共培养微生物降解多环芳烃的研究进展
作者:
作者单位:

新疆师范大学 生命科学学院,新疆特殊环境物种保护与调控生物学实验室,新疆 乌鲁木齐

作者简介:

王箐:构思论文结构并撰写文章;吕倩婧:提供理论支持;杨灼南:参与论文讨论和构思;靳奥飞:参与论文讨论和构思;张瑞:修改手稿。

基金项目:

新疆维吾尔自治区自然科学基金(2022D01D42);国家自然科学基金(31560440)


Research progress in the degradation of polycyclic aromatic hydrocarbons by co-cultured microorganisms
Author:
Affiliation:

Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, School of Life Sciences, Xinjiang Normal University, Urumqi, Xinjiang, China

Fund Project:

This work was supported by Natural Science Foundation of Xinjiang Uygur Autonomous Region (2022D01D42) and the National Natural Science Foundation of China (31560440).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [81]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    多环芳烃(polycyclic aromatic hydrocarbons, PAHs)在环境中分布广泛,且具有显著的生态和环境毒理效应,因此,对PAHs污染场地的治理与修复备受关注。微生物降解作为多环芳烃污染的修复的方式之一,具有成本低、效率高、环境友好等诸多优点。相较于传统的单一菌株降解方法,共培养微生物体系通常展现出更优的降解效果,具有更强的适应性和抗逆性。本文综述了降解多环芳烃的共培养微生物的菌株种类及其降解机理,并指出了构建共培养体系的策略及不同微生物组合,为共培养微生物菌群应用于有机污染环境的生物强化修复提供了参考。

    Abstract:

    Polycyclic aromatic hydrocarbons (PAHs) are widely distributed in the environment and have ecological and environmental toxicological effects. Therefore, the treatment and remediation of PAH-contaminated sites have attracted much attention. Microbial degradation, as one of the remediation methods for PAH pollution, has the advantages of low cost, high efficiency, and environmental friendliness. The co-cultured microbial system usually has better degradation effect, stronger adaptability, and greater resistance to stress than single strains. This paper reviews the microbial species and mechanisms of co-cultured microorganisms for degrading PAHs and points out the strategies for constructing co-culture systems and different microbial combinations, hoping to provide reference for the application of co-cultured microbial flora in the remediation of organically polluted environments.

    参考文献
    [1] BARBOSA JRF, ROCHA BA, SOUZA MCO, BOCATO MZ, AZEVEDO LF, ADEYEMI JA, SANTANA A, CAMPIGLIA AD. Polycyclic aromatic hydrocarbons (PAHs): updated aspects of their determination, kinetics in the human body, and toxicity[J]. Journal of Toxicology and Environmental Health Part B, Critical Reviews, 2023, 26(1): 28-65.
    [2] QIAO M, QI WX, LIU HJ, QU JH. Oxygenated polycyclic aromatic hydrocarbons in the surface water environment: occurrence, ecotoxicity, and sources[J]. Environment International, 2022, 163: 107232.
    [3] DAI CM, HAN YM, DUAN YP, LAI XY, FU RB, LIU SG, LEONG KH, TU Y, ZHOU L. Review on the contamination and remediation of polycyclic aromatic hydrocarbons (PAHs) in coastal soil and sediments[J]. Environmental Research, 2022, 205: 112423.
    [4] ISMAIL NA, KASMURI N, HAMZAH N. Microbial bioremediation techniques for polycyclic aromatic hydrocarbon (PAHs): a review[J]. Water, Air & Soil Pollution, 2022, 233(4): 124.
    [5] ALAO MB, ADEBAYO EA. Fungi as veritable tool in bioremediation of polycyclic aromatic hydrocarbons-polluted wastewater[J]. Journal of Basic Microbiology, 2022, 62(3/4): 223-244.
    [6] GOSAI HB, PANSERIYA HZ, PATEL PG, PATEL AC, SHANKAR A, VARJANI S, DAVE BP. Exploring bacterial communities through metagenomics during bioremediation of polycyclic aromatic hydrocarbons from contaminated sediments[J]. Science of the Total Environment, 2022, 842: 156794.
    [7] TOMAR RS, RAI-KALAL P, JAJOO A. Impact of polycyclic aromatic hydrocarbons on photosynthetic and biochemical functions and its bioremediation by Chlorella vulgaris[J]. Algal Research, 2022, 67: 102815.
    [8] KUMARI S, REGAR RK, MANICKAM N. Improved polycyclic aromatic hydrocarbon degradation in a crude oil by individual and a consortium of bacteria[J]. Bioresource Technology, 2018, 254: 174-179.
    [9] ARUN A, RAJA PP, ARTHI R, ANANTHI M, KUMAR KS, EYINI M. Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach[J]. Applied Biochemistry and Biotechnology, 2008, 151(2): 132-142.
    [10] ZHONG Y, LUAN TG, LIN L, LIU H, TAM NFY. Production of metabolites in the biodegradation of phenanthrene, fluoranthene and pyrene by the mixed culture of Mycobacterium sp. and Sphingomonas sp.[J]. Bioresource Technology, 2011, 102(3): 2965-2972.
    [11] GHOSAL D, GHOSH S, DUTTA TK, AHN Y. Current state of knowledge in microbial degradation of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Frontiers in Microbiology, 2016, 7: 1369.
    [12] LIU YL, HU HY, ZANAROLI G, XU P, TANG HZ. A Pseudomonas sp. strain uniquely degrades PAHs and heterocyclic derivatives via lateral dioxygenation pathways[J]. Journal of Hazardous Materials, 2021, 403: 123956.
    [13] 刘玉华, 王慧, 胡晓珂. 不动杆菌属(Acinetobacter)细菌降解石油烃的研究进展[J]. 微生物学通报, 2016, 43(7): 1579-1589.LIU YH, WANG H, HU XK. Recent advances in the biodegradation of hydrocarbons by Acinetobacter species[J]. Microbiology China, 2016, 43(7): 1579-1589 (in Chinese).
    [14] 高秀荣, 林姗娜, 孙安琪, 廖用开, 张又驰, 蔡超. 一株多环芳烃降解菌的筛选及其降解特性[J]. 环境工程学报, 2020, 14(6): 1668-1678.GAO XR, LIN SN, SUN AQ, LIAO YK, ZHANG YC, CAI C. Screening and degradation characteristics of a PAHs-degrading bacteria[J]. Chinese Journal of Environmental Engineering, 2020, 14(6): 1668-1678 (in Chinese).
    [15] WANG WP, WANG L, SHAO ZZ. Polycyclic aromatic hydrocarbon (PAH) degradation pathways of the obligate marine PAH degrader Cycloclasticus sp. strain P1[J]. Applied and Environmental Microbiology, 2018, 84(21): e01261-18.
    [16] ZENG J, ZHU QH, LI YJ, DAI YL, WU YC, SUN YH, MIU LY, CHEN H, LIN XG. Isolation of diverse pyrene-degrading bacteria via introducing readily utilized phenanthrene[J]. Chemosphere, 2019, 222: 534-540.
    [17] SATHISHKUMAR M, BINUPRIYA AR, BAIK SH, YUN SE. Biodegradation of crude oil by individual bacterial strains and a mixed bacterial consortium isolated from hydrocarbon contaminated areas[J]. CLEAN-Soil, Air, Water, 2008, 36(1): 92-96.
    [18] PATEL AB, MAHALA K, JAIN K, MADAMWAR D. Development of mixed bacterial cultures DAK11 capable for degrading mixture of polycyclic aromatic hydrocarbons (PAHs)[J]. Bioresource Technology, 2018, 253: 288-296.
    [19] BOKADE P, BAJAJ A. Molecular advances in mycoremediation of polycyclic aromatic hydrocarbons: exploring fungal bacterial interactions[J]. Journal of Basic Microbiology, 2023, 63(3/4): 239-256.
    [20] TEERAPATSAKUL C, POTHIRATANA C, CHITRADON L, THACHEPAN S. Biodegradation of polycyclic aromatic hydrocarbons by a thermotolerant white rot fungus Trametes polyzona RYNF13[J]. The Journal of general and applied microbiology, 2016, 62(6): 303-312.
    [21] AGRAWAL N, VERMA P, SHAHI SK. Degradation of polycyclic aromatic hydrocarbons (phenanthrene and pyrene) by the ligninolytic fungi Ganoderma lucidum isolated from the hardwood stump[J]. Bioresources and Bioprocessing, 2018, 5(1): 1-9.
    [22] HADIBARATA T, KRISTANTI RA, HAMDZAH M. Biosorption and biotransformation of fluoranthene by the white‐rot fungus Pleurotus eryngii F032[J]. Biotechnology and Applied Biochemistry, 2014, 61(2): 126-133.
    [23] 丁洁, 陈宝梁, 朱利中. 黄孢原毛平革菌菌球对多环芳烃的生物吸附和生物降解作用[J]. 科学通报, 2012, 57(24): 2276-2284.DING J, CHEN BL, ZHU LZ. Biosorption and biodegradation of polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in aqueous solution[J]. Chinese Science Bulletin, 2012, 57(24): 2276-2284 (in Chinese).
    [24] 田晶, 徐小琳, 康彦顺, 汤伟华, 刘思琪. 广谱性多环芳烃降解真菌Aspergillus flavus AD-X-1的筛选及其性能研究[J]. 生物技术通报, 2018, 34(8): 115-122.TIAN J, XU XL, KANG YS, TANG WH, LIU SQ. Screening and characteristics of a broad spectrum fungus degrading polycyclic-aromatic hydrocarbons: Aspergillus flavus AD-X-1[J]. Biotechnology Bulletin, 2018, 34(8): 115-122 (in Chinese).
    [25] ESTEVES F, RUEFF J, KRANENDONK M. The central role of cytochrome P450 in xenobiotic metabolism: a brief review on a fascinating enzyme family[J]. Journal of Xenobiotics, 2021, 11(3): 94-114.
    [26] IMAM A, SUMAN SK, KANAUJIA PK, RAY A. Biological machinery for polycyclic aromatic hydrocarbons degradation: a review[J]. Bioresource Technology, 2022, 343: 126121.
    [27] AHMAD I. Microalgae—bacteria consortia: a review on the degradation of polycyclic aromatic hydrocarbons (PAHs)[J]. Arabian Journal for Science and Engineering, 2022, 47(1): 19-43.
    [28] 皮永蕊, 吕永红, 柳莹, 唐永政, 高丽, 包木太. 微藻-细菌共生体系在废水处理中的应用[J]. 微生物学报, 2019, 59(6): 1188-1196.PI YR, Lü YH, LIU Y, TANG YZ, GAO L, BAO MT. Application of microalgae-bacteria symbiosis system in wastewater treatment[J]. Acta Microbiologica Sinica, 2019, 59(6): 1188-1196 (in Chinese).
    [29] NARRO ML, CERNIGLIA CE, BAALEN CV, GIBSON DT. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6[J]. Applied and Environmental Microbiology, 1992, 58(4): 1351-1359.
    [30] 罗丽娟. 羊角月牙藻(Selenastrum capricornutum)对高环多环芳烃的降解行为研究[D]. 广州: 中山大学博士学位论文, 2013.LUO LJ. Study on degradation behavior of high-ring polycyclic aromatic hydrocarbons by Selenastrum capricornutum[D]. Guangzhou: Doctoral Dissertation of Sun Yat-sen University, 2013 (in Chinese).
    [31] LEI AP, HU ZL, WONG YS, TAM NFY. Removal of fluoranthene and pyrene by different microalgal species[J]. Bioresource Technology, 2007, 98(2): 273-280.
    [32] 李苏洁, 陈姗姗, 栾天罡. 藻菌共生处理污水的机制与应用研究进展[J]. 微生物学报, 2022, 62(3): 918-929.LI SJ, CHEN SS, LUAN TG. Advances in mechanisms and applications of algae-bacteria/fungi symbiosis in sewage treatment[J]. Acta Microbiologica Sinica, 2022, 62(3): 918-929 (in Chinese).
    [33] PREMNATH N, MOHANRASU K, RAO RGR, DINESH GH, PRAKASH GS, ANANTHI V, PONNUCHAMY K, MUTHUSAMY G, ARUN A. A crucial review on polycyclic aromatic hydrocarbons-environmental occurrence and strategies for microbial degradation[J]. Chemosphere, 2021, 280: 130608.
    [34] FESTA S, COPPOTELLI BM, MORELLI IS. Bacterial diversity and functional interactions between bacterial strains from a phenanthrene-degrading consortium obtained from a chronically contaminated-soil[J]. International Biodeterioration & Biodegradation, 2013, 85: 42-51.
    [35] YU GH, SUN YM, HAN HY, YAN X, WANG Y, GE XX, QIAO B, TAN LL. Coculture, an efficient biotechnology for mining the biosynthesis potential of macrofungi via interspecies interactions[J]. Frontiers in Microbiology, 2021, 12: 663924.
    [36] BANKOLE PO, OMONI VT, MULLA SI, ADEBAJO SO, ADEKUNLE AA. Co-biomass degradation of fluoranthene by marine-derived fungi Aspergillus aculeatus and Mucor irregularis: comprehensive process optimization, enzyme induction and metabolic analyses[J]. Arabian Journal of Chemistry, 2022, 15(9): 104036.
    [37] ESPINOSA-ORTIZ EJ, RENE ER, GERLACH R. Potential use of fungal-bacterial co-cultures for the removal of organic pollutants[J]. Critical Reviews in Biotechnology, 2022, 42(3): 361-383.
    [38] LUO SS, CHEN BW, LIN L, WANG XW, TAM NFY, LUAN TG. Pyrene degradation accelerated by constructed consortium of bacterium and microalga: effects of degradation products on the microalgal growth[J]. Environmental Science & Technology, 2014, 48(23): 13917-13924.
    [39] WANAPAISAN P, LAOTHAMTEEP N, VEJARANO F, CHAKRABORTY J, SHINTANI M, MUANGCHINDA C, MORITA T, MINAKUCHI CS, INOUE K, NOJIRI H, PINYAKONG O. Synergistic degradation of pyrene by five culturable bacteria in a mangrove sediment-derived bacterial consortium[J]. Journal of Hazardous Materials, 2018, 342: 561-570.
    [40] SUN SS, WANG HZ, YAN K, LOU J, DING JH, SNYDER SA, WU LS, XU JM. Metabolic interactions in a bacterial co-culture accelerate phenanthrene degradation[J]. Journal of hazardous materials, 2021, 403: 123825.
    [41] BHATTACHARYA S, DAS A, PALANISWAMY M, ANGAYARKANNI J. Degradation of benzo[a]pyrene by Pleurotus ostreatus PO-3 in the presence of defined fungal and bacterial co-cultures[J]. Journal of Basic Microbiology, 2016, 57(2): 95-103.
    [42] LI J, CHEN WX, ZHOU W, WANG Y, DENG MC, ZHOU SQ. Synergistic degradation of pyrene by Pseudomonas aeruginosa PA06 and Achromobacter sp. AC15 with sodium citrate as the co-metabolic carbon source[J]. Ecotoxicology, 2021, 30(7): 1487-1498.
    [43] ATAKPA EO, ZHOU HH, JIANG LJ, MA YH, LIANG YP, LI YH, ZHANG DD, ZHANG CF. Improved degradation of petroleum hydrocarbons by co-culture of fungi and biosurfactant-producing bacteria[J]. Chemosphere, 2022, 290: 133337.
    [44] XIAO L, ZHAO XH, YAO JH, LU Q, FENG XJ, WU SM. Biodegradation and adsorption of benzo[a]pyrene by fungi-bacterial coculture[J]. Ecotoxicology and Environmental Safety, 2024, 283: 116811.
    [45] SUBASHCHANDRABOSE SR, VENKATESWARLU K, VENKIDUSAMY K, PALANISAMI T, NAIDU R, MEGHARAJ M. Bioremediation of soil long-term contaminated with PAHs by algal-bacterial synergy of Chlorella sp. MM3 and Rhodococcus wratislaviensis strain 9 in slurry phase[J]. Science of the Total Environment, 2019, 659: 724-731.
    [46] VARJANI S, UPASANI VN. Bioaugmentation of Pseudomonas aeruginosa NCIM 5514—a novel oily waste degrader for treatment of petroleum hydrocarbons[J]. Bioresource Technology, 2021, 319: 124240.
    [47] CUI JQ, HE ZQ, NTAKIRUTIMANA S, LIU ZH, LI BZ, YUAN YJ. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation[J]. Frontiers in Microbiology, 2023, 14: 1207196.
    [48] LI D, LI K, LIU Y, WANG LP, LIU N, HUANG SM. Synergistic PAH biodegradation by a mixed bacterial consortium: based on a multi-substrate enrichment approach[J]. Environmental Science and Pollution Research, 2023, 30(9): 24606-24616.
    [49] RAQUEL S, NATALIA G, LUIS FERNANDO B, MARIA CARMEN M. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by a wood-degrading consortium at low temperatures[J]. FEMS Microbiology Ecology, 2013, 83(2): 438-449.
    [50] 王重阳. 嗜盐微生物对典型多环芳烃的降解及其分子机制的研究[D]. 北京: 清华大学博士学位论文, 2018.WANG CY. Study on degradation of typical polycyclic aromatic hydrocarbons by halophilic microorganisms and its molecular mechanism[D]. Beijing: Doctoral Dissertation of Tsinghua University, 2018 (in Chinese).
    [51] SAKSHI, SINGH SK, HARITASH AK. Bacterial degradation of mixed-PAHs and expression of PAH-catabolic genes[J]. World Journal of Microbiology and Biotechnology, 2023, 39(2): 47.
    [52] 朱清禾, 曾军, 吴宇澄, 杨洁, 林先贵. 多环芳烃共代谢对苯并[a]蒽微生物降解的影响及机制[J]. 中国环境科学, 2022, 42(2): 808-814.ZHU QH, ZENG J, WU YC, YANG J, LIN XG. Effect of co-metabolism by polycyclic aromatic hydrocarbon on the microbial degradation of benzo[a]anthracene and its mechanism[J]. China Environmental Science, 2022, 42(2): 808-814 (in Chinese).
    [53] CHI YJ, HATAKKA A, MAIJALA P. Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes?[J]. International Biodeterioration & Biodegradation, 2007, 59(1): 32-39.
    [54] YANTO DHY, TACHIBANA S. Potential of fungal co-culturing for accelerated biodegradation of petroleum hydrocarbons in soil[J]. Journal of Hazardous Materials, 2014, 278: 454-463.
    [55] CUI TW, YUAN B, GUO HW, TIAN H, WANG WM, MA YQ, LI CZ, FEI Q. Enhanced lignin biodegradation by consortium of white rot fungi: microbial synergistic effects and product mapping[J]. Biotechnology for Biofuels, 2021, 14(162): 1-11.
    [56] OSTREM LOSS EM, YU JH. Bioremediation and microbial metabolism of benzo(a)pyrene[J]. Molecular Microbiology, 2018, 109(4): 433-444.
    [57] FREY-KLETT P, BURLINSON P, DEVEAU A, BARRET M, TARKKA M, SARNIGUET A. Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists[J]. Microbiology and Molecular Biology Reviews, 2011, 75(4): 583-609.
    [58] 林先贵, 吴宇澄, 曾军, 李烜桢, 张晶, 尹睿. 多环芳烃的真菌漆酶转化及污染土壤修复技术[J]. 微生物学通报, 2017, 44(7): 1720-1727.LIN XG, WU YC, ZENG J, LI XZ, ZHANG J, YIN R. Transformation of polycyclic aromatic hydrocarbon by fungal laccases and potential application in soil remediation[J]. Microbiology China, 2017, 44(7): 1720-1727 (in Chinese).
    [59] BOONCHAN S, BRITZ ML, STANLEY GA. Degradation and mineralization of high-molecular-weight polycyclic aromatic hydrocarbons by defined fungal-bacterial cocultures[J]. Applied and Environmental Microbiology, 2000, 66(3): 1007-1019.
    [60] 迪丽拜尔·吐尔逊. 新疆开菲尔中Bacillus haynesii与Kluyveromyces marxianus共培养降解苯并芘及其协同作用研究[D]. 乌鲁木齐: 新疆师范大学硕士学位论文, 2024.TURSUN D. Study on co-cultivation of Bacillus haynesii and Kluyveromyces marxianus from Xinjiang kefir for degradation of benzo[a]pyrene and their synergistic effects[D]. Urumqi: Master’s Dissertation of Xinjiang Normal University, 2024 (in Chinese).
    [61] SIVAKUMAR G, XU JF, THOMPSON RW, YANG Y, RANDOL-SMITH P, WEATHERS PJ. Integrated green algal technology for bioremediation and biofuel[J]. Bioresource Technology, 2012, 107: 1-9.
    [62] CHERNIKOVA TN, BARGIELA R, TOSHCHAKOV SV, SHIVARAMAN V, LUNEV EA, YAKIMOV MM, THOMAS DN, GOLYSHIN PN. Hydrocarbon-degrading bacteria Alcanivorax and Marinobacter associated with microalgae Pavlova lutheri and Nannochloropsis oculata[J]. Frontiers in Microbiology, 2020, 11: 572931.
    [63] BORDE X, GUIEYSSE B, DELGADO O, MU?OZ R, HATTI-KAUL R, NUGIER-CHAUVIN C, PATIN H, MATTIASSON B. Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants[J]. Bioresource Technology, 2003, 86(3): 293-300.
    [64] LI XJ, CAI FS, LUAN TG, LIN L, CHEN BW. Pyrene metabolites by bacterium enhancing cell division of green alga Selenastrum capricornutum[J]. Science of the Total Environment, 2019, 689: 287-294.
    [65] PATEL JG, NIRMAL KUMAR JI, KUMAR RN, KHAN SR. Enhancement of pyrene degradation efficacy of Synechocystis sp., by construction of an artificial microalgal-bacterial consortium[J]. Cogent Chemistry, 2015, 1(1): 1064193.
    [66] GRUNG M, RUUS A, SCHNEIDER SC, HJERMANN DO, BORGA K. Toxicokinetics of pyrene in the freshwater alga Chara rudis[J]. Chemosphere, 2016, 157: 49-56.
    [67] LE CHEVANTON M, GARNIER M, BOUGARAN G, SCHREIBER N, LUKOMSKA E, BERARD JB, FOUILLAND E, BERNARD O, CADORET JP. Screening and selection of growth-promoting bacteria for Dunaliella cultures[J]. Algal Research, 2013, 2(3): 212-222.
    [68] BAMFORTH SM, SINGLETON I. Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions[J]. Journal of Chemical Technology & Biotechnology, 2005, 80(7): 723-736.
    [69] ASGHARI S, RAJABI F, TARRAHI R, SALEHI-LISAR SY, ASNAASHARI S, OMIDI Y, MOVAFEGHI A. Potential of the green microalga Chlorella vulgaris to fight against fluorene contamination: evaluation of antioxidant systems and identification of intermediate biodegradation compounds[J]. Journal of Applied Phycology, 2020, 32: 411-419.
    [70] ARIFEEN MZ UL, MA YN, WU TS, CHU C, LIU X, JIANG JP, LI DX, XUE YR, LIU CH. Anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungi isolated from anaerobic coal-associated sediments at 2.5 km below the seafloor[J]. Chemosphere, 2022, 303: 135062.
    [71] KADRI T, ROUISSI T, BRAR SK, CLEDON M, SARMA S, VERMA M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review[J]. Journal of Environmental Sciences, 2017, 51: 52-74.
    [72] KIM SJ, KWEON O, JONES RC, EDMONDSON RD, CERNIGLIA CE. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1[J]. Biodegradation, 2008, 19(6): 859-881.
    [73] BREZNA B, KWEON O, STINGLEY RL, FREEMAN JP, KHAN AA, POLEK B, JONES RC, CERNIGLIA CE. Molecular characterization of cytochrome P450 genes in the polycyclic aromatic hydrocarbon degrading Mycobacterium vanbaalenii PYR-1[J]. Applied Microbiology and Biotechnology, 2006, 71: 522-532.
    [74] KOTTERMAN MJJ, VIS EH, FIELD JA. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora[J]. Applied and Environmental Microbiology, 1998, 64(8): 2853-2858.
    [75] IBRAR M, YANG XW. Reconstructing polyaromatic hydrocarbons degrading pathways in the enriched bacterial consortium and their biosurfactants characterization[J]. Journal of Environmental Chemical Engineering, 2022, 10(2): 107219.
    [76] CHEN YS, HUANG YH, LV HX, ZHAO HM, XIANG L, LI H, MO CH, LI YW, CAI QY. Simultaneous biodegradation of polycyclic aromatic hydrocarbons and phthalates by bacterial consortium and its bioremediation for complex polluted soil and sewage sludge[J]. Bioresource Technology, 2024, 408: 131161.
    [77] WU SB, LIU JH, LIU CJ, YANG AD, QIAO JJ. Quorum sensing for population-level control of bacteria and potential therapeutic applications[J]. Cellular and Molecular Life Sciences, 2020, 77: 1319-1343.
    [78] GARG N, MANCHANDA G, KUMAR A. Bacterial quorum sensing: circuits and applications[J]. Antonie van Leeuwenhoek, 2014, 105: 289-305.
    [79] CHEN Y, KIM JK, HIRNING AJ, JOSIC K, BENNETT MR. Emergent genetic oscillations in a synthetic microbial consortium[J]. Science, 2015, 349(6251): 986-989.
    [80] YU ZL, HU ZY, XU QM, ZHANG MT, YUAN N, LIU JR, QIU M, YIN JH. The LuxI/LuxR-type quorum sensing system regulates degradation of polycyclic aromatic hydrocarbons via two mechanisms[J]. International Journal of Molecular Sciences, 2020, 21(15): 5548.
    [81] 余晓龙, 毛旭辉, 郑焰. 群体感应调控有机污染物生物降解研究进展[J]. 环境工程技术学报, 2023, 13(5): 1686-1693.YU XL, MAO XH, ZHENG Y. Research progress on quorum sensing regulation of organic pollutants biodegradation[J]. Journal of Environmental Engineering Technology, 2023, 13(5): 1686-1693 (in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王箐,吕倩婧,杨灼南,靳奥飞,张瑞. 共培养微生物降解多环芳烃的研究进展[J]. 微生物学报, 2025, 65(3): 981-993

复制
分享
文章指标
  • 点击次数:7
  • 下载次数: 26
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2024-10-14
  • 在线发布日期: 2025-03-10
文章二维码