土壤矿物介导下2种母质发育水稻土中多物种生物膜的形成
作者:
基金项目:

湖南省自然科学基金(2024JJ5202,2020JJ5250);国家自然科学基金(42007021);中国博士后科学基金(2020M672498)


Formation of multi-species biofilms in paddy soils developed from two parent materials mediated by soil minerals
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】探究土壤矿物介导下,不同母质发育的水稻土中多物种生物膜的形成过程,旨在为揭示土壤组分与多物种生物膜之间的互作机制提供科学依据。【方法】分别提取红黄泥田和酸紫泥田中的多物种生物膜作为研究对象,选取高岭石和针铁矿作为矿物相介质,借助现代生物显微技术、高通量测序技术和红外光谱等仪器,对矿物介导下的生物膜形成过程、结构变化以及膜内细菌群落结构的组成等进行深入研究。【结果】基于16S rRNA基因的高通量测序结果显示,2种母质发育水稻土中多物种生物膜内的菌群主要由绿弯菌门(Chloroflexi)、酸杆菌门(Acidobacteria)、变形菌门(Proteobacteria)、硝化螺旋菌门(Nitrospirae)和脱硫菌门(Desulfobacterota)构成。与未添加矿物体系(对照)相比,针铁矿和高岭石均显著抑制了以绿弯菌门为主导的酸紫泥田水稻土中多物种生物膜的形成,其生物膜生物量分别下降了18.38%和17.30%;而在以酸杆菌门占主导的红黄泥田体系中,针铁矿和高岭石从不同程度上促进了多物种生物膜的形成,且以高岭石体系促进效果更为显著,其生物膜厚度明显增加,膜内多糖分泌提高了7.69%,生物膜生物量同比增加18.99%。【结论】高岭石刺激细菌分泌产生了更多的胞外物质,并促进了红黄泥田中多物种生物膜的形成,而对酸紫泥田中多物种生物膜的形成具有抑制作用。针铁矿对酸紫泥田多物种生物膜的形成则表现出显著的抑制效应;相比高岭石体系,针铁矿的加入也更易导致细胞失活。本研究进一步揭示了土壤组分与多物种生物膜的互作机制,为推动土壤健康的可持续发展提供了科学的理论依据。

    Abstract:

    [Objective] To explore the formation process of multi-species biofilms in paddy soils developed from different parent materials mediated by soil minerals, thus providing a scientific basis for revealing the interaction mechanisms between soil components and multi-species biofilms. [Methods] The multi-species biofilms were extracted from reddish clayey soil and acidic purple soil, and kaolinite and goethite were used as the mineral media. Modern biological microscopy, high-throughput sequencing, and infrared spectroscopy were employed to study the mineral-mediated formation process, structural changes, and bacterial community structure of the biofilm. [Results] Based on the high-throughput sequencing technology of 16S rRNA gene, the flora in the multi-species biofilms in the paddy soils developed from the two parent materials was dominated by Chloroflexi, Acidobacteria, Proteobacteria, Nitrospirae, and Desulfobacterota. Compared with the control without mineral addition, goethite and kaolinite significantly inhibited the formation of the multi-species biofilm dominated by Chloroflexi in the acidic purple soil, decreasing the biofilm biomass by 18.38% and 17.30%, respectively. In the reddish clayey soil dominated by Acidobacteria, goethite and kaolinite promoted the multi-species biofilm formation to varying degrees. Kaolinite demonstrated more significant promotion effect, increasing the biofilm thickness, the secretion of polysaccharides in the biofilm by 7.69%, and the biofilm biomass by 18.99%. [Conclusion] Kaolinite stimulated bacterial production of extracellular substances, promoted the multi-species biofilm formation in reddish clayey soil, and inhibited the multi-species biofilm formation in acidic purple soil. Goethite inhibited the multi-species biofilm formation in acidic purple soil. Compared with kaolinite, goethite is likely to cause cell inactivation. This study further revealed the interaction mechanism between soil components and multi-species biofilms, and the results provided a scientific theoretical basis for promoting the sustainable development of soil health.

    参考文献
    [1] 王翠丽, 王军强, 陈亮, 栾倩倩, 李彦荣, 赵旭. 不同耕作方式对绿洲区农田土壤团聚体中微生物生物量碳、氮含量的影响[J]. 江苏农业科学, 2022, 50(12): 246-251. WANG CL, WANG JQ, CHENG L, LUAN QQ, LI YR, ZHAO X. Effects of different cultivation methods on microbial biomass carbon and nitrogen contents in soil aggregates in oasis area[J]. Jiangsu Agricultural Sciences, 2022, 50(12): 246-251(in Chinese).
    [2] 冯乙晴, 郝立凯, 郭圆, 徐绯, 徐恒. 酸性矿山废水微生物组时空演变特征及微生物-矿物互作机制[J]. 生态环境学报, 2022, 31(5): 1032-1046. FENG YQ, HE LK, GUO Y, XU F, XU H. Spatio-temporal evolution characteristics of microbiome mechanism[J]. Ecology and Environmental Sciences, 2022, 31(5): 1032-1046(in Chinese).
    [3] 储成, 吴赵越, 黄欠如, 韩成, 钟文辉. 有机质提升对酸性红壤氮循环功能基因及功能微生物的影响[J]. 环境科学, 2020, 41(5): 2468-2475. CHU C, WU ZY, HUANG QR, HAN C, ZHONG WH. Effect of organic matter promotion on nitrogen-cycling genes and functional microorganisms in acidic red soils[J]. Environmental Science, 2020, 41(5): 2468-2475(in Chinese).
    [4] 王美溪, 刘珂艺, 邢亚娟. 气候变化背景下土壤微生物与植物物种多样性关联分析[J]. 中国农学通报, 2018, 34(20): 111-117. WANG MX, LIU KY, XING YJ. Association analysis of soil microorganism and plant species diversity under climate change[J]. Chinese Agricultural Science Bulletin, 2018, 34(20): 111-117(in Chinese).
    [5] CAI P, SUN XJ, WU YC, GAO CH, MORTIMER M, HOLDEN PA, REDMILE-GORDON M, HUANG QY. Soil biofilms: microbial interactions, challenges, and advanced techniques for ex-situ characterization[J]. Soil Ecology Letters, 2019, 1(3): 85-93.
    [6] VU B, CHEN M, CRAWFORD RJ, IVANOVA EP. Bacterial extracellular polysaccharides involved in biofilm formation[J]. Molecules, 2009, 14(7): 2535-2554.
    [7] McDOUGALD D, RICE SA, BARRAUD N, STEINBERG PD, KJELLEBERG S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal[J]. Nature Reviews Microbiology, 2012, 10: 39-50.
    [8] 王茜丹, 路莹, 杨悦锁, 武宇辉, 徐喆, 裴子丞. 微生物堵塞过程中生物膜生长特征对多孔介质渗流特征影响[J]. 中国环境科学, 2022, 42(6): 2771-2778. WANG XD, LU Y, YANG YS, WU YH, XU Z, PEI ZC. A study of microbial clogging on the variation of seepage characteristics with biofilm growth in porous medium[J]. China Environmental Science, 2022, 42(6): 2771-2778(in Chinese).
    [9] 赵春梅, 王文斌, Didier Lesueur, 张永发, 薛欣欣, 罗雪华, 李晓波. 不同母质发育橡胶林土壤微生物特征研究[J]. 西南农业学报, 2022, 35(4): 964-971. ZHAO CM, WANG WB, LESUEUR D, ZHANG YF, XUE XX, LUO XH, LI XB. Characteristics of soil microorganisms in rubber plantation with different parent materials[J]. Southwest China Journal of Agricultural Sciences, 2022, 35(4): 964-971(in Chinese).
    [10] 吴晓玲, 张世熔, 蒲玉琳, 徐小逊, 李云. 川西平原土壤微生物生物量碳氮磷含量特征及其影响因素分析[J]. 中国生态农业学报, 2019, 27(10): 1607-1616. WU XL, ZHANG SR, PU YL, XU XX, LI Y. Distribution characteristics and impact factors of soil microbial biomass carbon, nitrogen and phosphorus in western sichuan plain[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1607-1616(in Chinese).
    [11] ZHOU YN, MENG FF, OCHIENG B, XU JN, ZHANG L, KIMIREI IA, FENG MH, ZHU LF, WANG JJ. Climate and environmental variables drive stream biofilm bacterial and fungal diversity on tropical mountainsides[J]. Microbial Ecology, 2024, 87(1): 28.
    [12] TIAN L, WANG L, ZHANG XF, HUANG XD, WANG FH, ZHU SF, LI XQ, GUAN Y. Multi-omics analysis on seasonal variations of the biofilm microbial community in a full-scale pre-denitrification biofilter[J]. Environmental Science and Pollution Research International, 2023, 30(9): 24284-24298.
    [13] ELUMALAI P, GAO XK, CUI JJ, KUMAR AS, DHANDAPANI P, PARTHIPAN P, KARTHIKEYAN OP, THEERTHAGIRI J, KHEAWHOM S, CHOI MY. Biofilm formation, occurrence, microbial communication, impact and characterization methods in natural and anthropic systems: a review[J]. Environmental Chemistry Letters, 2024, 22(3): 1297-1326.
    [14] DING GC, PRONK GJ, BABIN D, HEUER H, HEISTER K, KÖGEL-KNABNER I, SMALLA K. Mineral composition and charcoal determine the bacterial community structure in artificial soils[J]. FEMS Microbiology Ecology, 2013, 86(1): 15-25.
    [15] ZHANG L, GADD GM, LI Z. Microbial biomodification of clay minerals[J]. Advances in Applied Microbiology, 2021, 114: 111-139.
    [16] ALIMOVA A, KATZ A, STEINER N, RUDOLPH E, WEI H, STEINER JC, GOTTLIEB P. Bacteria-clay interaction: Structural changes in smectite induced during biofilm formation[J]. Clays and Clay Minerals, 2009, 57(2): 205-212.
    [17] WU HY, CHEN WL, RONG XM, CAI P, DAI K, HUANG QY. Soil colloids and minerals modulate metabolic activity of Pseudomonas putida measured using microcalorimetry[J]. Geomicrobiology Journal, 2014, 31(7): 590-596.
    [18] MA WT, PENG DH, WALKER SL, CAO B, GAO CH, HUANG QY, CAI P. Bacillus subtilis biofilm development in the presence of soil clay minerals and iron oxides[J]. NPJ Biofilms and Microbiomes, 2017, 3: 4.
    [19] 纪丹丹. 模拟体系中稻田土壤生物膜形成过程与结构和代谢特性研究[D]. 武汉: 华中农业大学硕士学位论文, 2018. JI DD. The development process, structure and metabolic properties of paddy soil biofilms in simulated environment[D]. Wuhan: Master’s Thesis of Huazhong Agricultural University, 2018(in Chinese).
    [20] BURMØLLE M, HANSEN LH, SØRENSEN SJ. Establishment and early succession of a multispecies biofilm composed of soil bacteria[J]. Microbial Ecology, 2007, 54(2): 352-362.
    [21] 骆乐丹, 赵升, 文翊, 严贵丽, 熊轩, 段良霞, 欧阳凯. 不同农艺调控措施对稻田多物种生物被膜形成过程的影响[J]. 微生物学通报, 2024, 51(3): 801-814. LUO YD, ZHAO S, WEN Y, YAN GL, XIONG X, DUAN LX, OUYANG K. Effects of different agronomic measures on the formation processes of multispecies biofilms in paddy fields[J]. Microbiology China, 2024, 51(3): 801-814(in Chinese).
    [22] ATKINSON RJ, POSNER AM, QUIRK JP. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface[J]. The Journal of Physical Chemistry, 1967, 71(3): 550-558.
    [23] INNIS MA, DAVID H. PCR Protocols: A Guide to Methods and Applications[M]. New York: American Academic Press, 1990.
    [24] EDGAR RC. Search and clustering orders of magnitude faster than BLAST[J]. Bioinformatics, 2010, 26(19): 2460-2461.
    [25] ONDOV BD, BERGMAN NH, PHILLIPPY AM. Interactive metagenomic visualization in a web browser[J]. BMC Bioinformatics, 2011, 12: 385.
    [26] ASNICAR F, WEINGART G, TICKLE TL, HUTTENHOWER C, SEGATA N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn[J]. PeerJ, 2015, 3: e1029.
    [27] 王晓洁, 卑其成, 刘钢, 谢祖彬. 不同类型水稻土微生物群落结构特征及其影响因素[J]. 土壤学报, 2021, 58(3): 767-776. WANG XJ, BEI QC, LIU G, XIE ZB. Microbial abundance and community composition in different types of paddy soils in China and their affecting factors[J]. Acta Pedologica Sinica, 2021, 58(3): 767-776(in Chinese).
    [28] MA XL, LIU J, CHEN XF, LI WT, JIANG CY, WU M, LIU M, LI ZP. Bacterial diversity and community composition changes in paddy soils that have different parent materials and fertility levels[J]. Journal of Integrative Agriculture, 2021, 20(10): 2797-2806.
    [29] BORLEE BR, GOLDMAN AD, MURAKAMI K, SAMUDRALA R, WOZNIAK DJ, PARSEK MR. Pseudomonas aeruginosa uses a cyclic-di-GMP- regulated adhesin to reinforce the biofilm extracellular matrix[J]. Molecular Microbiology, 2010, 75(4): 827-842.
    [30] THURNHEER T, GMÜR R, GUGGENHEIM B. Multiplex FISH analysis of a six-species bacterial biofilm[J]. Journal of Microbiological Methods, 2004, 56(1): 37-47.
    [31] AMATO SM, FAZEN CH, HENRY TC, MOK WWK, ORMAN MA, SANDVIK EL, VOLZING KG, BRYNILDSEN MP. The role of metabolism in bacterial persistence[J]. Frontiers in Microbiology, 2014, 5: 70.
    [32] 卫雨西, 陈丽娟, 冯起, 席海洋, 郭瑞, 张成琦. 干旱区盐碱土微生物特征及其影响因素研究进展[J]. 中国沙漠, 2024, 44(3): 18-30. WEI YX, CHEN LJ, FENG Q, XI HY, GUO R, ZHANG CQ. Research progress on microbial characteristics and influencing factors of saline-alkali soil in arid area[J]. Journal of Desert Research, 2024, 44(3): 18-30(in Chinese).
    [33] 刘跃东. 典型红壤与黑土林地剖面有机质物理化学组成及其控制因素研究[D]. 北京: 中国农业科学院博士学位论文, 2023. LIU YD. Physiochemcial compositions of organic matter in soil profile under forest in ultisol and mollisol region and its controlling factors[D]. Beijing: Doctoral Dissertation of Chinese Academy of Agricultural Sciences Thesis, 2023(in Chinese).
    [34] 马文婷. 土壤矿物介导下细菌生物膜形成过程及机制[D]. 武汉: 华中农业大学博士学位论文, 2017. MA WT. Formation process and mechanism of bacterial biofilm mediated by soil minerals[D]. Wuhan: Doctoral Dissertation of Huazhong Agricultural University, 2017(in Chinese).
    [35] YAN HC, LIU CC, YU WT, ZHU XM, CHEN BL. The aggregate distribution of Pseudomonas aeruginosa on biochar facilitates quorum sensing and biofilm formation[J]. Science of the Total Environment, 2023, 856: 159034.
    [36] GLASAUER S, LANGLEY S, BEVERIDGE TJ. Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: cell-bound fine-grained minerals are not always formed de novo[J]. Applied and Environmental Microbiology, 2001, 67(12): 5544-5550.
    [37] 叶波. 土壤胶体矿物诱导羟基自由基降解吡虫啉的机制研究[D]. 淮南: 安徽理工大学硕士学位论文, 2023. YE B. Study on mechanism of degradation of imidacloprid by hydroxyl radicals induced by colloidal minerals in soil[D]. Huainan: Master’s Thesis of Anhui University of Science & Technology, 2023(in Chinese).
    [38] 石荣, 贾永锋, 王承智. 土壤矿物质吸附砷的研究进展[J]. 土壤通报, 2007(3): 584-589. SHI R, JIA YF, WAMG CZ. A review of arsenic adsorption onto mineral constitutions in the soil[J]. Chinese Journal of Soil Science, 2007(3): 584-589(in Chinese).
    [39] YUKSELEN-AKSOY Y, KAYA A. A study of factors affecting on the zeta potential of kaolinite and quartz powder[J]. Environmental Earth Sciences, 2011, 62(4): 697-705.
    [40] QUAGHEBEUR M, RATE A, RENGEL Z, HINZ C. Desorption kinetics of arsenate from kaolinite as influenced by pH[J]. Journal of Environmental Quality, 2005, 34(2): 479-486.
    [41] SONI KA, BALASUBRAMANIAN AK, BESKOK A, PILLAI SD. Zeta potential of selected bacteria in drinking water when dead, starved, or exposed to minimal and rich culture media[J]. Current Microbiology, 2008, 56(1): 93-97.
    [42] 张瑞玲. 甲基叔丁基醚的生物降解机理与微生物在地下水中的迁移[D]. 天津: 天津大学博士学位论文, 2007. ZHANG RL. Biodegradation mechanism of methyl tert-butyl ether and migration of microorganisms in groundwater[D]. Tianjin: Doctoral Dissertation of Tianjin University, 2007(in Chinese).
    [43] 黄颖婷, 范薇, 赵恒, 朱利明, 刘一休, 郑志伟, 史方, 邹曦, 王开诚, 朱稳, 何姗. 不同类型基质对附着细菌定殖演替和群落结构的影响[J/OL]. 水生态学杂志, 2024. DOI: 10.15928/j.1674-3075.202405110183. HUANG YT, FANG W, ZHAO H, ZHU LM, LIU YX, ZHENG ZW, SHI F, ZOU X, WANG KC, ZHU W, HE S. Effects of different substrates on colonization succession and community structure of adherent bacteria[J/OL]. Journal of Hydroecology, 2024. DOI: 10.15928/j.1674-3075.202405110183(in Chinese).
    [44] 孙晓洁, 高春辉, 黄巧云, 蔡鹏. 自然环境中的多物种生物膜:研究方法及社群相互作用[J]. 农业资源与环境学报, 2017, 34(1): 6-14. SUN XJ, GAI CH, HUNAG QY, CAI P. Multispecies biofilms in natural environments: an overview of research methods and bacterial social interactions[J]. Journal of Agricultural Resources and Environment, 2017, 34(1): 6-14(in Chinese).
    [45] GUZZO A, DIORIO C, DuBOW MS. Transcription of the Escherichia coli fliC gene is regulated by metal ions[J]. Applied and Environmental Microbiology, 1991, 57(8): 2255-2259.
    [46] WILLIAMS LB, METGE DW, EBERL DD, HARVEY RW, TURNER AG, PRAPAIPONG P, PORET-PETERSON AT. What makes a natural clay antibacterial?[J]. Environmental Science & Technology, 2011, 45(8): 3768-3773.
    [47] YANG SS, QU CC, MUKHERJEE M, WU YC, HUANG QY, CAI P. Soil phyllosilicate and iron oxide inhibit the quorum sensing of Chromobacterium violaceum[J]. Soil Ecology Letters, 2021, 3(1): 22-31.
    [48] WONG D, SUFLITA JM, McKINLEY JP, KRUMHOLZ LR. Impact of clay minerals on sulfate-reducing activity in aquifers[J]. Microbial Ecology, 2004, 47(1): 80-86.
    [49] 杨芊, 金中初. 细菌的氧化应激反应及其基因调控[J]. 国外医学(微生物学分册), 1998(2): 21-24. YANG Q, JIN ZC. Oxidative stress response of bacteria and its gene regulation[J]. Foreign Medicine (Microbiology Section), 1998(2): 21-24.
    [50] GUIDA L, SAIDI Z, HUGHES MN, POOLE RK. Aluminium toxicity and binding to Escherichia coli[J]. Archives of Microbiology, 1991, 156(6): 507-512.
    [51] 张子新. 海藻裂解液强化修复滨海石油污染土壤研究[D]. 大连: 大连理工大学硕士学位论文, 2018. ZHANG ZX. Study on enhanced remediation of coastal petroleum contaminated soil by algae lysate[D]. Dalian: Master’s Thesis of Dalian University of Technology, 2018(in Chinese).
    [52] 丁凯, 张毓婷, 张俊红, 柴雄, 周世水, 童再康. 不同密度杉木林对林下植被和土壤微生物群落结构的影响[J]. 植物生态学报, 2021, 45(1): 62-73. DING K, ZHANG YT, ZHANG JH, CHAI X, ZHOU SS, TONG ZK. Effects of Chinese fir plantations with different densities on understory vegetation and soil microbial community structure[J]. Chinese Journal of Plant Ecology, 2021, 45(1): 62-73(in Chinese).
    [53] DONG HL, HUANG LQ, ZHAO LD, ZENG Q, LIU XL, SHENG YZ, SHI L, WU G, JIANG HC, LI FR, ZHANG L, GUO DY, LI GY, HOU WG, CHEN HY. A critical review of mineral-microbe interaction and co-evolution: mechanisms and applications[J]. National Science Review, 2022, 9(10): nwac128.
    [54] GIULIODORI AM, GUALERZI CO, SOTO S, VILA J, TAVÍO MM. Review on bacterial stress topics[J]. Annals of the New York Academy of Sciences, 2007, 1113: 95-104.
    引证文献
引用本文

熊轩,李宇佳,赵升,严贵丽,蒋宇,汤宇晴,刘单鹏,欧阳凯. 土壤矿物介导下2种母质发育水稻土中多物种生物膜的形成[J]. 微生物学报, 2025, 65(1): 106-121

复制
分享
文章指标
  • 点击次数:71
  • 下载次数: 145
  • HTML阅读次数: 109
  • 引用次数: 0
历史
  • 收稿日期:2024-07-29
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码