细菌警报素(p)ppGpp代谢的关键调控者:RSH蛋白的功能多样性
作者:
作者单位:

1.西安交通大学口腔医院,陕西省颅颌面精准医学研究重点实验室, 陕西 西安;2.西安交通大学口腔医院,口腔种植科,陕西 西安;3.西安交通大学 生命科学与技术学院,教育部生物医学信息工程重点实验室,线粒体生物医学研究所, 陕西 西安

作者简介:

王淼:论文撰写、绘图和修改;项雨霏:论文撰写和修改;贺龙龙:文献收集和论文指导;周秦:论文指导和审阅;许丹:论文构思、指导和审阅。

基金项目:

国家自然科学基金(32270188)


Functional diversity of RSH proteins, key regulators of bacterial alarmone (p)ppGpp metabolism
Author:
  • WANG Miao 1,2

    WANG Miao

    Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;Department of Implant Dentistry, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XIANG Yufei 1,2

    XIANG Yufei

    Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;Department of Implant Dentistry, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • HE Longlong 1,2

    HE Longlong

    Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;Department of Implant Dentistry, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHOU Qin 1,2

    ZHOU Qin

    Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;Department of Implant Dentistry, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • XU Dan 1,3

    XU Dan

    Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

1.Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;2.Department of Implant Dentistry, Hospital of Stomatology, Xi’an Jiaotong University, Xi’an, Shaanxi, China;3.Institute of Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32270188).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [77]
  • |
  • 相似文献 [1]
  • | | |
  • 文章评论
    摘要:

    细菌的严紧反应(stringent response)是细菌在面临恶劣生存环境时,通过改变新陈代谢并降低生长速度,以增强存活和适应环境能力的一种适应性反应。此反应由鸟苷四磷酸(guanosine tetraphosphate, ppGpp)和鸟苷五磷酸(guanosine pentaphosphate, pppGpp) (合称(p)ppGpp)的快速积累所介导,在微生物应对环境变化中发挥关键作用。细菌内的(p)ppGpp水平由RelA/SpoT同源蛋白(RelA/SpoT homologues, RSH)调控,包括小警报素合成酶(small alarmone synthetases, SAS)、小警报素水解酶(small alarmone hydrolases, SAH)以及双功能蛋白Rel。此外,近期研究发现了一种新的细菌警报素腺苷四磷酸(adenosine tetraphosphate, ppApp)和腺苷五磷酸(adenosine pentaphosphate, pppApp) (合称(p)ppApp),它能调控细菌的多种生物过程。鉴于不同细菌中涉及(p)ppGpp代谢的酶有所不同,本文对已知的RSH蛋白的结构及其生化特性进行系统的分类与综述,并总结其生物学功能,以促进未来在这一领域的深入研究与发展。

    Abstract:

    The bacterial stringent response refers to the adaptive reaction that bacteria exhibit when faced with adverse environmental conditions, altering their metabolism and reducing the growth rate to enhance survival and adaptability. The rapid accumulation of guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp), collectively referred to as (p)ppGpp in this article, mediates the stringent response, playing a crucial role in microbial adaptation to environmental changes. The levels of (p)ppGpp within bacteria are regulated by RelA/SpoT homologue (RSH) proteins, which include small alarmone synthetases (SASs), small alarmone hydrolases (SAHs), and bifunctional proteins such as Rel. Furthermore, recent studies have identified a new bacterial alarmone, adenosine tetraphosphate (ppApp) and adenosine pentaphosphate (pppApp), collectively referred to as (p)ppApp, which is involved in the regulation of various biological processes in bacteria. The enzymes involved in (p)ppGpp metabolism vary among different bacterial species. This study systematically classifies and reviews the structural and biochemical characteristics of the known RSH proteins and summarizes their biochemical functions, aiming to promote further exploration and development in this field.

    参考文献
    [1] BROWN A, FERNáNDEZ IS, GORDIYENKO Y, RAMAKRISHNAN V. Ribosome-dependent activation of stringent control[J]. Nature, 2016, 534(7606): 277-280.
    [2] IRVING SE, CHOUDHURY NR, CORRIGAN RM. The stringent response and physiological roles of (pp)pGpp in bacteria[J]. Nature Reviews Microbiology, 2021, 19(4): 256-271.
    [3] DALEBROUX ZD, SWANSON MS. ppGpp: magic beyond RNA polymerase[J]. Nature Reviews Microbiology, 2012, 10(3): 203-212.
    [4] SCHOFIELD WB, ZIMMERMANN-KOGADEEVA M, ZIMMERMANN M, BARRY NA, GOODMAN AL. The stringent response determines the ability of a commensal bacterium to survive starvation and to persist in the gut[J]. Cell Host & Microbe, 2018, 24(1): 120-132.e6.
    [5] POTRYKUS K, CASHEL M. (p)ppGpp: still magical?[J]. Annual Review of Microbiology, 2008, 62: 35-51.
    [6] 胡晓, 沈盆闪, 许健萍, 余佳琪, 音建华. ppGpp介导的抗生素胁迫应答机制研究进展[J]. 微生物学报, 2024, 64(3): 687-700.HU X, SHEN PS, XU JP, YU JQ, YIN JH. Research progress in ppGpp-mediated antibiotic stress response[J]. Acta Microbiologica Sinica, 2024, 64(3): 687-700 (in Chinese).
    [7] 宋阳, 王译婕, 王瑞, 申屠旭萍, 俞晓平. (p)ppGpp: “魔斑” 核苷酸在细菌中的研究进展[J]. 微生物学报, 2024, 64(2): 378-390.SONG Y, WANG YJ, WANG R, SHENTU XP, YU XP. (p)ppGpp: “magic point” nucleotide in bacteria[J]. Acta Microbiologica Sinica, 2024, 64(2): 378-390 (in Chinese).
    [8] GACA AO, KAJFASZ JK, MILLER JH, LIU KQ, WANG JD, ABRANCHES J, LEMOS JA. Basal levels of (p)ppGpp in Enterococcus faecalis: the magic beyond the stringent response[J]. mBio, 2013, 4(5): e00646-13.
    [9] JIMMY S, SAHA CK, KURATA T, STAVROPOULOS C, OLIVEIRA SRA, KOH A, CEPAUSKAS A, TAKADA H, REJMAN D, TENSON T, STRAHL H, GARCIA-PINO A, HAURYLIUK V, ATKINSON GC. A widespread toxin-antitoxin system exploiting growth control via alarmone signaling[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(19): 10500-10510.
    [10] DASGUPTA S, BASU P, PAL RR, BAG S, BHADRA RK. Genetic and mutational characterization of the small alarmone synthetase gene relV of Vibrio cholerae[J]. Microbiology, 2014, 160(Pt 9): 1855-1866.
    [11] RONNEAU S, HALLEZ R. Make and break the alarmone: regulation of (p)ppGpp synthetase/hydrolase enzymes in bacteria[J]. FEMS Microbiology Reviews, 2019, 43(4): 389-400.
    [12] YANG J, ANDERSON BW, TURDIEV A, TURDIEV H, STEVENSON DM, AMADOR-NOGUEZ D, LEE VT, WANG JD. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p)ppGpp[J]. Nature Communications, 2020, 11(1): 5388.
    [13] AHMAD S, WANG BY, WALKER MD, TRAN HR, STOGIOS PJ, SAVCHENKO A, GRANT RA, McARTHUR AG, LAUB MT, WHITNEY JC. An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575(7784): 674-678.
    [14] AHMAD S, GORDON IJ, TSANG KK, ALEXEI AG, SYCHANTHA D, COLAUTTI J, TRILESKY SL, KIM Y, WANG BY, WHITNEY JC. Identification of a broadly conserved family of enzymes that hydrolyze (p)ppApp[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(14): e2213771120.
    [15] ATKINSON GC, TENSON T, HAURYLIUK V. The RelA/SpoT homolog (RSH) superfamily: distribution and functional evolution of ppGpp synthetases and hydrolases across the tree of life[J]. PLoS One, 2011, 6(8): e23479.
    [16] HOGG T, MECHOLD U, MALKE H, CASHEL M, HILGENFELD R. Conformational antagonism between opposing active sites in a bifunctional RelA/SpoT homolog modulates (p)ppGpp metabolism during the stringent response[J]. Cell, 2004, 117(1): 57-68.
    [17] STEINCHEN W, SCHUHMACHER JS, ALTEGOER F, FAGE CD, SRINIVASAN V, LINNE U, MARAHIEL MA, BANGE G. Catalytic mechanism and allosteric regulation of an oligomeric (p)ppGpp synthetase by an alarmone[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(43): 13348-13353.
    [18] MECHOLD U, MURPHY H, BROWN L, CASHEL M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis[J]. Journal of Bacteriology, 2002, 184(11): 2878-2888.
    [19] BAG S, DAS B, DASGUPTA S, BHADRA RK. Mutational analysis of the (p)ppGpp synthetase activity of the Rel enzyme of Mycobacterium tuberculosis[J]. Archives of Microbiology, 2014, 196(8): 575-588.
    [20] YANG N, XIE SJ, TANG NY, CHOI MY, WANG Y, WATT RM. The Ps and Qs of alarmone synthesis in Staphylococcus aureus[J]. PLoS One, 2019, 14(10): e0213630.
    [21] MANAV MC, BELJANTSEVA J, BOJER MS, TENSON T, INGMER H, HAURYLIUK V, BRODERSEN DE. Structural basis for (p)ppGpp synthesis by the Staphylococcus aureus small alarmone synthetase RelP[J]. Journal of Biological Chemistry, 2018, 293(9): 3254-3264.
    [22] GEIGER T, K?STLE B, GRATANI FL, GOERKE C, WOLZ C. Two small (p)ppGpp synthases in Staphylococcus aureus mediate tolerance against cell envelope stress conditions[J]. Journal of Bacteriology, 2014, 196(4): 894-902.
    [23] GRATANI FL, HORVATEK P, GEIGER T, BORISOVA M, MAYER C, GRIN I, WAGNER S, STEINCHEN W, BANGE G, VELIC A, MA?EK B, WOLZ C. Regulation of the opposing (p)ppGpp synthetase and hydrolase activities in a bifunctional RelA/SpoT homologue from Staphylococcus aureus[J]. PLoS Genetics, 2018, 14(7): e1007514.
    [24] BHAWINI A, PANDEY P, DUBEY AP, ZEHRA A, NATH G, MISHRA MN. RelQ mediates the expression of β-lactam resistance in methicillin-resistant Staphylococcus aureus[J]. Frontiers in Microbiology, 2019, 10: 339.
    [25] LI L, BAYER AS, CHEUNG A, LU L, ABDELHADY W, DONEGAN NP, HONG JI, YEAMAN MR, XIONG YQ. The stringent response contributes to persistent methicillin-resistant Staphylococcus aureus endovascular infection through the purine biosynthetic pathway[J]. The Journal of Infectious Diseases, 2020, 222(7): 1188-1198.
    [26] GACA AO, KUDRIN P, COLOMER-WINTER C, BELJANTSEVA J, LIU KQ, ANDERSON B, WANG JD, REJMAN D, POTRYKUS K, CASHEL M, HAURYLIUK V, LEMOS JA. From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp synthesized by the small alarmone synthetase of Enterococcus faecalis[J]. Journal of Bacteriology, 2015, 197(18): 2908-2919.
    [27] LEMOS JA, LIN VK, NASCIMENTO MM, ABRANCHES J, BURNE RA. Three gene products govern (p)ppGpp production by Streptococcus mutans[J]. Molecular Microbiology, 2007, 65(6): 1568-1581.
    [28] LEMOS JA, NASCIMENTO MM, LIN VK, ABRANCHES J, BURNE RA. Global regulation by (p)ppGpp and CodY in Streptococcus mutans[J]. Journal of Bacteriology, 2008, 190(15): 5291-5299.
    [29] SEATON K, AHN SJ, SAGSTETTER AM, BURNE RA. A transcriptional regulator and ABC transporters link stress tolerance, (p)ppGpp, and genetic competence in Streptococcus mutans[J]. Journal of Bacteriology, 2011, 193(4): 862-874.
    [30] KIM JN, AHN SJ, SEATON K, GARRETT S, BURNE RA. Transcriptional organization and physiological contributions of the relQ operon of Streptococcus mutans[J]. Journal of Bacteriology, 2012, 194(8): 1968-1978.
    [31] SHIELDS RC, KIM JN, AHN SJ, BURNE RA. Peptides encoded in the Streptococcus mutans RcrRPQ operon are essential for thermotolerance[J]. Microbiology, 2020, 166(3): 306-317.
    [32] LEMOS JAC, BROWN TAJr, BURNE RA. Effects of RelA on key virulence properties of planktonic and biofilm populations of Streptococcus mutans[J]. Infection and Immunity, 2004, 72(3): 1431-1440.
    [33] FUNG DK, YANG J, STEVENSON DM, AMADOR-NOGUEZ D, WANG JD. Small alarmone synthetase SasA expression leads to concomitant accumulation of pGpp, ppApp, and AppppA in Bacillus subtilis[J]. Frontiers in Microbiology, 2020, 11: 2083.
    [34] NANAMIYA H, KASAI K, NOZAWA A, YUN CS, NARISAWA T, MURAKAMI K, NATORI Y, KAWAMURA F, TOZAWA Y. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis[J]. Molecular Microbiology, 2008, 67(2): 291-304.
    [35] BELJANTSEVA J, KUDRIN P, ANDRESEN L, SHINGLER V, ATKINSON GC, TENSON T, HAURYLIUK V. Negative allosteric regulation of Enterococcus faecalis small alarmone synthetase RelQ by single-stranded RNA[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(14): 3726-3731.
    [36] ABRANCHES J, MARTINEZ AR, KAJFASZ JK, CHáVEZ V, GARSIN DA, LEMOS JA. The molecular alarmone (p)ppGpp mediates stress responses, vancomycin tolerance, and virulence in Enterococcus faecalis[J]. Journal of Bacteriology, 2009, 191(7): 2248-2256.
    [37] BATTESTI A, BOUVERET E. Bacteria possessing two RelA/SpoT-like proteins have evolved a specific stringent response involving the acyl carrier protein-SpoT interaction[J]. Journal of Bacteriology, 2009, 191(2): 616-624.
    [38] KAZMIERCZAK KM, WAYNE KJ, RECHTSTEINER A, WINKLER ME. Roles of rel(Spn) in stringent response, global regulation and virulence of serotype 2 Streptococcus pneumoniae D39[J]. Molecular Microbiology, 2009, 72(3): 590-611.
    [39] PETCHIAPPAN A, NAIK SY, CHATTERJI D. RelZ-mediated stress response in Mycobacterium smegmatis: pGpp synthesis and its regulation[J]. Journal of Bacteriology, 2020, 202(2): e00444-19.
    [40] MURDESHWAR MS, CHATTERJI D. MS_RHII-RSD, a dual-function RNase HII-(p)ppGpp synthetase from Mycobacterium smegmatis[J]. Journal of Bacteriology, 2012, 194(15): 4003-4014.
    [41] KRISHNAN S, PETCHIAPPAN A, SINGH A, BHATT A, CHATTERJI D. R-loop induced stress response by second (p)ppGpp synthetase in Mycobacterium smegmatis: functional and domain interdependence[J]. Molecular Microbiology, 2016, 102(1): 168-182.
    [42] RUWE M, KALINOWSKI J, PERSICKE M. Identification and functional characterization of small alarmone synthetases in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2017, 8: 1601.
    [43] POUDEL A, POKHREL A, OLUDIRAN A, CORONADO EJ, ALLEYNE K, GILFUS MM, GURUNG RK, ADHIKARI SB, PURCELL EB. Unique features of alarmone metabolism in Clostridioides difficile[J]. Journal of Bacteriology, 2022, 204(4): e0057521.
    [44] POKHREL A, POUDEL A, CASTRO KB, CELESTINE MJ, OLUDIRAN A, RINEHOLD AJ, RESEK AM, MHANNA MA, PURCELL EB. The (p)ppGpp synthetase RSH mediates stationary-phase onset and antibiotic stress survival in Clostridioides difficile[J]. Journal of Bacteriology, 2020, 202(19): e00377-20.
    [45] DAS B, BHADRA RK. Molecular characterization of Vibrio cholerae DeltarelA DeltaspoT double mutants[J]. Archives of Microbiology, 2008, 189(3): 227-238.
    [46] DAS B, PAL RR, BAG S, BHADRA RK. Stringent response in Vibrio cholerae: genetic analysis of spoT gene function and identification of a novel (p)ppGpp synthetase gene[J]. Molecular Microbiology, 2009, 72(2): 380-398.
    [47] ARENZ S, ABDELSHAHID M, SOHMEN D, PAYOE R, STAROSTA AL, BERNINGHAUSEN O, HAURYLIUK V, BECKMANN R, WILSON DN. The stringent factor RelA adopts an open conformation on the ribosome to stimulate ppGpp synthesis[J]. Nucleic Acids Research, 2016, 44(13): 6471-6481.
    [48] SEYFZADEH M, KEENER J, NOMURA M. spoT-dependent accumulation of guanosine tetraphosphate in response to fatty acid starvation in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 1993, 90(23): 11004-11008.
    [49] BATTESTI A, BOUVERET E. Acyl carrier protein/SpoT interaction, the switch linking SpoT-dependent stress response to fatty acid metabolism[J]. Molecular Microbiology, 2006, 62(4): 1048-1063.
    [50] WOLZ C, GEIGER T, GOERKE C. The synthesis and function of the alarmone (p)ppGpp in firmicutes[J]. International Journal of Medical Microbiology, 2010, 300(2/3): 142-147.
    [51] STEINCHEN W, VOGT MS, ALTEGOER F, GIAMMARINARO PI, HORVATEK P, WOLZ C, BANGE G. Structural and mechanistic divergence of the small (p)ppGpp synthetases RelP and RelQ[J]. Scientific Reports, 2018, 8: 2195.
    [52] OH YT, LEE KM, BARI W, RASKIN DM, YOON SS. (p)ppGpp, a small nucleotide regulator, directs the metabolic fate of glucose in Vibrio cholerae[J]. Journal of Biological Chemistry, 2015, 290(21): 13178-13190.
    [53] HARMS A, BRODERSEN DE, MITARAI N, GERDES K. Toxins, targets, and triggers: an overview of toxin-antitoxin biology[J]. Molecular Cell, 2018, 70(5): 768-784.
    [54] DEDRICK RM, JACOBS-SERA D, GUERRERO BUSTAMANTE CA, GARLENA RA, MAVRICH TN, POPE WH, CERVANTES REYES JC, RUSSELL DA, ADAIR T, ALVEY R, ALFRED BONILLA J, BRICKER JS, BROWN BR, BYRNES D, CRESAWN SG, DAVIS WB, DICKSON LA, EDGINGTON NP, FINDLEY AM, GOLEBIEWSKA U, et al. Prophage-mediated defence against viral attack and viral counter-defence[J]. Nature Microbiology, 2017, 2: 16251.
    [55] MALIK A, HEPT MA, PURCELL EB. Sound the (smaller) alarm: the triphosphate magic spot nucleotide pGpp[J]. Infection and Immunity, 2023, 91(4): e0043222.
    [56] BURLEY SK, BERMAN HM, BHIKADIYA C, BI CX, CHEN L, di COSTANZO L, CHRISTIE C, DALENBERG K, DUARTE JM, DUTTA S, FENG ZK, GHOSH S, GOODSELL DS, GREEN RK, GURANOVIC V, GUZENKO D, HUDSON BP, KALRO T, LIANG YH, LOWE R, et al. RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy[J]. Nucleic Acids Research, 2019, 47(D1): D464-D474.
    [57] TAGAMI K, NANAMIYA H, KAZO Y, MAEHASHI M, SUZUKI S, NAMBA E, HOSHIYA M, HANAI R, TOZAWA Y, MORIMOTO T, OGASAWARA N, KAGEYAMA Y, ARA K, OZAKI K, YOSHIDA M, KUROIWA H, KUROIWA T, OHASHI Y, KAWAMURA F. Expression of a small (p)ppGpp synthetase, YwaC, in the (p)ppGpp(0) mutant of Bacillus subtilis triggers YvyD-dependent dimerization of ribosome[J]. MicrobiologyOpen, 2012, 1(2): 115-134.
    [58] SUN DW, LEE G, LEE JH, KIM HY, RHEE HW, PARK SY, KIM KJ, KIM Y, KIM BY, HONG JI, PARK C, CHOY HE, KIM JH, JEON YH, CHUNG J. A metazoan ortholog of SpoT hydrolyzes ppGpp and functions in starvation responses[J]. Nature Structural & Molecular Biology, 2010, 17(10): 1188-1194.
    [59] TAMMAN H, van NEROM K, TAKADA H, VANDENBERK N, SCHOLL D, POLIKANOV Y, HOFKENS J, TALAVERA A, HAURYLIUK V, HENDRIX J, GARCIA-PINO A. A nucleotide-switch mechanism mediates opposing catalytic activities of Rel enzymes[J]. Nature Chemical Biology, 2020, 16(8): 834-840.
    [60] PAUSCH P, ABDELSHAHID M, STEINCHEN W, SCH?FER H, GRATANI FL, FREIBERT SA, WOLZ C, TURGAY K, WILSON DN, BANGE G. Structural basis for regulation of the opposing (p)ppGpp synthetase and hydrolase within the stringent response orchestrator rel[J]. Cell Reports, 2020, 32(11): 108157.
    [61] SINGAL B, BALAKRISHNA AM, NARTEY W, MANIMEKALAI MSS, JEYAKANTHAN J, GRüBER G. Crystallographic and solution structure of the N-terminal domain of the Rel protein from Mycobacterium tuberculosis[J]. FEBS Letters, 2017, 591(15): 2323-2337.
    [62] LEE JW, PARK YH, SEOK YJ. Rsd balances (p)ppGpp level by stimulating the hydrolase activity of SpoT during carbon source downshift in Escherichia coli[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(29): E6845-E6854.
    [63] RASKIN DM, JUDSON N, MEKALANOS JJ. Regulation of the stringent response is the essential function of the conserved bacterial G protein CgtA in Vibrio cholerae[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(11): 4636-4641.
    [64] FANG MX, BAUER CE. Regulation of stringent factor by branched-chain amino acids[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(25): 6446-6451.
    [65] STEINCHEN W, AHMAD S, VALENTINI M, EILERS K, MAJKINI M, ALTEGOER F, LECHNER M, FILLOUX A, WHITNEY JC, BANGE G. Dual role of a (p)ppGpp- and (p)ppApp-degrading enzyme in biofilm formation and interbacterial antagonism[J]. Molecular Microbiology, 2021, 115(6): 1339-1356.
    [66] BISIAK F, CHRENKOVá A, ZHANG SD, PEDERSEN JN, OTZEN DE, ZHANG YE, BRODERSEN DE. Structural variations between small alarmone hydrolase dimers support different modes of regulation of the stringent response[J]. Journal of Biological Chemistry, 2022, 298(7): 102142.
    [67] RUWE M, RüCKERT C, KALINOWSKI J, PERSICKE M. Functional characterization of a small alarmone hydrolase in Corynebacterium glutamicum[J]. Frontiers in Microbiology, 2018, 9: 916.
    [68] MURPHY H, CASHEL M. Isolation of RNA polymerase suppressors of a (p)ppGpp deficiency[J]. Methods in Enzymology, 2003, 371: 596-601.
    [69] MECHOLD U, POTRYKUS K, MURPHY H, MURAKAMI KS, CASHEL M. Differential regulation by ppGpp versus pppGpp in Escherichia coli[J]. Nucleic Acids Research, 2013, 41(12): 6175-6189.
    [70] OKI T, YOSHIMOTO A, OGASAWARA T, SATO S, TAKAMATSU A. Occurrence of pppApp-synthesizing activity in actinomycetes and isolation of purine nucleotide pyrophosphotransferase[J]. Archives of Microbiology, 1976, 107(2): 183-187.
    [71] RHAESE HJ, GRADE R, DICHTELMüLLER H. Studies on the control of development. correlation of initiucleotides in Bacillus subtilis[J]. European Journal of Biochemistry, 1976, 64(1): 205-213.
    [72] BRUHN-OLSZEWSKA B, MOLODTSOV V, SOBALA M, DYLEWSKI M, MURAKAMI KS, CASHEL M, POTRYKUS K. Structure-function comparisons of (p)ppApp vs. (p)ppGpp for Escherichia coli RNA polymerase binding sites and for rrnB P1 promoter regulatory responses in vitro[J]. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 2018, 1861(8): 731-742.
    [73] SOBALA M, BRUHN-OLSZEWSKA B, CASHEL M, POTRYKUS K. Methylobacterium extorquens RSH enzyme synthesizes (p)ppGpp and pppApp in vitro and in vivo, and leads to discovery of pppApp synthesis in Escherichia coli[J]. Frontiers in Microbiology, 2019, 10: 859.
    [74] WANG M, TANG NY, XIE SJ, WATT RM. Functional characterization of small alarmone synthetase and small alarmone hydrolase proteins from Treponema denticola[J]. Microbiology Spectrum, 2023, 11(4): e0510022.
    [75] POTRYKUS K, THOMAS NE, BRUHN-OLSZEWSKA B, SOBALA M, DYLEWSKI M, JAMES T, CASHEL M. Estimates of RelSeq, Mesh1, and SAHMex hydrolysis of (p)ppGpp and (p)ppApp by thin layer chromatography and nadp/nadh coupled assays[J]. Frontiers in Microbiology, 2020, 11: 581271.
    [76] FUNG DK, BAI KH, YANG J, XU XL, STEVENSON DM, AMADOR-NOGUEZ D, LUO LX, WANG JD. Metabolic promiscuity of an orphan small alarmone hydrolase facilitates bacterial environmental adaptation[J]. mBio, 2022, 13(6): e0242222.
    [77] PACIOS O, BLASCO L, BLERIOT I, FERNANDEZ-GARCIA L, AMBROA A, LóPEZ M, BOU G, CANTóN R, GARCIA-CONTRERAS R, WOOD TK, TOMáS M. (p)ppGpp and its role in bacterial persistence: new challenges[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(10): e01283-20.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王淼,项雨霏,贺龙龙,周秦,许丹. 细菌警报素(p)ppGpp代谢的关键调控者:RSH蛋白的功能多样性[J]. 微生物学报, 2025, 65(5): 1958-1975

复制
分享
文章指标
  • 点击次数:55
  • 下载次数: 236
  • HTML阅读次数: 45
  • 引用次数: 0
历史
  • 收稿日期:2024-11-15
  • 在线发布日期: 2025-04-30
文章二维码