中药协同抗真菌药物抗隐球菌的研究进展
作者:
作者单位:

1.南昌大学第一附属医院呼吸与危重症医学科,江西省呼吸疾病研究所,呼吸疾病江西省重点实验室, 江西 南昌;2.南昌大学 江西医学院,江西 南昌

作者简介:

杨轶涵:负责文章构思设计、撰写文章整体内容框架;毛娅芯:负责检索文献、绘制表格、参与文章撰写;徐新平:负责文章审核和修订。

基金项目:

国家自然科学基金(82360399)


Research progress in combined application of traditional Chinese medicines and antifungal agents in treating Cryptococcus infections
Author:
Affiliation:

1.Jiangxi Provincial Key Laboratory of Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China;2.Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (82360399).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [87]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    隐球菌是一种全球分布的侵袭性真菌,已经引起了严重的公共卫生问题。隐球菌致病菌种主要以新型隐球菌为代表,其在感染人体后可引起死亡率极高的肺隐球菌病及隐球菌脑膜炎等。目前传统抗真菌药物只有多烯类、氟胞嘧啶类、棘白菌素类和唑类四类,在临床中单独用药时存在治疗效果不显著以及导致耐药等情况出现。因此,研究人员把视角转向联合用药,并发现一些中药及天然植物提取物和衍生物与传统抗真菌药物联合使用对治疗隐球菌病具有良好的协同效果,本文就中药联合抗真菌药物研究现状进行总结。

    Abstract:

    Cryptococcus, a genus of invasive fungi with global distribution, have caused serious public health problems. Notably, Cryptococcus neoformans (Cryptococcus neoformans, C. neoformans) represents the main pathogenic species of Cryptococcus. The infection of C. neoformans can cause pulmonary cryptococcosis and cryptococcal meningitis with high mortality rates. The commonly used antifungal drugs are polyenes, flucytosine, echinocandins, and azoles, which have limited efficacy and may induce resistance when being used alone in clinical practice. Therefore, researchers have studied combined therapy. They have discovered that the combinations of some traditional Chinese medicines and natural plant extracts and derivatives with the commonly used antifungal drugs demonstrate synergistic effects in the treatment of cryptococcosis. This paper reviews the research progress in the combined application of antifungal drugs and traditional Chinese medicines.

    参考文献
    [1] DENNING DW. Global incidence and mortality of severe fungal disease[J]. The Lancet Infectious Diseases, 2024, 24(7): e428-e438.
    [2] BONGOMIN F, KIBONE W, ATULINDA L, MORGAN B, OCANSEY B, STORER ISR, van RHIJN N, MUZOORA C, DENNING DW, HAMER DH. Frequency of fungal pathogens in autopsy studies of people who died with HIV in Africa: a scoping review[J]. Clinical Microbiology and Infection, 2024, 30(5): 592-600.
    [3] BROWN GD, DENNING DW, GOW NAR, LEVITZ SM, NETEA MG, WHITE TC. Hidden killers: human fungal infections[J]. Science Translational Medicine, 2012, 4(165): 165rv13.
    [4] LIN XR, HEITMAN J. The biology of the Cryptococcus neoformans species complex[J]. Annual Review of Microbiology, 2006, 60: 69-105.
    [5] 朱信霖, 扈东营, 陈显振, 姜伟伟, 陈天杨, 陈天成, 廖万清, 刘晓刚, 潘炜华. 新生隐球菌感染流行病学现状及耐药机制相关研究进展[J]. 菌物学报, 2022, 41(12): 1911-1920.ZHU XL, HU DY, CHEN XZ, JIANG WW, CHEN TY, CHEN TC, LIAO WQ, LIU XG, PAN WH. A review of the epidemiology and drug resistance mechanism of Cryptococcus neoformans infection[J]. Mycosystema, 2022, 41(12): 1911-1920 (in Chinese).
    [6] IBE C, OKOYE CA, NWEZE E, OTU A. Cryptococcosis in Africa: what the data tell us[J]. Medical Mycology, 2023, 61(6): myad049.
    [7] ZHAO YB, YE LX, ZHAO FJ, ZHANG LY, LU ZG, CHU TX, WANG SY, LIU ZX, SUN YK, CHEN M, LIAO GJ, DING C, XU YC, LIAO WQ, WANG LQ. Cryptococcus neoformans, a global threat to human health[J]. Infectious Diseases of Poverty, 2023, 12(1): 20.
    [8] ZONO BB, KASUMBA DM, SITUAKIBANZA NANI-TUMA H, BEPOUKA IZIZAG B, YAMBAYAMBA KAPENGA M, NSUKA YANGA R, TSHIMANGA YONA T, KAMANGU NTAMBWE E, HAYETTE MP, MVUMBI LELO G. Cryptococcosis in the Democratic Republic of Congo from 1953 to 2021: a systematic review and meta-analysis[J]. Mycoses, 2022, 65(6): 580-589.
    [9] ASLANYAN L, SANCHEZ DA, VALDEBENITO S, EUGENIN EA, RAMOS RL, MARTINEZ LR. The crucial role of biofilms in Cryptococcus neoformans survival within macrophages and colonization of the central nervous system[J]. Journal of Fungi, 2017, 3(1): 10.
    [10] FOONG KS, LEE A, VASQUEZ G. Cryptococcal infection of the ventriculoperitoneal shunt in an immunocompetent patient[J]. The American Journal of Case Reports, 2016, 17: 31-34.
    [11] BENADUCCI T, SARDI JD, LOURENCETTI NMS, SCORZONI L, GULLO FP, ROSSI SA, DERISSI JB, de AZEVEDO PRATA MC, FUSCO-ALMEIDA AM, MENDES-GIANNINI MJS. Virulence of Cryptococcus sp. Biofilms in vitro and in vivo using Galleria mellonella as an alternative model[J]. Frontiers in Microbiology, 2016, 7: 290.
    [12] IYER KR, REVIE NM, FU C, ROBBINS N, COWEN LE. Treatment strategies for cryptococcal infection: challenges, advances and future outlook[J]. Nature Reviews Microbiology, 2021, 19(7): 454-466.
    [13] LOYSE A, BURRY J, COHN J, FORD N, CHILLER T, RIBEIRO I, KOULLA-SHIRO S, MGHAMBA J, RAMADHANI A, NYIRENDA R, ALIYU SH, WILSON D, LE T, OLADELE R, LESIKARI S, MUZOORA C, KALATA N, TEMFACK E, MAPOURE Y, SINI V, et al. Leave no one behind: response to new evidence and guidelines for the management of cryptococcal meningitis in low-income and middle-income countries[J]. The Lancet Infectious Diseases, 2019, 19(4): e143-e147.
    [14] LAHIRI S, CHANDRASHEKAR N. Advanced approach for antifungal susceptibility and characterization of resistance properties in clinical and environmental isolates of Cryptococcus species complex[J]. Infectious Medicine, 2022, 1(3): 147-153.
    [15] WANG QQ, CAI X, LI Y, ZHAO JH, LIU ZY, JIANG Y, MENG L, LI YM, PAN SY, AI XM, ZHANG F, LI RY, ZHENG B, WAN Z, LIU W. Molecular identification, antifungal susceptibility, and resistance mechanisms of pathogenic yeasts from the China antifungal resistance surveillance trial (CARST-fungi) study[J]. Frontiers in Microbiology, 2022, 13: 1006375.
    [16] BILLMYRE RB, APPLEN CLANCEY S, LI LX, DOERING TL, HEITMAN J. 5-fluorocytosine resistance is associated with hypermutation and alterations in capsule biosynthesis in Cryptococcus[J]. Nature Communications, 2020, 11(1): 127.
    [17] LOYSE A, DROMER F, DAY J, LORTHOLARY O, HARRISON TS. Flucytosine and cryptococcosis: time to urgently address the worldwide accessibility of a 50-year-old antifungal[J]. The Journal of Antimicrobial Chemotherapy, 2013, 68(11): 2435-2444.
    [18] SZYMA?SKI M, CHMIELEWSKA S, CZY?EWSKA U, MALINOWSKA M, TYLICKI A. Echinocandins: structure, mechanism of action and use in antifungal therapy[J]. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37(1): 876-894.
    [19] NIVOIX Y, LEDOUX MP, HERBRECHT R. Antifungal therapy: new and evolving therapies[J]. Seminars in Respiratory and Critical Care Medicine, 2020, 41(1): 158-174.
    [20] de OLIVEIRA HC, JOFFE LS, SIMON KS, CASTELLI RF, REIS FCG, BRYAN AM, BORGES BS, MEDEIROS LCS, BOCCA AL, del POETA M, RODRIGUES ML. Fenbendazole controls in vitro growth, virulence potential, and animal infection in the Cryptococcus model[J]. Antimicrobial Agents and Chemotherapy, 2020, 64(6): e00286-20.
    [21] DENNING DW. Echinocandin antifungal drugs[J]. The Lancet, 2003, 362(9390): 1142-1151.
    [22] DELATTIN N, CAMMUE BPA, THEVISSEN K. Reactive oxygen species-inducing antifungal agents and their activity against fungal biofilms[J]. Future Medicinal Chemistry, 2014, 6(1): 77-90.
    [23] LEE YJ, PUUMALA E, ROBBINS N, COWEN LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond[J]. Chemical Reviews, 2021, 121(6): 3390-3411.
    [24] FREITAS GJC, RIBEIRO NQ, GOUVEIA-EUFRASIO L, EMIDIO ECP, GUIMAR?ES GM, CéSAR IC, PAIX?O TA, OLIVEIRA JBS, CAZA M, KRONSTAD JW, SANTOS DA. Antimalarials and amphotericin B interact synergistically and are new options to treat cryptococcosis[J]. International Journal of Antimicrobial Agents, 2023, 62(1): 106807.
    [25] LI ZB, ZHENG Y, LIU K, LIANG YD, LU J, LI QX, ZHAO BL, LIU X, LI XF. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: recent perspectives[J]. Phytotherapy Research, 2023, 37(12): 5599-5621.
    [26] YANG C, WU YJ, QIAN J, LI JJ. A systematic, updated review of Xuezhikang, a domestically developed lipid-lowering drug, in the application of cardiovascular diseases[J]. Acta Pharmaceutica Sinica B, 2024, 14(10): 4228-4242.
    [27] LI JM, FENG SS, LIU X, JIA X, QIAO FL, GUO JL, DENG SS. Effects of traditional Chinese medicine and its active ingredients on drug-resistant bacteria[J]. Frontiers in Pharmacology, 2022, 13: 837907.
    [28] FUJITA M, SHIOTA S, KURODA T, HATANO T, YOSHIDA T, MIZUSHIMA T, TSUCHIYA T. Remarkable synergies between baicalein and tetracycline, and baicalein and beta-lactams against methicillin-resistant Staphylococcus aureus[J]. Microbiology and Immunology, 2005, 49(4): 391-396.
    [29] QIAN MY, TANG SS, WU CM, WANG Y, HE T, CHEN TT, XIAO XL. Synergy between baicalein and penicillins against penicillinase-producing Staphylococcus aureus[J]. International Journal of Medical Microbiology, 2015, 305(6): 501-504.
    [30] VIPIN C, SAPTAMI K, FIDA F, MUJEEBURAHIMAN M, RAO SS, Athmika, ARUN AB, REKHA PD. Potential synergistic activity of quercetin with antibiotics against multidrug-resistant clinical strains of Pseudomonas aeruginosa[J]. PLoS One, 2020, 15(11): e0241304.
    [31] DHARA L, TRIPATHI A. The use of eugenol in combination with cefotaxime and ciprofloxacin to combat ESBL-producing quinolone-resistant pathogenic Enterobacteriaceae[J]. Journal of Applied Microbiology, 2020, 129(6): 1566-1576.
    [32] DELATTIN N, de BRUCKER K, VANDAMME K, MEERT E, MARCHAND A, CHALTIN P, CAMMUE BPA, THEVISSEN K. Repurposing as a means to increase the activity of amphotericin B and caspofungin against Candida albicans biofilms[J]. The Journal of Antimicrobial Chemotherapy, 2014, 69(4): 1035-1044.
    [33] CASSETTA MI, MARZO T, FALLANI S, NOVELLI A, MESSORI L. Drug repositioning: auranofin as a prospective antimicrobial agent for the treatment of severe staphylococcal infections[J]. Biometals, 2014, 27(4): 787-791.
    [34] CASADEVALL A, COELHO C, CORDERO RJB, DRAGOTAKES Q, JUNG E, VIJ R, WEAR MP. The capsule of Cryptococcus neoformans[J]. Virulence, 2019, 10(1): 822-831.
    [35] OKAGAKI LH, STRAIN AK, NIELSEN JN, CHARLIER C, BALTES NJ, CHRéTIEN F, HEITMAN J, DROMER F, NIELSEN K. Cryptococcal cell morphology affects host cell interactions and pathogenicity[J]. PLoS Pathogens, 2010, 6(6): e1000953.
    [36] ZARAGOZA O, GARCíA-RODAS R, NOSANCHUK JD, CUENCA-ESTRELLA M, RODRíGUEZ-TUDELA JL, CASADEVALL A. Fungal cell gigantism during mammalian infection[J]. PLoS Pathogens, 2010, 6(6): e1000945.
    [37] LEE HH, CARMICHAEL DJ, RíBEIRO V, PARISI DN, MUNZEN ME, CHARLES-NI?O CL, HAMED MF, KAUR E, MISHRA A, PATEL J, ROOKLIN RB, SHER A, CARRILLO-SEPULVEDA MA, EUGENIN EA, DORES MR, MARTINEZ LR. Glucuronoxylomannan intranasal challenge prior to Cryptococcus neoformans pulmonary infection enhances cerebral cryptococcosis in rodents[J]. PLoS Pathogens, 2023, 19(4): e1010941.
    [38] 王甜甜. 厚朴酚抗新型隐球菌作用机制研究[D]. 大连: 大连医科大学硕士学位论文, 2023.WANG TT. Study on the mechanism of magnolol against Cryptococcus neoformans[D]. Dalian: Master’s Thesis of Dalian Medical University, 2023 (in Chinese).
    [39] 徐佳龙, 宋浩雷, 陈晓琴, 叶政苑, 范静, 廖国建. 小檗碱抗新生隐球菌活性和作用机制[J]. 微生物学报, 2023, 63(4): 1541-1550.XU JL, SONG HL, CHEN XQ, YE ZY, FAN J, LIAO GJ. Antifungal activity and mechanism of berberine against Cryptococcus neoformans[J]. Acta Microbiologica Sinica, 2023, 63(4): 1541-1550 (in Chinese).
    [40] UPADHYAY S, XU XP, LIN XR. Interactions between melanin enzymes and their atypical recruitment to the secretory pathway by palmitoylation[J]. mBio, 2016, 7(6): e01925-16.
    [41] WANG Y, CASADEVALL A. Growth of Cryptococcus neoformans in presence of l-dopa decreases its susceptibility to amphotericin B[J]. Antimicrobial Agents and Chemotherapy, 1994, 38(11): 2648-2650.
    [42] van DUIN D, CASADEVALL A, NOSANCHUK JD. Melanization of Cryptococcus neoformans and Histoplasma capsulatum reduces their susceptibilities to amphotericin B and caspofungin[J]. Antimicrobial Agents and Chemotherapy, 2002, 46(11): 3394-3400.
    [43] LEE D, JANG EH, LEE M, KIM SW, LEE Y, LEE KT, BAHN YS. Unraveling melanin biosynthesis and signaling networks in Cryptococcus neoformans[J]. mBio, 2019, 10(5): e02267-19.
    [44] HASSANPOUR P, SHAMS-GHAHFAROKHI M, RAZZAGHI-ABYANEH M. Antifungal activity of eugenol on Cryptococcus neoformans biological activity and Cxt1p gene expression[J]. Current Medical Mycology, 2020, 6(1): 9-14.
    [45] 吕婧. 脲酶结构与功能的动力学研究及其抑制剂的设计筛选[D]. 杭州: 浙江大学博士学位论文, 2011.LV J. Kinetic study on the structure and function of urease and the design and screening of its inhibitors[D]. Hangzhou: Doctoral Dissertation of Zhejiang University, 2011 (in Chinese).
    [46] NóBREGA RO, TEIXEIRA AP, OLIVEIRA WA, LIMA EO, LIMA IO. Investigation of the antifungal activity of carvacrol against strains of Cryptococcus neoformans[J]. Pharmaceutical Biology, 2016, 54(11): 2591-2596.
    [47] BAKKALI F, AVERBECK S, AVERBECK D, IDAOMAR M. Biological effects of essential oils: a review[J]. Food and Chemical Toxicology, 2008, 46(2): 446-475.
    [48] CARDOSO NNR, ALVIANO CS, BLANK AF, ARRIGONI-BLANK MF, ROMANOS MTV, CUNHA MML, Da SILVA AJR, ALVIANO DS. Anti-cryptococcal activity of ethanol crude extract and hexane fraction from Ocimum basilicum var. Maria bonita: mechanisms of action and synergism with amphotericin B and Ocimum basilicum essential oil[J]. Pharmaceutical Biology, 2017, 55(1): 1380-1388.
    [49] KUMARI P, ARORA N, CHATRATH A, GANGWAR R, PRUTHI V, POLURI KM, PRASAD R. Delineating the biofilm inhibition mechanisms of phenolic and aldehydic terpenes against Cryptococcus neoformans[J]. ACS Omega, 2019, 4(18): 17634-17648.
    [50] BANG S, KWON H, HWANG HS, PARK KD, KIM SU, BAHN YS. 9-O-butyl-13-(4-isopropylbenzyl)berberine, KR-72, is a potent antifungal agent that inhibits the growth of Cryptococcus neoformans by regulating gene expression[J]. PLoS One, 2014, 9(10): e109863.
    [51] LI Z, LI ZT, YANG J, LU C, LI YM, LUO YZ, CONG F, SHI RM, WANG Z, CHEN HY, LI XX, YANG JL, YE F. Allicin shows antifungal efficacy against Cryptococcus neoformans by blocking the fungal cell membrane[J]. Frontiers in Microbiology, 2022, 13: 1012516.
    [52] DAVIDSON RC, NICHOLS CB, COX GM, PERFECT JR, HEITMAN J. A MAP kinase cascade composed of cell type specific and non-specific elements controls mating and differentiation of the fungal pathogen Cryptococcus neoformans[J]. Molecular Microbiology, 2003, 49(2): 469-485.
    [53] NICHOLS CB, FRASER JA, HEITMAN J. PAK kinases Ste20 and Pak1 govern cell polarity at different stages of mating in Cryptococcus neoformans[J]. Molecular Biology of the Cell, 2004, 15(10): 4476-4489.
    [54] NISHIDA-TAMEHIRO K, KIMURA A, TSUBATA T, TAKAHASHI S, SUZUKI H. Antioxidative enzyme NAD(P)H quinone oxidoreductase 1 (NQO1) modulates the differentiation of Th17 cells by regulating ROS levels[J]. PLoS One, 2022, 17(7): e0272090.
    [55] WANG K, LV Q, MIAO YM, QIAO SM, DAI Y, WEI ZF. Cardamonin, a natural flavone, alleviates inflammatory bowel disease by the inhibition of NLRP3 inflammasome activation via an AhR/Nrf2/NQO1 pathway[J]. Biochemical Pharmacology, 2018, 155: 494-509.
    [56] RASHID MH, BABU D, SIRAKI AG. Interactions of the antioxidant enzymes NAD(P)H: quinone oxidoreductase 1 (NQO1) and NRH: quinone oxidoreductase 2 (NQO2) with pharmacological agents, endogenous biochemicals and environmental contaminants[J]. Chemico-Biological Interactions, 2021, 345: 109574.
    [57] 曹婷, 谈楚琛, 周洁, 翟晓翔. 氧化白藜芦醇抗隐球菌体外药敏实验分析[J]. 中国中西医结合皮肤性病学杂志, 2023, 22(4): 323-326.CAO T, TAN CC, ZHOU J, ZHAI XX. In vitro susceptibility testing of oxyresveratrol for Cryptococcus[J]. Chinese Journal of Dermatovenereology of Integrated Traditional and Western Medicine, 2023, 22(4): 323-326 (in Chinese).
    [58] 李准, 李征途, 叶枫. 六神丸在体内外的抗隐球菌活性研究[J]. 抗感染药学, 2023, 20(2): 114-118, 128.LI Z, LI ZT, YE F. Research on anti-cryptococcal activity of Liushen pills in vivo and in vitro[J]. Anti-Infection Pharmacy, 2023, 20(2): 114-118, 128 (in Chinese).
    [59] ALI I, SHARMA P, SURI KA, SATTI NK, DUTT P, AFRIN F, KHAN IA. In vitro antifungal activities of amphotericin B in combination with acteoside, a phenylethanoid glycoside from Colebrookea oppositifolia[J]. Journal of Medical Microbiology, 2011, 60(Pt 9): 1326-1336.
    [60] SANGALLI-LEITE F, SCORZONI L, ALVES de PAULA E SILVA AC, de FáTIMA da SILVA J, de OLIVEIRA HC, de LACORTE SINGULANI J, GULLO FP, MORAES Da SILVA R, REGASINI LO, SIQUEIRA da SILVA DH, da SILVA BOLZANI V, FUSCO-ALMEIDA AM, SOARES MENDES-GIANNINI MJ. Synergistic effect of pedalitin and amphotericin B against Cryptococcus neoformans by in vitro and in vivo evaluation[J]. International Journal of Antimicrobial Agents, 2016, 48(5): 504-511.
    [61] SCALAS D, MANDRAS N, ROANA J, TARDUGNO R, CUFFINI AM, GHISETTI V, BENVENUTI S, TULLIO V. Use of Pinus sylvestris L. (Pinaceae), Origanum vulgare L. (Lamiaceae), and Thymus vulgaris L. (Lamiaceae) essential oils and their main components to enhance itraconazole activity against azole susceptible/not-susceptible Cryptococcus neoformans strains[J]. BMC Complementary and Alternative Medicine, 2018, 18(1): 143.
    [62] BRILHANTE RSN, ARAúJO GDS, FONSECA XMQC, GUEDES GMM, AGUIAR L, DSCM CASTELO-BRANCO, CORDEIRO RA, SIDRIM JJC, PEREIRA NETO WA, ROCHA MFG. Antifungal effect of anthraquinones against Cryptococcus neoformans: detection of synergism with amphotericin B[J]. Medical Mycology, 2020: myaa081.
    [63] KIM S, LEE DG. Oxyresveratrol-induced DNA cleavage triggers apoptotic response in Candida albicans[J]. Microbiology, 2018, 164(9): 1112-1121.
    [64] LI LP, LIU W, LIU H, ZHU F, ZHANG DZ, SHEN H, XU Z, QI YP, ZHANG SQ, CHEN SM, HE LJ, CAO XJ, HUANG X, ZHANG JD, YAN L, AN MM, JIANG YY. Synergistic antifungal activity of berberine derivative B-7b and fluconazole[J]. PLoS One, 2015, 10(5): e0126393.
    [65] 孔祥芳, 肖娟, 张丽敏. 隐脑镇痛汤辅助两性霉素B鞘内注射治疗新型隐球菌性脑膜炎的临床研究[J]. 现代中西医结合杂志, 2018, 27(34): 3851-3854.KONG XF, XIAO J, ZHANG LM. Clinical study of Yinnaozhentong decoction assisted with intrathecal injection of amphotericin B in the treatment of cryptococcal meningitis[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine, 2018, 27(34): 3851-3854 (in Chinese).
    [66] PINTO E, GON?ALVES MJ, CAVALEIRO C, SALGUEIRO L. Antifungal activity of Thapsia villosa essential oil against Candida, Cryptococcus, Malassezia, Aspergillus and dermatophyte species[J]. Molecules, 2017, 22(10): 1595.
    [67] da SILVA DL, MAGALH?ES TFF, dos SANTOS JRA, de PAULA TP, MODOLO LV, de FáTIMA A, BUZANELLO MARTINS CV, SANTOS DA, De RESENDE-STOIANOFF MA. Curcumin enhances the activity of fluconazole against Cryptococcus gattii-induced cryptococcosis infection in mice[J]. Journal of Applied Microbiology, 2016, 120(1): 41-48.
    [68] GUESS TE, ROSEN J, CASTRO-LOPEZ N, WORMLEY FLJr, McCLELLAND EE. An inherent T cell deficit in healthy males to C. neoformans infection may begin to explain the sex susceptibility in incidence of cryptococcosis[J]. Biology of Sex Differences, 2019, 10(1): 44.
    [69] YANG C, HUANG YM, ZHOU YY, ZANG XL, DENG HY, LIU YT, SHEN DX, XUE XY. Cryptococcus escapes host immunity: what do we know?[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 1041036.
    [70] DONG ZM, MURPHY JW. Cryptococcal polysaccharides induce l-selectin shedding and tumor necrosis factor receptor loss from the surface of human neutrophils[J]. The Journal of Clinical Investigation, 1996, 97(3): 689-698.
    [71] DONG ZM, MURPHY JW. Mobility of human neutrophils in response to Cryptococcus neoformans cells, culture filtrate antigen, and individual components of the antigen[J]. Infection and Immunity, 1993, 61(12): 5067-5077.
    [72] COLOMBO AC, RELLA A, NORMILE T, JOFFE LS, TAVARES PM, de S ARAúJO GR, FRASES S, ORNER EP, FARNOUD AM, FRIES BC, SHERIDAN B, NIMRICHTER L, RODRIGUES ML, del POETA M. Cryptococcus neoformans glucuronoxylomannan and sterylglucoside are required for host protection in an animal vaccination model[J]. mBio, 2019, 10(2): e02909-18.
    [73] KLUTTS JS, DOERING TL. Cryptococcal xylosyltransferase 1 (Cxt1p) from Cryptococcus neoformans plays a direct role in the synthesis of capsule polysaccharides[J]. Journal of Biological Chemistry, 2008, 283(21): 14327-14334.
    [74] UPADHYAY S, XU XP, LOWRY D, JACKSON JC, ROBERSON RW, LIN XR. Subcellular compartmentalization and trafficking of the biosynthetic machinery for fungal melanin[J]. Cell Reports, 2016, 14(11): 2511-2518.
    [75] EISENMAN HC, GREER EM, McGRAIL CW. The role of melanins in melanotic fungi for pathogenesis and environmental survival[J]. Applied Microbiology and Biotechnology, 2020, 104(10): 4247-4257.
    [76] ZARAGOZA O. Basic principles of the virulence of Cryptococcus[J]. Virulence, 2019, 10(1): 490-501.
    [77] ROHATGI S, PIROFSKI LA. Host immunity to Cryptococcus neoformans[J]. Future Microbiology, 2015, 10(4): 565-581.
    [78] PIROFSKI LA. Of mice and men, revisited: new insights into an ancient molecule from studies of complement activation by Cryptococcus neoformans[J]. Infection and Immunity, 2006, 74(6): 3079-3084.
    [79] GATES MA, KOZEL TR. Differential localization of complement component 3 within the capsular matrix of Cryptococcus neoformans[J]. Infection and Immunity, 2006, 74(6): 3096-3106.
    [80] SMITH LM, DIXON EF, MAY RC. The fungal pathogen Cryptococcus neoformans manipulates macrophage phagosome maturation[J]. Cellular Microbiology, 2015, 17(5): 702-713.
    [81] ZARAGOZA O, CHRISMAN CJ, CASTELLI MV, FRASES S, CUENCA-ESTRELLA M, RODRíGUEZ-TUDELA JL, CASADEVALL A. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival[J]. Cellular Microbiology, 2008, 10(10): 2043-2057.
    [82] FU MS, COELHO C, de LEON-RODRIGUEZ CM, ROSSI DCP, CAMACHO E, JUNG EH, KULKARNI M, CASADEVALL A. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH[J]. PLoS Pathogens, 2018, 14(6): e1007144.
    [83] DING YW, ZENG LJ, LI RF, CHEN QY, ZHOU BX, CHEN QL, CHENG PL, WANG YT, ZHENG JP, YANG ZF, ZHANG FX. The Chinese prescription Lianhuaqingwen capsule exerts anti-influenza activity through the inhibition of viral propagation and impacts immune function[J]. BMC Complementary and Alternative Medicine, 2017, 17(1): 130.
    [84] REN Y, YIN ZH, DAI JX, YANG Z, YE BB, MA YS, ZHANG TE, SHI YY. Evidence-based complementary and alternative medicine exploring active components and mechanism of Jinhua Qinggan granules in treatment of COVID-19 based on virus-host interaction[J]. Natural Product Communications, 2020, 15(9): 1252.
    [85] LAI Q. Pharmacological mechanism and network pharmacology research of Huashibaidu formula in treating COVID-19[J]. Natural Product Research and Development, 2020, 32: 909-919.
    [86] CHEN J, WANG YK, GAO Y, HU LS, YANG JW, WANG JR, SUN WJ, LIANG ZQ, CAO YM, CAO YB. Protection against COVID-19 injury by Qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming[J]. Biomedicine & Pharmacotherapy, 2020, 129: 110281.
    [87] CHEN X, FENG YX, SHEN XY, PAN GX, FAN GW, GAO XM, HAN JH, ZHU Y. Anti-sepsis protection of Xuebijing injection is mediated by differential regulation of pro- and anti-inflammatory Th17 and T regulatory cells in a murine model of polymicrobial sepsis[J]. Journal of Ethnopharmacology, 2018, 211: 358-365.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

杨轶涵,毛娅芯,徐新平. 中药协同抗真菌药物抗隐球菌的研究进展[J]. 微生物学报, 2025, 65(2): 537-550

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-27
  • 在线发布日期: 2025-02-18
文章二维码