一株耐镉促生细菌Achromobacter sp.A81的分离鉴定及特性
作者:
基金项目:

国家自然科学基金(32160017);广西壮族自治区科技重大专项(AB21196019,AB21220020);广西民族大学引进高层次人才科研项目(2018KJQD17);广西民族大学国家级大学生创新创业项目(202410608026)


Isolation, identification, and characterization of a cadmium-tolerant bacterium Achromobactersp. A81 with plant growth-promoting effect
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [41]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】从广西某矿区污染土中筛选并鉴定耐镉(cadmium,Cd)促生细菌,评估其耐Cd、去Cd2+效率、促生特性及对Cd胁迫下水稻生长的影响,展现其在植物促长与土壤修复中的潜力。【方法】通过稀释涂布和Cd2+浓度梯度驯化分离耐Cd细菌,进一步通过形态学、生理生化及16S rRNA基因系统发育树法进行鉴定;再运用微量稀释法、电感耦合等离子体质谱法、比色法测定菌株的耐Cd能力、去Cd2+效率和植物促生特性;最后通过盆栽试验考察施加菌株后对Cd胁迫下水稻生长的影响。【结果】从重金属污染土壤中分离得到12株对Cd2+表现较好抗性的细菌,其中对Cd耐受最好的一株细菌鉴定并命名为无色杆菌属(Achromobacter sp.) A81,其对Cd2+的耐受浓度高达800 mg/L,在10 mg/L Cd2+浓度下培养7 d,其最大Cd2+去除率为44.66%;菌株A81的上清液和菌体可共同吸附Cd2+;在Cd胁迫下分泌大量胞外聚合物(extracellular polymeric substance,EPS),主要成分为不溶性和可溶性蛋白。此外,该菌株具有固氮、溶磷、产铁载体、吲哚乙酸(indole-3-acetic acid,IAA)和1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylic acid,ACC)脱氨酶等植物促生活性,展现出显著的促生潜力。盆栽试验结果表明,与Cd胁迫组的对照相比,接种菌株A81后水稻的株高、根长、茎粗和鲜重分别增加了9.08%、39.59%、41.94%和73.58%。【结论】本研究探究了Achromobacter sp.A81在耐Cd、除Cd与植物促生方面的特性,以及其在Cd污染土壤修复中的应用潜力,为微生物治理重金属污染与农业绿色发展提供科学依据与优质菌株资源。

    Abstract:

    [Objective] To screen and identify cadmium (Cd)-tolerant bacteria with plant growth-promoting effect from contaminated soil of a mining area in Guangxi, characterize the strain screened out in terms of the Cd tolerance, Cd2+ removal efficiency, plant growth-promoting effect, and influence on rice growth under Cd stress, and demonstrate the potential of the strain in plant growth and soil remediation. [Methods] Cd-tolerant bacteria were isolated by the dilution coating method and Cd2+ concentration gradient acclimation and further identified based on the morphological, physiological, biochemical characteristics and the 16S rRNA gene phylogenetic tree. The Cd tolerance, Cd2+ removal efficiency, and plant growth-promoting effect of the target strain were measured by microdilution, inductively coupled plasma mass spectrometry, and colorimetry. Finally, the effect of the strain on the growth of rice plants under Cd stress was investigated by a pot experiment. [Results] Twelve strains of bacteria with good tolerance to Cd2+ were isolated from heavy metal-contaminated soil, and one strain with the best tolerance to Cd was identified as Achromobacter sp. A81, which could grow in the presence of 800 mg/L Cd2+. Strain A81 cultured with 10 mg/L Cd²+ for 7 days showed the maximum Cd²+ removal rate of 44.66%. Both the supernatant and cells of strain A81 demonstrated the ability to adsorb Cd2+. Under Cd stress, the strain secreted a large amount of extracellular polymeric substances (EPS) primarily composed of insoluble and soluble proteins. Furthermore, this strain was capable of fixing nitrogen, solubilizing phosphorus, and secreting siderophores, indole-3-acetic acid (IAA), and 1-aminocyclopropane-l-carboxylate (ACC) deaminase, demonstrating remarkable plant growth-promoting effect. Pot experiment results revealed that compared with the group subjected to Cd stress, the rice plants inoculated with strain A81 showed increases of 9.08%, 39.59%, 41.94%, and 73.58% in plant height, root length, stem diameter, and fresh weight, respectively. [Conclusion] This study investigated the Cd tolerance, Cd removal efficiency, and plant growth-promoting effect of Achromobacter sp. A81 and assessed the application potential of this strain in Cd-contaminated soil remediation, providing a scientific basis and high-quality strain resources for the microbial remediation of heavy metal pollution and green agricultural development.

    参考文献
    [1] WANG M, CHEN ZF, SONG W, HONG DZ, HUANG L, LI YH. A review on cadmium exposure in the population and intervention strategies against cadmium toxicity[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(1): 65-74.
    [2] WANG P, CHEN HP, KOPITTKE PM, ZHAO FJ. Cadmium contamination in agricultural soils of China and the impact on food safety[J]. Environmental Pollution, 2019, 249: 1038-1048.
    [3] HU YA, CHENG HF, TAO S. The challenges and solutions for cadmium-contaminated rice in China: a critical review[J]. Environment International, 2016, 92-93: 515-532.
    [4] RIZWAN M, ALI S, ADREES M, RIZVI H, ZIA-UR-REHMAN M, HANNAN F, QAYYUM MF, HAFEEZ F, OK YS. Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review[J]. Environmental Science and Pollution Research, 2016, 23(18): 17859-17879.
    [5] NOMIYAMA K. Recent progress and perspectives in cadmium health effects studies[J]. Science of the Total Environment, 1980, 14(3): 199-232.
    [6] 王泓博, 苟文贤, 吴玉清, 李伟. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277-2288. WANG HB, GOU WX, WU YQ, LI W. Progress in remediation technologies of heavy metals contaminated soil: principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277-2288.
    [7] 徐文婷, 陈国梁, 屈志慧, 梁碧心, 毛腾, 梁欢, 陈章, 李志贤. 微生物在镉污染土壤修复中的应用及其作用机理[J]. 生物工程学报, 2023, 39(7): 2612-2623. XU WT, CHEN GL, QU ZH, LIANG BX, MAO T, LIANG H, CHEN Z, LI ZX. Microbial remediation of cadmium-contaminated soils and its mechanisms: a review[J]. Chinese Journal of Biotechnology, 2023, 39(7): 2612-2623.
    [8] XIE Y, LI XN, HUANG XB, HAN SJ, AMOMBO E, WASSIE M, CHEN L, FU JM. Characterization of the Cd-resistant fungus Aspergillus aculeatus and its potential for increasing the antioxidant activity and photosynthetic efficiency of rice[J]. Ecotoxicology and Environmental Safety, 2019, 171: 373-381.
    [9] LI YL, WEI SM, CHEN XT, DONG YH, ZENG MS, YAN CW, HOU LY, JIAO RZ. Isolation of cadmium-resistance and siderophore-producing endophytic bacteria and their potential use for soil cadmium remediation[J]. Heliyon, 2023, 9(7): e17661.
    [10] PRAMANIK K, MITRA S, SARKAR A, MAITI TK. Alleviation of phytotoxic effects of cadmium on rice seedlings by cadmium resistant PGPR strain Enterobacter aerogenes MCC 3092[J]. Journal of Hazardous Materials, 2018, 351: 317-329.
    [11] BRAVO D, BRAISSANT O. Cadmium-tolerant bacteria: current trends and applications in agriculture[J]. Letters in Applied Microbiology, 2022, 74(3): 311-333.
    [12] 马莹, 王玥, 石孝均, 陈新平, 李振轮. 植物促生菌在重金属生物修复中的作用机制及应用[J]. 环境科学, 2022, 43(9): 4911-4922. MA Y, WANG Y, SHI XJ, CHEN XP, LI ZL. Mechanism and application of plant growth-promoting bacteria in heavy metal bioremediation[J]. Environmental Science, 2022, 43(9): 4911-4922(in Chinese).
    [13] TIAN W, LI L, XIAO X, WU HL, WANG YL, HU ZY, BEGUM N, ZOU YP, LOU LQ, CHANG M, CAI QS. Identification of a plant endophytic growth-promoting bacteria capable of inhibiting cadmium uptake in rice[J]. Journal of Applied Microbiology, 2022, 132(1): 520-531.
    [14] DIBA F, KHAN MZH, UDDIN SZ, ISTIAQ A, SHUVO MSR, UL ALAM ASMR, HOSSAIN MA, SULTANA M. Bioaccumulation and detoxification of trivalent arsenic by Achromobacter xylosoxidans BHW-15 and electrochemical detection of its transformation efficiency[J]. Scientific Reports, 2021, 11(1): 21312.
    [15] 王焯, 罗学刚, 丁翰林, 杨昊. 一种耐铀植物促生菌的筛选及促生特性研究[J]. 生物技术通报, 2019, 35(1): 42-50. WANG Z, LUO XG, DING HL, YANG H. Isolation and identification of a uranium-resistant strain and effect of its characteristics on growth promoting[J]. Biotechnology Bulletin, 2019, 35(1): 42-50.
    [16] 曹晶晶, 熊悯梓, 钞亚鹏, 赵盼, 汪志琴, 仲乃琴. 极耐盐碱固氮菌的分离鉴定及固氮特性研究[J]. 微生物学报, 2021, 61(11): 3483-3495. CAO JJ, XIONG MZ, CHAO YP, ZHAO P, WANG ZQ, ZHONG NQ. Isolation and identification of extremely salt-tolerant azotobacter and its nitrogen-fixing characteristics[J]. Acta Microbiologica Sinica, 2021, 61(11): 3483-3495.
    [17] PENROSE DM, GLICK BR. Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria[J]. Physiologia Plantarum, 2003, 118(1): 10-15.
    [18] 布坎南, 吉本斯. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984. RE BUCHANAN, NE GIBBONS. Bergey’s Manual of Determinative Bacteriology[M]. 8th ed. Beijing: Science Press, 1984(in Chinese).
    [19] 李枢妍, 阳黎恒, 肖雪婷, 胡锦欢, 张红岩, 申乃坤, 姜明国. 一株香蕉枯萎病拮抗菌的筛选、鉴定及生防效果研究[J]. 南方农业学报, 2021, 52(7): 1826-1834. LI SY, YANG LH, XIAO XT, HU JH, ZHANG HY, SHEN NK, JIANG MG. Screening, identification and biocontrol effect of antagonistic bacteria against banana Fusarium wilt[J]. Journal of Southern Agriculture, 2021, 52(7): 1826-1834(in Chinese).
    [20] YIN DX, NIU LL, LIU J, YANG R, HAN B, LIU ZY, HAN YH, ZHAO XL. Cadmium-resistant bacterium Ralstonia sp. YDR alleviated Cd toxicity in rice seedlings by enhancing antioxidant defense and inhibiting Cd2+ influx and H+ efflux[J]. Environmental Technology and Innovation, 2024, 34: 103614.
    [21] LI Y, LI CX, LIN W, WANG SS, ZHANG WX, JIANG YM, ZHANG Y, ZHANG H, HAN YH. Full evaluation of assimilatory and dissimilatory nitrate reduction in a new denitrifying bacterium Leclercia adecarboxylata strain AS3-1: characterization and functional gene analysis[J]. Environmental Technology and Innovation, 2021, 23: 101731.
    [22] 周野, 王一莹, 李哲, 张秀芳, 吴迪, 冷粟, 李明堂. 氧化木糖无色杆菌(Achromobacte rxylosoxidans) LAX2对Cu、Pb和Cd复合污染土壤的生物矿化修复研究[J]. 环境科学学报, 2018, 38(11): 4497-4504. ZHOU Y, WANG YY, LI Z, ZHANG XF, WU D, LENG S, LI MT. The remediation of complex Cu, Pb and Cd polluted soil through biomineralization by Achromobacte rxylosoxidans LAX2[J]. Acta Scientiae Circumstantiae, 2018, 38(11): 4497-4504(in Chinese).
    [23] 黎世威, 白英. 开菲尔源酵母对开菲尔乳杆菌生长代谢的影响[J]. 食品与发酵工业, 2024. DOI: 10.13995/j.cnki.11-1802/ts.039320. LI SW, BAI Y. Influence of Kefir yeast on growth and metabolism of Lactobacillus kefiri[J]. Food and Fermentation Industries, 2024. DOI: 10.13995/j.cnki.11-1802/ts.039320(in Chinese).
    [24] 刘美, 王湛. 胞外聚合物对膜污染的影响[J]. 水处理技术, 2007, 33(10): 7-13. LIU M, WANG Z. EPS extraction, chemical analyses and its effect on membrane fouling[J]. Technology of Water Treatment, 2007, 33(10): 7-13(in Chinese).
    [25] 孙光闻, 朱祝军, 方学智, 陈日远, 刘厚诚. 镉对小白菜光合作用及叶绿素荧光参数的影响[J]. 植物营养与肥料学报, 2005, 11(5): 700-703. SUN GW, ZHU ZJ, FANG XZ, CHEN RY, LIU HC. Effect of cadmiumon photosynthesis and chlorophyll fluorescence of pakchoi[J]. Journal of Plant Nutrition and Fertilizers, 2005, 11(5): 700-703(in Chinese).
    [26] 林浩澎, 孙慧明, 罗娉婷, 吴燊如, 蔡朗, 钟舒娴, 岳莎, 陈琼华, 舒琥. 一株耐碱变形假单胞菌ZY-3的鉴定及其脱氮特性[J]. 微生物学通报, 2022, 49(10): 4066-4079. LIN HP, SUN HM, LUO PT, WU SR, CAI L, ZHONG SX, YUE S, CHEN QH, SHU H. Identification of an alkali-tolerant Pseudomonas plecoglossicida ZY-3 and its nitrogen removal characteristics[J]. Microbiology China, 2022, 49(10): 4066-4079.
    [27] 马连营, 隆美容, 冯广达, 朱红惠. 耐镉真菌Paecilomyces lilacinus 6-20p孩>Azoarcus s癰吮阠牃恉硂稠by he畴牥扲杯转屯gous expression of ACC deaminase to improve performance of plants exposed to cadmium stress[J]. Microorganisms, 2020, 8(9): 1453.
    [42] HASSAN W, BASHIR S, ALI F, IJAZ M, HUSSAIN M, DAVID J. Role of ACC-deaminase and/豯佲霠ni杴桲卯ge荮琠婦ix镩兮孧 r扨镩荺桯癢呡陣牴恥卲扩镡朠剩n gro具乴獨堠祰孲孯扭otion of wheat (Triticum aestivum L.) under cadmium pollution[J]. Environmental Earth Sciences, 2016, 75(3): 267.acteristics and mechanisms of cadmium-resistant strains[J]. Journal of Agro-Environment Science, 2024. https://link.cnki.net/ urlid/12.1347.S.20240325.1857.008(in Chinese).
    [29] ZHANG Y, ZHOU Q, GAO C, LU Y, SHENG Y, XIAO M, YUN YL, SELVARAJ JN, ZHANG XH, LI YD, YU XJ. Endophytic bacteria for Cd remediation in rice: unraveling the Cd tolerance mechanisms of Cupriavidus metallidurans CML2[J]. Journal of Hazardous Materials, 2024, 469: 133846.
    [30] 闫敏, 秦诗洁, 崔永亮, 涂卫国, 沈甜, 刘含, 张芳, 余秀梅. 镉吸附细菌的分离及其对土壤镉的固定[J]. 微生物学报, 2020, 60(11): 2423-2433. YAN M, QIN SJ, CUI YL, TU WG, SHEN T, LIU H, ZHANG F, YU XM. Isolation of cadmium-adsorbing bacteria for soil cadmium fixation[J]. Acta Microbiologica Sinica, 2020, 60(11): 2423-2433.
    [31] CHO I, LEE SY, CHO KS. Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3[J]. World Journal of Microbiology and Biotechnology, 2024, 40(8): 245.
    [32] ABDOLLAHI S, GOLCHIN A, SHAHRYARI F. Lead and cadmium-resistant bacterial species isolated from heavy metal-contaminated soils show plant growth-promoting traits[J]. International Microbiology, 2020, 23(4): 625-640.
    [33] 张旭辉, 孙斌, 魏志敏, 赵晨雨, 徐源洲, 张力浩, 徐莉. 2株耐镉微生物的筛选及其对镉的吸附钝化差异机制[J]. 南京农业大学学报, 2019, 42(5): 869-876. ZHANG XH, SUN B, WEI ZM, ZHAO CY, XU YZ, ZHANG LH, XU L. Screening of two cadmium tolerant microorganisms and their differences in adsorption and immobilization of cadmium[J]. Journal of Nanjing Agricultural University, 2019, 42(5): 869-876.
    [34] XIAO R, ZHENG Y. Overview of microalgal extracellular polymeric substances (EPS) and their applications[J]. Biotechnology Advances, 2016, 34(7): 1225-1244.
    [35] DING PF, SONG WF, YANG ZH, JIAN JY. Influence of Zn(II) stress-induction on component variation and sorption performance of extracellular polymeric substances (EPS) from Bacillus vallismortis[J]. Bioprocess and Biosystems Engineering, 2018, 41(6): 781-791.
    [36] LIAN ZY, YANG ZY, SONG WF, SUN MG, GAN Y, BAI XY. Characteristics of EPS from Pseudomonas aeruginosa and Alcaligenes faecalis under Cd(II) stress: changes in chemical components and adsorption performance[J]. Environmental Science and Pollution Research, 2022, 29: 75883-75895.
    [37] 苏楠楠, 赵庆照, 王芳, 安天赐, 牛晶晶, 闫嘉欣, 杨建军, 韩辉. 解磷细菌Klebsiella sp. M2钝化重金属及阻控小麦吸收Cd和Pb效应[J]. 环境科学, 2024, 45(7): 4321-4331. SU NN, ZHAO QZ, WANG F, AN TC, NIU JJ, YAN JX, YANG JJ, HAN H. Immobilization of heavy metals by phosphorus-solubilizing bacteria and inhibition of Cd and Pb uptake by wheat[J]. Environmental Science, 2024, 45(7): 4321-4331(in Chinese).
    [38] HAN YH, MAO HL, WANG SS, DENG JC, CHEN DL, LI M. Ecofriendly green biosynthesis of bacterial cellulose by Komagataeibacter xylinus B2-1 using the shell extract of Sapindus mukorossi Gaertn. as culture medium[J]. Cellulose, 2020, 27(3): 1255-1272.
    [39] CHEN B, LUO S, WU YJ, YE JY, WANG Q, XU XM, PAN FS, KHAN KY, FENG Y, YANG XE. The effects of the endophytic bacterium Pseudomonas fluorescens Sasm05 and IAA on the plant growth and cadmium uptake of Sedum alfredii Hance[J]. Frontiers in Microbiology, 2017, 8: 2538.
    [40] SHEN SL, LI YH, CHEN MB, HUANG J, LIU F, XIE SJ, KONG LP, PAN Y. Reduced cadmium toxicity in rapeseed via alteration of root properties and accelerated plant growth by a nitrogen-fixing bacterium[J]. Journal of Hazardous Materials, 2023, 449: 131040.
    [41] FERNÁNDEZ-LLAMOSAS H, IBERO J, THIJS S, IMPERATO V, VANGRONSVELD J, DÍAZ E, CARMONA M. Enhancing the rice seedlings growth promotion abilities of <�
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陆君铭,吉春喜,郭健杰,刘睿,张莉刚,殷豆豆,唐家昊,张红岩,申乃坤. 一株耐镉促生细菌Achromobacter sp. A81的分离鉴定及特性[J]. 微生物学报, 2025, 65(1): 90-105

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 196
  • HTML阅读次数: 128
  • 引用次数: 0
历史
  • 收稿日期:2024-08-07
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码