生防微生物在棉花黄萎病防治中的研究进展
作者:
作者单位:

1.山东农业大学 农学院,山东 泰安;2.中国科学院微生物研究所 真菌学国家重点实验室,北京;3.中国科学院大学 生命科学学院,北京

作者简介:

刘延财:论文构思和设计、资料检索、论文撰写和修订;唐叶:论文资料检索和修订;吴家和:论文审阅和修订;宋宪亮:论文构思和设计、审阅和修订;刘钢:论文构思和设计、审阅和修订。

基金项目:

中国科学院战略性先导科技专项(XDA28030000);山东省现代农业产业技术研究体系(SDAIT-03-04/06);山东省良种工程(2023LZGC007);山东省自然科学基金(ZR2023QC049)


Research progress of biocontrol microbial strains in prevention of cotton wilt disease
Author:
Affiliation:

1.College of Agronomy, Shandong Agricultural University, Tai’an, Shandong, China;2.State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China;3.College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China

Fund Project:

This work was supported by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA28030000), the Modern Agro-industry Technology Research System of Shandong Province (SDAIT-03-04/06), the Agricultural Seed Projects of Shandong Province (2023LZGC007), and the Natural Science Foundation of Shandong Province (ZR2023QC049).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [67]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    黄萎病是影响棉花种植业最重要的病害之一,可导致棉花减产甚至绝收。该病由丝状真菌大丽轮枝菌引发,属土传病害。传统的化学防治方法不仅影响人类健康,还带来环境污染问题,且连年使用易导致大丽轮枝菌产生抗药性。因此,研发针对棉花黄萎病的绿色环保、可持续发展的防治策略迫在眉睫,其中生物防治成为了一个优选方案。本文通过分析国内外最新研究进展,探讨了棉花黄萎病生防微生物菌株的筛选、作用机制及田间应用方式等,总结了生防微生物通过竞争、抗生作用、诱导植物防御反应等多种机制抑制病原菌生长的研究成果。尽管生防微生物的应用前景广阔,但仍面临环境适应性、稳定性和使用成本等挑战。未来研究应更加聚焦于生防微生物菌株的遗传改良、复配菌剂的研制和应用技术的优化,以进一步提升生防微生物菌株在农业生产中的实用性和有效性。

    Abstract:

    Cotton Verticillium wilt is the most serious disease affecting cotton cultivation, which could cause a significant decrease in cotton yield or even complete crop failure. Cotton Verticillium wilt is caused by the filamentous fungus Verticillium dahliae. The traditional chemical control affects public health and brings about environmental pollution, and the continuous usage has induced the drug resistance of Verticillium dahliae. Therefore, it is urgent to develop environmental friendly and sustainable development control strategies against cotton Verticillium wilt. Biological control has become a good choice to prevent cotton Verticillium wilt. Based on the analysis of the recent research progress, this review discussed the screening, mechanism of action and field application of biocontrol microbial strains against cotton Verticillium wilt, and summarized the research progress of biocontrol microorganisms inhibiting the growth of pathogen through various mechanisms such as competition, antibiotic action, and inducing plant defense response. Although the application prospects of biocontrol microorganisms are expected, they still face challenges such as environmental adaptability, stability, and usage costs of these biocontrol microorganisms. To further improve the practicality of biocontrol microbial strains in agricultural production, future research should focus on genetic improvement of biocontrol microorganisms, development, and application of the microbial agents and so on.

    参考文献
    [1] ZHANG Y, WANG XF, DING ZG, MA Q, ZHANG GR, ZHANG SL, LI ZK, WU LQ, ZHANG GY, MA ZY. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement[J]. BMC Genomics, 2013, 14(1): 637.
    [2] GONG Q, YANG ZE, WANG XQ, BUTT HI, CHEN EY, HE SP, ZHANG CJ, ZHANG XY, LI FG. Salicylic acid-related cotton (Gossypium arboreum) ribosomal protein GaRPL18 contributes to resistance to Verticillium dahliae[J]. BMC Plant Biology, 2017, 17(1): 59.
    [3] WANG YQ, LIANG CZ, WU SJ, ZHANG XY, TANG JY, JIAN GL, JIAO GL, LI FG, CHU CC. Significant improvement of cotton Verticillium wilt resistance by manipulating the expression of Gastrodia antifungal proteins[J]. Molecular Plant, 2016, 9(10): 1436-1439.
    [4] BONATERRA A, BADOSA E, DARANAS N, FRANCéS J, ROSELLó G, MONTESINOS E. Bacteria as biological control agents of plant diseases[J]. Microorganisms, 2022, 10(9): 1759.
    [5] ZHU Y, ZHAO M, LI T, WANG L, LIAO C, LIU D, ZHANG H, ZHAO Y, LIU L, GE X, LI B. Interactions between Verticillium dahliae and cotton: pathogenic mechanism and cotton resistance mechanism to Verticillium wilt[J]. Frontiers in Plant Science, 2023, 14: 1174281.
    [6] SUN Y, YANG N, LI SR, CHEN F, XIE YJ, TANG CM. Mechanism of oxalate decarboxylase Oxd_S12 from Bacillus velezensis BvZ45-1 in defence against cotton Verticillium wilt[J]. Journal of Experimental Botany, 2024, 75(11): 3500-3520.
    [7] ZHANG DD, DAI XF, KLOSTERMAN SJ, SUBBARAO KV, CHEN JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms[J]. Biological Reviews of the Cambridge Philosophical Society, 2022, 97(5): 1810-1822.
    [8] SONG RR, LI JP, XIE CJ, JIAN W, YANG XY. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae[J]. International Journal of Molecular Sciences, 2020, 21(3): 1120.
    [9] SHABAN M, MIAO YH, ULLAH A, KHAN AQ, MENGHWAR H, KHAN AH, AHMED MM, TABASSUM MA, ZHU LF. Physiological and molecular mechanism of defense in cotton against Verticillium dahliae[J]. Plant Physiology and Biochemistry, 2018, 125: 193-204.
    [10] CHEN JY, XIAO HL, GUI YJ, ZHANG DD, LI L, BAO YM, DAI XF. Characterization of the Verticillium dahliae exoproteome involves in pathogenicity from cotton-containing medium[J]. Frontiers in Microbiology, 2016, 7: 1709.
    [11] ZHAO J, CHEN QH, ZHOU S, SUN YH, LI XY, LI YZ. H2Bub1 regulates RbohD-dependent hydrogen peroxide signal pathway in the defense responses to Verticillium dahliae toxins[J]. Plant Physiology, 2020, 182(1): 640-657.
    [12] ZHANG JF, FANG H, ZHOU HP, SANOGO S, MA ZY. Genetics, breeding, and marker-assisted selection for Verticillium wilt resistance in cotton[J]. Crop Science, 2014, 54(4): 1289-1303.
    [13] LIN RR, ZHANG Q, YIN L, ZHANG YW, YANG QL, LIU K, WANG YD, HAN SC, ZHAO HX, ZHAO HP. Isolation and characterization of a mycosubtilin homologue antagonizing Verticillium dahliae produced by Bacillus subtilis strain Z15[J]. PLoS One, 2022, 17(6): e0269861.
    [14] HUANG T, ZHANG Y, YU ZH, ZHUANG WY, ZENG ZQ. Bacillus velezensis BV01 has broad-spectrum biocontrol potential and the ability to promote plant growth[J]. Microorganisms, 2023, 11(11): 2627.
    [15] 蔡文涌, 方香玲. 植物病原真菌尖孢镰刀菌致病因子研究进展[J]. 分子植物育种, 2024, 22(24): 8270-8278.CAI WY, FANG XL. Research progress on pathogenic factors of different Fusarium oxysporum[J]. Molecular Breeding, 2024, 22(24): 8270-8278 (in Chinese).
    [16] 孙宗苹, 余梅霞, 刘晓玉, 唐俊. 粘帚霉菌在农业上的应用研究进展[J]. 中国细胞生物学学报, 2021, 43(11): 2235-2244.SUN ZP, YU MX, LIU XY, TANG J. Research progress on Gliocladium spp. application in agriculture[J]. Chinese Journal of Cell Biology, 2021, 43(11): 2235-2244(in Chinese).
    [17] FENG ZL, WEI F, FENG HJ, ZHANG YL, ZHAO LH, ZHOU JL, XIE JT, JIANG DH, ZHU HQ. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae Induced by hypovirulent fungus Gibellulopsis nigrescens CEF08111[J]. International Journal of Molecular Sciences, 2023, 24(2): 1480.
    [18] 孟娜, 汤斌, 黄晓东, 叶生梅, 阚清华. 4种木霉菌对棉花黄萎病菌抑制作用的测定[J]. 生物学杂志, 2007, 24(4): 58-61.MENG N, TANG B, HUANG XD, YE SM, KAN QH. The inhibition of four Trichoderma species against Verticillium dahliae[J]. Journal of Biology, 2007, 24(4): 58-61 (in Chinese).
    [19] 孙艳, 张学坤, 王振辉, 赵静, 冯丽凯, 石新建, 刘政. 滴灌条件下木霉菌厚垣孢子制剂防治棉花黄萎病试验[J]. 江苏农业科学, 2018, 46(10): 89-92.SUN Y, ZHANG XK, WANG ZH, ZHAO J, FENG LK, SHI XJ, LIU Z. Control efficacy of Trichoderma chlamydospore preparations against cotton Verticillium wilt based on dropping irrigation system[J]. Jiangsu Agricultural Sciences, 2018, 46(10): 89-92 (in Chinese).
    [20] FRAVEL DR, KIM KK, PAPAVIZAS GC. Viability of microsclerotia of Verticillium dahliae reduced by a metabolite produced by Talaromyces-Flavus[J]. Phytopathology, 1987, 77(4): 616-619.
    [21] KIM KK. Identification of a metabolite produced by Talaromyces flavus as glucose oxidase and its role in the biocontrol of Verticillium dahliae[J]. Phytopathology, 1988, 78(4): 488-488.
    [22] KIM KK, FRAVEL DR, PAPAVIZAS GC. Production, purification, and properties of glucose oxidase from the biocontrol fungus Talaromyces flavus[J]. Canadian Journal of Microbiology, 1990, 36(3): 199-205.
    [23] 张芸, 冯自力, 冯鸿杰, 李志芳, 师勇强, 赵丽红, 朱荷琴, 杨家荣. 内生球毛壳属真菌CEF-082对棉花黄萎病的控制作用[J]. 植物病理学报, 2016, 46(5): 697-706.ZHANG Y, FENG ZL, FENG HJ, LI ZF, SHI YQ, ZHAO LH, ZHU HQ, YANG JR. Control effect of endophytic fungus Chaetomium globosum CEF-082 against Verticillium wilt in Gossypium hirsutum[J]. Acta Phytopathologica Sinica, 2016, 46(5): 697-706 (in Chinese).
    [24] LIU G, CHATER KF, CHANDRA G, NIU GQ, TAN HR. Molecular regulation of antibiotic biosynthesis in Streptomyces[J]. Microbiology and Molecular Biology Review, 2013, 77(1): 112-143.
    [25] BOLWERK A, LAGOPODI AL, WIJFJES AHM, LAMERS GEM, CHIN-A-WOENG TFC, LUGTENBERG BJJ, BLOEMBERG GV. Interactions in the tomato rhizosphere of two Pseudomonas biocontrol strains with the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici[J]. Molecular Plant-Microbe Interactions, 2003, 16(11): 983-993.
    [26] PANTELIDES IS, TJAMOS SE, STRIGLIS IA, CHATZIPAVLIDIS I, PAPLOMATAS EJ. Mode of action of a non-pathogenic Fusarium oxysporum strain against Verticillium dahliae using real time qPCR analysis and biomarker transformation[J]. Biological Control, 2009, 50(1): 30-36.
    [27] FRANKOWSKI AC, CLARK LJ. Sexuality and intimacy in assisted living: residents’ perspectives and experiences[J]. Sexuality Research & Social Policy, 2009, 6(4): 25-37.
    [28] 钱瑶, 潘园园, 李二伟, 贾慧慧, 魏艳敏, 刘钢. 链霉菌IMS002的分类鉴定及其抗真菌活性物质解析[J]. 微生物学报, 2020, 60(1): 60-68.QIAN Y, PAN YY, LI EW, JIA HH, WEI YM, LIU G. Classification of Streptomyces sp. IMS002 and identification of its antifungal metabolite[J]. Acta Microbiologica Sinica, 2020, 60(1): 60-68 (in Chinese).
    [29] CAO P, LIU CX, SUN PY, FU XP, WANG XJ. An endophytic Streptomyces sp. strain DHV3-2 from diseased root as a potential biocontrol agent against Verticillium dahliae and growth elicitor in tomato (Solanum lycopersicum)[J]. Antonie Van Leeuwenhoek, 2016, 109(12): 1573-1582.
    [30] 薛磊, 王建涛, 刘相春, 薛泉宏, 申光辉, 赵娟. 拮抗性链霉菌对大丽轮枝菌微菌核形成与萌发的影响[J]. 植物保护学报, 2012, 39(4): 289-296.XUE L, WANG JT, LIU XC, XUE QH, SHEN GH, ZHAO J. Inhibition of antagonistic Streptomyces spp. on microsclerotia formation and germination of Verticillium dahliae[J]. Journal of Plant Protection, 2012, 39(4): 289-296 (in Chinese).
    [31] 宋东博, 苏飞鸿, 郭旺珍, 何丹, 顾爱星. 棉花黄萎病拮抗菌KF-43-1的鉴定与3种处理田间防治效果对比[J]. 微生物学通报, 2024, 51(7): 2463-2474.SONG DB, SU FH, GUO WZ, HE D, GU AX. Identification of strain KF-43-1 against cotton Verticillium wilt and comparison of biocontrol effects among three application methods in the field[J]. Microbiology China, 2024, 51(7): 2463-2474 (in Chinese).
    [32] SHAN YJ, WANG D, ZHAO FH, SONG J, ZHU H, LI Y, ZHANG XJ, DAI XF, HAN DF, CHEN JY. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae[J]. BMC Biology, 2024, 22(1): 116.
    [33] 吴梦君, 杨启林, 李艳红, 葛风伟, 赵歉歉, 袁琳琳, 宁焕宸, 陈忠宜, 李金玉, 赵惠新. BS-Z15代谢产物防治棉花黄萎病的作用及对棉花生长的影响[J]. 分子植物育种, 2019, 17(24): 8237-8244.WU MJ, YANG QL, LI YH, GE FW, ZHAO QQ, YUAN LL, NING HC, CHEN ZY, LI JY, ZHAO HX. Effect of BS-Z15 metabolites on cotton Verticillium wilt prevention and cotton growth[J]. Molecular Plant Breeding, 2019, 17(24): 8237-8244 (in Chinese).
    [34] 高宇, 陈尧尧, 刘忆杰, 陈晓萌, 高同国, 张冬冬. Bacillus malacitensis Z-5菌株合成抑菌物质培养基优化及成分鉴定[J]. 棉花学报, 2019, 31(3): 210-219.GAO Y, CHEN YY, LIU YJ, CHEN XM, GAO TG, ZHANG DD. Optimization of the fermentation medium and analysis of the compositions of antifungal compounds from Bacillus malacitensis Z-5[J]. Cotton Science, 2019, 31(3): 210-219 (in Chinese).
    [35] 张琼, Sherzad Zabihullah, 唐灿明. 贝莱斯芽孢杆菌SZAD1对大丽轮枝菌的生物防治效果[J]. 棉花学报, 2020, 32(4): 329-338.ZHANG Q, SHERZAD Z, TANG CM. Biocontrol effect of Bacillus velezensis strain SZAD1 on Verticillium dahliae[J]. Cotton Science, 2020, 32(4): 329-338 (in Chinese).
    [36] SHERZAD Z, TANG CM. A new strain of Bacillus velezensis as a bioagent against Verticillium dahliae in cotton: isolation and molecular identification[J]. Egyptian Journal of Biological Pest Control, 2020, 30(1): 118.
    [37] QIN LJ, TIAN PD, CUI QY, HU SP, JIAN W, XIE CG, YANG XY, SHEN H. Bacillus circulans GN03 alters the microbiota, promotes cotton seedling growth and disease resistance, and increases the expression of phytohormone synthesis and disease resistance-related genes[J]. Frontiers in Plant Science, 2021, 12: 644597.
    [38] Sherzad Zabihullah, 杨娜, 张静, 张芸, 周恒, 唐灿明. 棉花内生解淀粉芽孢杆菌489-2-2对棉花黄萎病的防效研究[J]. 核农学报, 2021, 35(1): 41-48.SHERZAD Z, YANG N, ZHANG J, ZHANG Y, ZHOU H, TANG CM. Study on the control effect of endophytic Bacillus amyloliquefaciens 489-2-2 on Verticillium wilt of cotton[J]. Journal of Nuclear Agricultural Sciences, 2021, 35(1): 41-48 (in Chinese).
    [39] TANG ZM, CAO XJ, ZHANG HL. Production of iturin A by Bacillus velezensis ND and its biological control characteristics[J]. Journal of Basic Microbiology, 2023, 63(2): 179-189.
    [40] 白红燕, 赵丽红, 蒲丹丹, 冯自力, 魏锋, 冯鸿杰, 顾爱星, 朱荷琴, 彭军, 张亚林. 贝莱斯芽孢杆菌EBV02对棉花黄萎病的防治作用及机理[J]. 棉花学报, 2022, 34(5): 443-457.BAI HY, ZHAO LH, PU DD, FENG ZL, WEI F, FENG HJ, GU AX, ZHU HQ, PENG J, ZHANG YL. The control effect and mechanism of Bacillus velezensis EBV02 on cotton Verticillium wilt[J]. Cotton Science, 2022, 34(5): 443-457 (in Chinese).
    [41] ZHANG L, WANG Y, LEI SW, ZHANG HX, LIU ZY, YANG JW, NIU QH. Effect of volatile compounds produced by the cotton endophytic bacterial strain Bacillus sp. T6 against Verticillium wilt[J]. BMC Microbiology, 2023, 23(1): 8.
    [42] LIU L, GALILEYA MEDISON R, ZHENG TW, MENG XJ, SUN ZX, ZHOU Y. Biocontrol potential of Bacillus amyloliquefaciens YZU-SG146 from Fraxinus hupehensis against Verticillium wilt of cotton[J]. Biological Control, 2023, 183: 105246.
    [43] 白红燕, 冯自力, 冯鸿杰, 魏锋, 赵丽红, 朱荷琴, 顾爱星, 张亚林, 彭军. 48株枯草芽孢杆菌对棉花黄萎病防治效果评测[J]. 中国棉花, 2021, 48(12): 13-19.BAI HY, FENG ZL, FENG HJ, WEI F, ZHAO LH, ZHU HQ, GU AX, ZHANG YL, PENG J. Evaluation of the control effect of 48 strains of Bacillus subtilis on cotton Verticillium wilt[J]. China Cotton, 2021, 48(12): 13-19 (in Chinese).
    [44] SONG J, WANG D, HAN DF, ZHANG DD, LI R, KONG ZQ, DAI XF, SUBBARAO KV, CHEN JY. Characterization of the endophytic Bacillus subtilis KRS015 strain for its biocontrol efficacy against Verticillium dahliae[J]. Phytopathology, 2024, 114(1): 61-72.
    [45] 贾慧慧, 谢心悦, 潘园园, 任争光, 刘钢, 魏艳敏. 芽胞杆菌BJ-6的鉴定及对甜瓜细菌性果斑病的防治[J]. 微生物学报, 2020, 60(5): 982-991.JIA HH, XIE HY, PAN YY, REN ZG, LIU G, WEI YM. Identification of Bacillus sp. BJ-6 for biocontrol of bacterial fruit blotch of melon[J]. Acta Microbiologica Sinica, 2020, 60(5): 982-991(in Chinese).
    [46] 周京龙, 冯自力, 冯鸿杰, 李云卿, 袁媛, 李志芳, 魏锋, 师勇强, 赵丽红, 孙正祥, 朱荷琴, 周燚. 棉花内生蜡状芽孢杆菌YUPP-10对棉花黄萎病的防治作用及机制[J]. 中国农业科学, 2017, 50(14): 2717-2727.ZHOU JL, FENG ZL, FENG HJ, LI YQ, YUAN Y, LI ZF, WEI F, SHI YQ, ZHAO LH, SUN ZX, ZHU HQ, ZHOU Y. Biocontrol effect and mechanism of cotton endophytic bacterium Bacillus cereus YUPP-10 against Verticillium wilt in Gossypium hirsutum[J]. Scientia Agricultura Sinica, 2017, 50(14): 2717-2727 (in Chinese).
    [47] 刘杉, 安屹, 程慧洁, 于雷, 曹晓东, 安国勇. 短小芽孢杆菌Y106对棉花黄萎病的防治作用[J]. 河南大学学报(自然科学版), 2018, 48(3): 334-341.LIU C, AN Y, CHENG HJ, YU L, CAO XD, AN GY. The effect of Bacillus pumilus Y106 on controlling cotton Verticillium wilt[J]. Journal of Henan University (Natural Science), 2018, 48(3): 334-341 (in Chinese).
    [48] 周燚, 杨廷宪, 王斌先, 孙正祥. 棉花内生拮抗菌Paenibacillus xylanilyticus YUPP-1抗黄萎病研究[J]. 棉花学报, 2012, 24(1): 71-77.ZHOU Y, YANG TX, WANG BX, SUN ZX. Biological control of cotton Verticillium wilt by endophytic Paenibacillus xylanilyticus YUPP-1[J]. Cotton Science, 2012, 24(1): 71-77 (in Chinese).
    [49] 陈丽华, 袁德超, 吴毅歆, 何鹏飞, 何月秋. 棉花黄萎病生防内生芽孢杆菌LH-L3的分离鉴定[J]. 棉花学报, 2017, 29(6): 550-559.CHEN LH, YUAN DC, WU YX, HE PF, HE YQ. Isolation and characterization of endophytic Bacillus methylotrophicus LH-L3 antagonist of cotton Verticillium wilt[J]. Cotton Science, 2017, 29(6): 550-559 (in Chinese).
    [50] 高畅, 刘桂敏, 曾红. 阿萨尔基亚芽孢杆菌对大丽轮枝菌微菌核的抑制作用[J]. 西北农业学报, 2022, 31(1): 99-104.GAO C, LIU GM, ZENG H. Inhibition effect of Bacillus axarquiensis TUBP1 on microsclerotia germination of Verticillium dahliae Kleb[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2022, 31(1): 99-104 (in Chinese).
    [51] 戚家明, 孙杉杉, 张东旭, 肖建中, 徐志文. 生防菌株PF-1基于全基因组数据的分类鉴定及拮抗能力分析[J]. 浙江农业学报, 2020, 32(10): 1816-1822.QI JM, SUN SS, ZHANG DX, XIAO JZ, XU ZW. Identification and biocontrol activity analysis of biocontrol strain PF-1 based on genome-wide data[J]. Acta Agriculturae Zhejiangensis, 2020, 32(10): 1816-1822 (in Chinese).
    [52] NI H, KONG WL, ZHANG Y, WU XQ. Effects of volatile organic compounds produced by Pseudomonas aurantiaca ST-TJ4 against Verticillium dahliae[J]. Journal of Fungi, 2022, 8(7): 697.
    [53] NIU QH, LEI SW, ZHANG G, WU GH, TIAN Z, CHEN KY, ZHANG L. Inhibition of Verticillium wilt in cotton through the application of Pseudomonas aeruginosa ZL6 derived from fermentation residue of kitchen waste[J]. Journal of Microbiology and Biotechnology, 2024, 34(5): 1040-1050.
    [54] TOMAH AA, ALAMER ISA, KHATTAK AA, AHMED T, HATAMLEH AA, AL-DOSARY MA, ALI HM, WANG DZ, ZHANG JZ, XU LH, LI B. Potential of Trichoderma virens HZA14 in controlling Verticillium wilt disease of eggplant and analysis of its genes responsible for microsclerotial degradation[J]. Plants (Basel), 2023, 12(21): 3761.
    [55] JIN LR, YANG L, LI WJ, XU D, YANG NN, LI GQ, WAN P. Diversity and biocontrol potential of culturable endophytic fungi in cotton[J]. Front Microbiol, 2021, 12: 698930.
    [56] MONTES-OSUNA N, CABANáS CGL, VALVERDE-CORREDOR A, BERENDSEN RL, PRIETO P, MERCADO-BLANCO J. Assessing the involvement of selected phenotypes of Pseudomonas simiae picf7 in olive root colonization and biological control of Verticillium dahliae[J]. Plants (Basel), 2021, 10(2): 412.
    [57] SU XF, WU SY, LIU L, LU GQ, LIU HY, JIN X, WANG Y, GUO HM, WANG C, CHENG HM. Potential antagonistic bacteria against Verticillium dahliae isolated from artificially infested nursery[J]. Cells, 2021, 10(12): 3588.
    [58] PEI DL, ZHANG QC, ZHU XQ, ZHANG L. Biological control of Verticillium wilt and growth promotion in tomato by rhizospheric soil-derived Bacillus amyloliquefaciens oj-2.16[J]. Pathogens, 2022, 12(1): 37.
    [59] BUBICI G, MARSICO AD, D'AMICO M, AMENDUNI M, CIRULLI M. Evaluation of Streptomyces spp. for the biological control of corky root of tomato and Verticillium wilt of eggplant[J]. Applied Soil Ecology, 2013, 72: 128-134.
    [60] ZHANG Q, LIN RR, YANG J, ZHAO JJ, LI HR, LIU K, XUE XH, ZHAO HX, HAN SC, ZHAO HP. Transcriptome analysis reveals that C17 mycosubtilin antagonizes Verticillium dahliae by interfering with multiple functional pathways of fungi[J]. Biology (Basel), 2023, 12(4): 513.
    [61] AHMED W, ZHOU GS, YANG J, MUNIR S, AHMED A, LIU Q, ZHAO ZX, JI GH. Bacillus amyloliquefaciens WS-10 as a potential plant growth-promoter and biocontrol agent for bacterial wilt disease of flue-cured tobacco[J]. Egyptian Journal of Biological Pest Control, 2022, 32(1): 25.
    [62] VERMA P, HIREMANI NS, GAWANDE SP, SAIN SK, NAGRALE DT, NARKHEDKAR NG, PRASAD YG. Modulation of plant growth and antioxidative defense system through endophyte biopriming in cotton (Gossypium spp.) and non-host crops[J]. Heliyon, 2022, 8(5): e09487.
    [63] MOHAMAD OAA, LIU YH, HUANG Y, LI L, MA JB, EGAMBERDIEVA D, GAO L, FANG BZ, HATAB S, JIANG HC, LI WJ. The metabolic potential of endophytic Actinobacteria associated with medicinal plant Thymus roseus as a plant-growth Stimulator[J]. Microorganisms, 2022, 10(9): 1802.
    [64] 陈丽华, 何鹏飞, 袁德超, 欧晓慧, 吴毅歆, 何月秋. 一种防治棉花黄萎病的生物复合种衣剂的研制[J]. 棉花学报, 2018, 30(3): 282-291.CHEN LH, HE PF, YUAN DC, OU XH, WU YX, HE YQ. Development of a biological complex seed-coating agent to control Verticillium wilt[J]. Cotton Science, 2018, 30(3): 282-291 (in Chinese).
    [65] 娄善伟, 张鹏忠, 王大光, 鹿秀云, 边洋, 那马加普, 马腾飞, 努尔塞吾来, 张晓东, 张怀军. 枯草芽孢杆菌种子包衣对棉花黄萎病抑制作用的研究[J]. 中国棉花, 2016, 43(6): 28-30.LOU SW, ZHANG PZ, WANG DG, LU XY, BIAN Y, NA M, MA TF, NU E, ZHANG XD, ZHANG HJ. Study on the inhibitory effect of cotton Verticillium wilt by seed coating with Bacillus subtilis[J]. China Cotton, 2016, 43(6): 28-30 (in Chinese).
    [66] 杨杰, 程炳尚, 卢函姝, 马洪娟, 任启超, 曹耀峰. 复合微生物菌配方“中棉菌乐土”对棉花黄萎病大田防效[J]. 中国棉花, 2021, 48(6): 22-25, 36.YANG J, CHENG BS, LU HS, MA HJ, REN QC, CAO YF. Biological control effect of the compound microbial formula “Zhongmian Junletu” against cotton Verticillium wilt in field[J]. China Cotton, 2021, 48(6): 22-25, 36 (in Chinese).
    [67] DEKETELAERE S, TYVAERT L, FRAN?A SC, H?FTE M. Desirable traits of a good biocontrol agent against Verticillium wilt[J]. Front Microbiol, 2017, 8: 1186.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘延财,唐叶,吴家和,宋宪亮,刘钢. 生防微生物在棉花黄萎病防治中的研究进展[J]. 微生物学报, 2025, 65(3): 994-1006

复制
分享
文章指标
  • 点击次数:167
  • 下载次数: 172
  • HTML阅读次数: 74
  • 引用次数: 0
历史
  • 收稿日期:2024-11-04
  • 在线发布日期: 2025-03-10
文章二维码