EDEN JS, YANG ZH, HAN C, SHU YL, et al. Using artificial intelligence to document the hidden RNA virosphere[J]. Cell, 2024, 187(24): 6929-6942.e16.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈紫婷,魏亮,祝贞科,鲁顺保,葛体达,王双. 土壤病毒的生态学功能研究进展[J]. 微生物学报, 2025, 65(6): 2401-2417

复制
分享
文章指标
  • 点击次数:63
  • 下载次数: 179
  • HTML阅读次数: 128
  • 引用次数: 0
历史
  • 收稿日期:2025-02-17
  • 在线发布日期: 2025-06-05
文章二维码