产甲烷古菌介导()金属转化的研究进展
作者:
作者单位:

山东大学 环境科学与工程学院,山东省水环境污染控制与资源化重点实验室,山东 青岛

作者简介:

黄馨:论文撰写和修改;李冠慧:图表绘制;梁艳萍:参与论文讨论;闫震:论文构思与修改。

基金项目:

国家自然科学基金(42477232, 22008142);山东省自然科学基金(ZR2022YQ31);泰山学者青年专家基金(tsqn202310123)


Advances and prospects in metal(loid) transformation driven by methanogenic archaea
Author:
Affiliation:

Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (42477232, 22008142), the Natural Science Foundation of Shandong Province (ZR2022YQ31), and the Taishan Scholars Project of Shandong Province (tsqn202310123).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [99]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    产甲烷古菌是缺氧环境中碳循环的核心驱动者。近年的研究表明,产甲烷古菌还参与了(类)金属的生物地球化学循环,但其介导的金属转化机制尚未得到系统的总结。本文综合了最新的研究成果,重点解析了产甲烷古菌对铁(Fe)、汞(Hg)、钒(V)、铬(Cr)、镉(Cd)、砷(As)、硒(Se)等典型(类)金属的氧化、还原、甲基化及去甲基化过程。(1) Fe(Ⅲ)还原对甲烷生成具有双向调控作用,当胞外Fe(Ⅲ)还原不能耦合能量代谢时,会显著抑制产甲烷古菌的生长及产甲烷过程,例如巴氏甲烷八叠球菌(Methanosarcina barkeri);而当胞外Fe(Ⅲ)还原耦合能量代谢时,则会促进产甲烷古菌的生理代谢活性,例如噬乙酸甲烷八叠球菌(Methanosarcina acetivorans);(2) 在汞甲基化机制方面,产甲烷古菌通过hgcAB基因簇编码的甲基转移酶实现Hg(Ⅱ)向甲基汞(methylmercury, MeHg)的转化,且部分菌株,如卢米尼甲烷马赛球菌(Methanomassiliicoccus luminyensis)的甲基化活性与死细胞释放的酶活性相关;(3) 砷转化机制呈现多样性,M. acetivorans通过As(Ⅲ)S-腺苷甲硫氨酸甲基转移酶(arsenic methyltransferase, ArsM)催化As(Ⅲ)甲基化,同时可利用砷酸盐还原酶(arsenate reductase, ArsC)还原As(V)为As(Ⅲ),而稻田古菌群落还表现出有机胂的去甲基化能力;(4) 硒的生物转化具有双重性,低浓度硒纳米颗粒(selenium nanoparticles, SeNPs)能够促进产甲烷活性并诱导有机硒合成,而高浓度则会引发氧化应激。在环境效应方面,(类)金属通过改变氧化还原电位、竞争电子受体或诱导毒性胁迫,显著影响产甲烷古菌的代谢活性与群落结构。本文系统地揭示了产甲烷古菌在(类)金属循环中的多功能性,并提出未来需要结合宏组学与代谢组学技术解析关键酶的分子机制,同时探索基于产甲烷古菌的(类)金属污染生物修复新策略。

    Abstract:

    Methanogenic archaea are pivotal drivers of carbon cycling in anoxic environments. Growing evidence shows that they also participate in the biogeochemical cycling of metal(loid)s, yet the underlying transformation mechanisms have not been systematically summarized. This review integrates the latest findings to dissect how methanogenic archaea oxidize, reduce, methylate, and demethylate representative metal(loid)s, including iron (Fe), mercury (Hg), vanadium (V), chromium (Cr), cadmium (Cd), arsenic (As), and selenium (Se). The research findings are summarized as follows: (1) Fe(Ⅲ) reduction exerts bidirectional control over methanogenesis. When extracellular Fe(Ⅲ) reduction is not coupled to energy metabolism, it markedly suppresses the growth and methane production of methanogenic archaea (e.g., Methanosarcina barkeri). Conversely, when extracellular Fe(Ⅲ) reduction is coupled to energy metabolism, it stimulates the physiological and metabolic activities of methanogenic archaea (e.g., Methanosarcina acetivorans). (2) For mercury methylation, methanogenic archaea convert Hg(Ⅱ) to methylmercury (MeHg) via a methyltransferase encoded by the hgcAB gene cluster. In some species (e.g., Methanomassiliicoccus luminyensis), the observed methylation activity is associated with enzymes released from lysed cells. (3) Arsenic transformation runs with diverse mechanisms. Methanosarcina acetivorans methylates As(Ⅲ) via the arsenic methyltransferase (ArsM) and concurrently reduces As(V) to As(Ⅲ) through arsenate reductase (ArsC), whereas archaeal communities in paddy soils are capable of demethylating organic arsine. (4) Selenium biotransformation exhibits dual effects: low concentrations of selenium nanoparticles (SeNPs) enhance methanogenic activity and induce organoselenium synthesis, whereas high concentrations trigger oxidative stress. Environmentally, metal (loid)s markedly affect the metabolic activity and community structure of methanogenic archaea by altering redox potential, competing for electron acceptors, or imposing toxic stress. This review highlights the multifunctionality of methanogenic archaea in metal (loid) cycling and proposes that future work should combine meta-omics and metabolomics approaches to elucidate enzyme-level mechanisms, while exploring methanogenic archaea-based strategies for the bioremediation of metal (loid) contamination.

    参考文献
    [1] ROTHMAN DH, FOURNIER GP, FRENCH KL, ALM EJ, BOYLE EA, CAO CQ, SUMMONS RE. Methanogenic burst in the end-Permian carbon cycle[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(15): 5462-5467.
    [2] MEYER J, MICHALKE K, KOURIL T, HENSEL R. Volatilisation of metals and metalloids: an inherent feature of methanoarchaea[J]. Systematic and Applied Microbiology, 2008, 31(2): 81-87.
    [3] STARR MP, STOLP H, TRüPER HG, BALOWS A, SCHLEGEL HG. The Prokaryotes: a Handbook on Habitats, Isolation and Identification of Bacteria[M]. Berlin: Springer Science & Business Media, 2013: 6-662.
    [4] YAN Z, DU KF, YAN YF, HUANG R, ZHU FP, YUAN XZ, WANG SG, FERRY JG. Respiration-driven methanotrophic growth of diverse marine methanogens[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(39): e2303179120.
    [5] WOESE CR, KANDLER O, WHEELIS ML. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya[J]. Proceedings of the National Academy of Sciences of the United States of America, 1990, 87(12): 4576-4579.
    [6] 方晓瑜, 李家宝, 芮俊鹏, 李香真. 产甲烷生化代谢途径研究进展[J]. 应用与环境生物学报, 2015, 21(1): 1-9.FANG XY, LI JB, RUI JP, LI XZ. Research progress in biochemical pathways of methanogenesis[J]. Chinese Journal of Applied and Environmental Biology, 2015, 21(1): 1-9 (in Chinese).
    [7] DRIDI B, FARDEAU ML, OLLIVIER B, RAOULT D, DRANCOURT M. Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces[J]. International Journal of Systematic and Evolutionary Microbiology, 2012, 62(Pt 8): 1902-1907.
    [8] SOROKIN DY, MERKEL AY, ABBAS B, MAKAROVA KS, RIJPSTRA WIC, KOENEN M, SINNINGHE DAMSTé JS, GALINSKI EA, KOONIN EV, van LOOSDRECHT MCM. Methanonatronarchaeum Thermophilum gen. nov., sp. nov. and “Candidatus Methanohalarchaeum thermophilum”, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchaeia classis nov.[J]. International Journal of Systematic and Evolutionary Microbiology, 2018, 68(7): 2199-2208.
    [9] BORREL G, ADAM PS, McKAY LJ, CHEN LX, SIERRA-GARCíA IN, SIEBER CMK, LETOURNEUR Q, GHOZLANE A, ANDERSEN GL, LI WJ, HALLAM SJ, MUYZER G, de OLIVEIRA VM, INSKEEP WP, BANFIELD JF, GRIBALDO S. Wide diversity of methane and short-chain alkane metabolisms in uncultured archaea[J]. Nature Microbiology, 2019, 4(4): 603-613.
    [10] RINKE C, CHUVOCHINA M, MUSSIG AJ, CHAUMEIL PA, DAVíN AA, WAITE DW, WHITMAN WB, PARKS DH, HUGENHOLTZ P. A standardized archaeal taxonomy for the genome taxonomy database[J]. Nature Microbiology, 2021, 6(7): 946-959.
    [11] 任师杰, 孔令豆, 刘骏, 李乐, 张勍, 陈集双, 周俊. 产甲烷古菌的分类及代谢途径研究进展[J]. 中国生物工程杂志, 2024, 44(9): 100-112.REN SJ, KONG LD, LIU J, LI L, ZHANG Q, CHEN JS, ZHOU J. Advances in classification and metabolic pathways of methanogenic archaea[J]. China Biotechnology, 2024, 44(9): 100-112 (in Chinese).
    [12] LIU YC, WHITMAN WB. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea[J]. Annals of the New York Academy of Sciences, 2008, 1125(1): 171-189.
    [13] OFFRE P, SPANG A, SCHLEPER C. Archaea in biogeochemical cycles[J]. Annual Review of Microbiology, 2013, 67: 437-457.
    [14] 承磊, 郑珍珍, 王聪, 张辉. 产甲烷古菌研究进展[J]. 微生物学通报, 2016, 43(5): 1143-1164.CHENG L, ZHENG ZZ, WANG C, ZHANG H. Recent advances in methanogens[J]. Microbiology China, 2016, 43(5): 1143-1164 (in Chinese).
    [15] LEADBETTER JR, BREZNAK JA. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes[J]. Applied and Environmental Microbiology, 1996, 62(10): 3620-3631.
    [16] FERRY JG. Enzymology of one-carbon metabolism in methanogenic pathways[J]. FEMS Microbiology Reviews, 1999, 23(1): 13-38.
    [17] MAYUMI D, MOCHIMARU H, TAMAKI H, YAMAMOTO K, YOSHIOKA H, SUZUKI Y, KAMAGATA Y, SAKATA S. Methane production from coal by a single methanogen[J]. Science, 2016, 354(6309): 222-225.
    [18] ZHOU Z, ZHANG CJ, LIU PF, FU L, LASO-PéREZ R, YANG L, BAI LP, LI J, YANG M, LIN JZ, WANG WD, WEGENER G, LI M, CHENG L. Non-syntrophic methanogenic hydrocarbon degradation by an archaeal species[J]. Nature, 2021, 601(7892): 257-262.
    [19] 易悦, 周卓, 黄艳, 承磊. 我国产甲烷古菌研究进展与展望[J]. 微生物学报, 2023, 63(5): 1796-1814.YI Y, ZHOU Z, HUANG Y, CHENG L. Methanogen research in China: current status and prospective[J]. Acta Microbiologica Sinica, 2023, 63(5): 1796-1814 (in Chinese).
    [20] VARGAS M, KASHEFI K, BLUNT-HARRIS EL, LOVLEY DR. Microbiological evidence for Fe(Ⅲ) reduction on early earth[J]. Nature, 1998, 395(6697): 65-67.
    [21] KAPPLER A, BRYCE C, MANSOR M, LUEDER U, BYRNE JM, SWANNER ED. An evolving view on biogeochemical cycling of iron[J]. Nature Reviews Microbiology, 2021, 19(6): 360-374.
    [22] STUCKI JW, KOSTKA JE. Microbial reduction of iron in smectite[J]. Comptes Rendus Geoscience, 2006, 338(6/7): 468-475.
    [23] DONG H, JAISI DP, KIM J, ZHANG G. Microbe-clay mineral interactions[J]. American Mineralogist, 2009, 94(11/12): 1505-1519.
    [24] STUCKI JW, LEE K, ZHANG L, LARSON RA. Effects of iron oxidation states on the surface and structural properties of smectites[J]. Pure and Applied Chemistry, 2002, 74(11): 2145-2158.
    [25] ZHANG J, DONG HL, LIU D, FISCHER TB, WANG S, HUANG LQ. Microbial reduction of Fe(Ⅲ) in illite-smectite minerals by methanogen Methanosarcina mazei[J]. Chemical Geology, 2012, 292: 35-44.
    [26] BOND DR, LOVLEY DR. Reduction of Fe(Ⅲ) oxide by methanogens in the presence and absence of extracellular quinones[J]. Environmental Microbiology, 2002, 4(2): 115-124.
    [27] van BODEGOM PM, SCHOLTEN JCM, STAMS AJM. Direct inhibition of methanogenesis by ferric iron[J]. FEMS Microbiology Ecology, 2004, 49(2): 261-268.
    [28] SIVAN O, SHUSTA SS, VALENTINE DL. Methanogens rapidly transition from methane production to iron reduction[J]. Geobiology, 2016, 14(2): 190-203.
    [29] LIU D, WANG HM, DONG HL, QIU X, DONG XZ, CRAVOTTA CA. Mineral transformations associated with goethite reduction by Methanosarcina barkeri[J]. Chemical Geology, 2011, 288(1/2): 53-60.
    [30] ELIANI-RUSSAK E, TIK Z, UZI-GAVRILOV S, MEIJLER MM, SIVAN O. The reduction of environmentally abundant iron oxides by the methanogen Methanosarcina barkeri[J]. Frontiers in Microbiology, 2023, 14: 1197299.
    [31] LIU D, DONG HL, BISHOP ME, WANG HM, AGRAWAL A, TRITSCHLER S, EBERL DD, XIE SC. Reduction of structural Fe(Ⅲ) in nontronite by methanogen Methanosarcina barkeri[J]. Geochimica et Cosmochimica Acta, 2011, 75(4): 1057-1071.
    [32] ZHANG J, DONG HL, LIU D, AGRAWAL A. Microbial reduction of Fe(Ⅲ) in smectite minerals by thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2013, 106: 203-215.
    [33] YAMADA C, KATO S, KIMURA S, ISHII M, IGARASHI Y. Reduction of Fe(Ⅲ) oxides by phylogenetically and physiologically diverse thermophilic methanogens[J]. FEMS Microbiology Ecology, 2014, 89(3): 637-645.
    [34] HIRANO S, MATSUMOTO N, MORITA M, SASAKI K, OHMURA N. Electrochemical control of redox potential affects methanogenesis of the hydrogenotrophic methanogen Ethanothermobacter thermautotrophicus[J]. Letters in Applied Microbiology, 2013, 56(5): 315-321.
    [35] FETZER S, CONRAD R. Effect of redox potential on methanogenesis by Methanosarcina barkeri[J]. Archives of Microbiology, 1993, 160(2): 108-113.
    [36] WANG H, BYRNE JM, LIU PF, LIU J, DONG XZ, LU YH. Redox cycling of Fe(Ⅱ) and Fe(Ⅲ) in magnetite accelerates aceticlastic methanogenesis by Methanosarcina mazei[J]. Environmental Microbiology Reports, 2020, 12(1): 97-109.
    [37] GUO CJ, LU YH. Cometabolism of ferrihydrite reduction and methyl-dismutating methanogenesis by Methanosarcina mazei[J]. Applied and Environmental Microbiology, 2025, 91(3): e0223824.
    [38] YANG Z, LU YH. Coupling methanogenesis with iron reduction by acetotrophic Methanosarcina mazei zm-15[J]. Environmental Microbiology Reports, 2022, 14(5): 804-811.
    [39] PRAKASH D, CHAUHAN SS, FERRY JG. Life on the thermodynamic edge: respiratory growth of an acetotrophic methanogen[J]. Science Advances, 2019, 5(8): eaaw9059.
    [40] SONG YX, HUANG R, LI L, DU KF, ZHU FP, SONG C, YUAN XZ, WANG MY, WANG SG, FERRY JG, ZHOU SG, YAN Z. Humic acid-dependent respiratory growth of Methanosarcina acetivorans involves pyrroloquinoline quinone[J]. The ISME Journal, 2023, 17(11): 2103-2111.
    [41] YAN Z, JOSHI P, GORSKI CA, FERRY JG. A biochemical framework for anaerobic oxidation of methane driven by Fe(Ⅲ)-dependent respiration[J]. Nature Communications, 2018, 9(1): 1642.
    [42] FU L, ZHOU T, WANG JY, YOU LX, LU YH, YU LP, ZHOU SG. NanoFe3O4 as solid electron shuttles to accelerate acetotrophic methanogenesis by Methanosarcina barkeri[J]. Frontiers in Microbiology, 2019, 10: 388.
    [43] SHANG HT, DAYE M, SIVAN O, BORLINA CS, TAMURA N, WEISS BP, BOSAK T. Formation of zerovalent iron in iron-reducing cultures of Methanosarcina barkeri[J]. Environmental Science & Technology, 2020, 54(12): 7354-7365.
    [44] KATO S, HASHIMOTO K, WATANABE K. Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals[J]. Environmental Microbiology, 2012, 14(7): 1646-1654.
    [45] JIANG SH, PARK S, YOON Y, LEE JH, WU WM, DAN NP, SADOWSKY MJ, HUR HG. Methanogenesis facilitated by geobiochemical iron cycle in a novel syntrophic methanogenic microbial community[J]. Environmental Science & Technology, 2013, 47(17): 10078-10084.
    [46] BERNER RA. Sedimentary pyrite formation: an update[J]. Geochimica et Cosmochimica Acta, 1984, 48(4): 605-615.
    [47] CANFIELD DE, HABICHT KS, THAMDRUP B. The Archean sulfur cycle and the early history of atmospheric oxygen[J]. Science, 2000, 288(5466): 658-661.
    [48] PAYNE D, SPIETZ RL, BOYD ES. Reductive dissolution of pyrite by methanogenic archaea[J]. The ISME Journal, 2021, 15(12): 3498-3507.
    [49] YU RQ, BARKAY T. Advances in Applied Microbiology[M]. Amsterdam: Elsevier Academic Press, 2022: 31-90.
    [50] 陶少洋, 杨婧铱, 高峻, 董洪哲, 刘丽红, 何滨, 毛宇翔, 胡立刚, 江桂斌. 产甲烷菌中汞甲基化研究进展与展望[J]. 环境化学, 2024, 43(7): 2153-2165.TAO SY, YANG JY, GAO J, DONG HZ, LIU LH, HE B, MAO YX, HU LG, JIANG GB. Research progress and prospect of mercury methylation in methanogens[J]. Environmental Chemistry, 2024, 43(7): 2153-2165 (in Chinese).
    [51] GILMOUR CC, ELIAS DA, KUCKEN AM, BROWN SD, PALUMBO AV, SCHADT CW, WALL JD. Sulfate-reducing bacterium Desulfovibrio desulfuricans ND132 as a model for understanding bacterial mercury methylation[J]. Applied and Environmental Microbiology, 2011, 77(12): 3938-3951.
    [52] MA M, DU HX, WANG DY. Mercury methylation by anaerobic microorganisms: a review[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(20): 1893-1936.
    [53] WOOD JM, KENNEDY FS, ROSEN CG. Synthesis of methyl-mercury compounds by extracts of a methanogenic bacterium[J]. Nature, 1968, 220(5163): 173-174.
    [54] HAMELIN S, AMYOT M, BARKAY T, WANG YP, PLANAS D. Methanogens: principal methylators of mercury in lake periphyton[J]. Environmental Science & Technology, 2011, 45(18): 7693-7700.
    [55] YU RQ, REINFELDER JR, HINES ME, BARKAY T. Mercury methylation by the methanogen Methanospirillum hungatei[J]. Applied and Environmental Microbiology, 2013, 79(20): 6325-6330.
    [56] PARKS JM, JOHS A, PODAR M, BRIDOU R, HURT RAJr, SMITH SD, TOMANICEK SJ, QIAN Y, BROWN SD, BRANDT CC, PALUMBO AV, SMITH JC, WALL JD, ELIAS DA, LIANG LY. The genetic basis for bacterial mercury methylation[J]. Science, 2013, 339(6125): 1332-1335.
    [57] GILMOUR CC, PODAR M, BULLOCK AL, GRAHAM AM, BROWN SD, SOMENAHALLY AC, JOHS A, HURT RAJr, BAILEY KL, ELIAS DA. Mercury methylation by novel microorganisms from new environments[J]. Environmental Science & Technology, 2013, 47(20): 11810-11820.
    [58] PODAR M, GILMOUR CC, BRANDT CC, SOREN A, BROWN SD, CRABLE BR, PALUMBO AV, SOMENAHALLY AC, ELIAS DA. Global prevalence and distribution of genes and microorganisms involved in mercury methylation[J]. Science Advances, 2015, 1(9): e1500675.
    [59] GILMOUR CC, BULLOCK AL, McBURNEY A, PODAR M, ELIAS DA. Robust mercury methylation across diverse methanogenic archaea[J]. mBio, 2018, 9(2): e02403-17.
    [60] OREMLAND RS, CULBERTSON CW, WINFREY MR. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation[J]. Applied and Environmental Microbiology, 1991, 57(1): 130-137.
    [61] CHENG SP. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and Pollution Research, 2003, 10(3): 192-198.
    [62] SIMPSON WR. A critical review of cadmium in the marine environment[J]. Progress in Oceanography, 1981, 10(1): 1-70.
    [63] LIRA-SILVA E, SANTIAGO-MARTíNEZ MG, HERNáNDEZ-JUáREZ V, GARCíA-CONTRERAS R, MORENO-SáNCHEZ R, JASSO-CHáVEZ R. Activation of methanogenesis by cadmium in the marine archaeon Methanosarcina acetivorans[J]. PLoS One, 2012, 7(11): e48779.
    [64] JASSO-CHáVEZ R, LIRA-SILVA E, GONZáLEZ-SáNCHEZ K, LARIOS-SERRATO V, MENDOZA-MONZOY DL, PéREZ-VILLATORO F, MORETT E, VEGA-SEGURA A, TORRES-MáRQUEZ ME, ZEPEDA-RODRíGUEZ A, MORENO-SáNCHEZ R. Marine archaeon Methanosarcina acetivorans enhances polyphosphate metabolism under persistent cadmium stress[J]. Frontiers in Microbiology, 2019, 10: 2432.
    [65] LIRA-SILVA E, SANTIAGO-MARTíNEZ MG, GARCíA-CONTRERAS R, ZEPEDA-RODRíGUEZ A, MARíN-HERNáNDEZ A, MORENO-SáNCHEZ R, JASSO-CHáVEZ R. Cd2+ resistance mechanisms in Methanosarcina acetivorans involve the increase in the coenzyme M content and induction of biofilm synthesis[J]. Environmental Microbiology Reports, 2013, 5(6): 799-808.
    [66] HUANG JH, HUANG F, EVANS L, GLASAUER S. Vanadium: global (bio)geochemistry[J]. Chemical Geology, 2015, 417: 68-89.
    [67] ZHONG JW, YIN WZ, LI YT, LI P, WU JH, JIANG GB, GU JJ, LIANG H. Column study of enhanced Cr(Ⅵ) removal and longevity by coupled abiotic and biotic processes using Fe0 and mixed anaerobic culture[J]. Water Research, 2017, 122: 536-544.
    [68] ZHANG BG, JIANG YF, ZUO KC, HE C, DAI YR, REN ZJ. Microbial vanadate and nitrate reductions coupled with anaerobic methane oxidation in groundwater[J]. Journal of Hazardous Materials, 2020, 382: 121228.
    [69] LI WQ, LI MX, YIN WZ, ZHANG WN, ZHONG JW, LI P, DENG H, WU JH. Effects of electron donors and acceptors on Cr(Ⅵ) removal in biotic Fe0 columns preloaded with microorganisms[J]. Water, Air, & Soil Pollution, 2022, 233(12): 483.
    [70] CARPENTIER W, SANDRA K, de SMET I, BRIGé A, de SMET L, BEEUMEN JV. Microbial reduction and precipitation of vanadium by Shewanella oneidensis[J]. Applied and Environmental Microbiology, 2003, 69(6): 3636-3639.
    [71] REHDER D. Is vanadium a more versatile target in the activity of primordial life forms than hitherto anticipated[J]. Organic & Biomolecular Chemistry, 2008, 6(6): 957-964.
    [72] ZHANG J, DONG HL, ZHAO LD, McCARRICK R, AGRAWAL A. Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens[J]. Chemical Geology, 2014, 370: 29-39.
    [73] SINGH R, DONG HL, LIU D, ZHAO LD, MARTS AR, FARQUHAR E, TIERNEY DL, ALMQUIST CB, BRIGGS BR. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus[J]. Geochimica et Cosmochimica Acta, 2015, 148: 442-456.
    [74] ABERNATHY CO, THOMAS DJ, CALDERON RL. Health effects and risk assessment of arsenic[J]. The Journal of Nutrition, 2003, 133(5): 1536S-1538S.
    [75] ZHU YG, YOSHINAGA M, ZHAO FJ, ROSEN BP. Earth abides arsenic biotransformations[J]. Annual Review of Earth and Planetary Sciences, 2014, 42: 443-467.
    [76] AKTER KF, OWENS G, DAVEY DE, NAIDU R. Arsenic speciation and toxicity in biological systems[J]. Reviews of Environmental Contamination and Toxicology, 2005, 184: 97-149.
    [77] ZHAO FJ, MA YB, ZHU YG, TANG Z, McGRATH SP. Soil contamination in China: current status and mitigation strategies[J]. Environmental Science & Technology, 2015, 49(2): 750-759.
    [78] THOMAS F, DIAZ-BONE RA, WUERFEL O, HUBER B, WEIDENBACH K, SCHMITZ RA, HENSEL R. Connection between multimetal(loid) methylation in methanoarchaea and central intermediates of methanogenesis[J]. Applied and Environmental Microbiology, 2011, 77(24): 8669-8675.
    [79] WUERFEL O, THOMAS F, SCHULTE MS, HENSEL R, DIAZ-BONE RA. Mechanism of multi-metal(loid) methylation and hydride generation by methylcobalamin and cob(I)alamin: a side reaction of methanogenesis[J]. Applied Organometallic Chemistry, 2012, 26(2): 94-101.
    [80] WANG PP, SUN GX, ZHU YG. Identification and characterization of arsenite methyltransferase from an archaeon, Methanosarcina acetivorans C2A[J]. Environmental Science & Technology, 2014, 48(21): 12706-12713.
    [81] VIACAVA K, MEIBOM KL, ORTEGA D, DYER S, GELB A, FALQUET L, MINTON NP, MESTROT A, BERNIER-LATMANI R. Variability in arsenic methylation efficiency across aerobic and anaerobic microorganisms[J]. Environmental Science & Technology, 2020, 54(22): 14343-14351.
    [82] WANG LX, GUO QH, WU G, YU ZC, NININ JML, PLANER-FRIEDRICH B. Methanogens-driven arsenic methylation preceding formation of methylated thioarsenates in sulfide-rich hot springs[J]. Environmental Science & Technology, 2023, 57(19): 7410-7420.
    [83] LIANG YP, YAN YF, SHI LL, WANG MY, YUAN XZ, WANG SG, YE L, YAN Z. Molecular basis of thioredoxin-dependent arsenic transformation in methanogenic archaea[J]. Environmental Science & Technology, 2025, 59(1): 443-453.
    [84] CHEN C, LI LY, HUANG K, ZHANG J, XIE WY, LU YH, DONG XZ, ZHAO FJ. Sulfate-reducing bacteria and methanogens are involved in arsenic methylation and demethylation in paddy soils[J]. The ISME Journal, 2019, 13(10): 2523-2535.
    [85] CHEN C, LI LY, WANG YF, DONG XZ, ZHAO FJ. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease[J]. The ISME Journal, 2023, 17(11): 1851-1861.
    [86] RAYMAN MP. Selenium and human health[J]. The Lancet, 2012, 379(9822): 1256-1268.
    [87] FAN TWM, TEH SJ, HINTON DE, HIGASHI RM. Selenium biotransformations into proteinaceous forms by foodweb organisms of selenium-laden drainage waters in California[J]. Aquatic Toxicology, 2002, 57(1/2): 65-84.
    [88] AMWEG EL, STUART DL, WESTON DP. Comparative bioavailability of selenium to aquatic organisms after biological treatment of agricultural drainage water[J]. Aquatic Toxicology, 2003, 63(1): 13-25.
    [89] ASTRATINEI V, van HULLEBUSCH E, LENS P. Bioconversion of selenate in methanogenic anaerobic granular sludge[J]. Journal of Environmental Quality, 2006, 35(5): 1873-1883.
    [90] NIESS UM, KLEIN A. Dimethylselenide demethylation is an adaptive response to selenium deprivation in the archaeon Methanococcus voltae[J]. Journal of Bacteriology, 2004, 186(11): 3640-3648.
    [91] LIU XY, MA JY, WANG Y, DUAN JL, FENG LJ, ZHU FP, SUN XD, YAN Z, YUAN XZ. Chemical dynamics of selenium nanoparticles in archaeal systems[J]. ACS Nano, 2024, 18(24): 15661-15670.
    [92] STOCK T, SELZER M, ROTHER M. In vivo requirement of selenophosphate for selenoprotein synthesis in archaea[J]. Molecular Microbiology, 2010, 75(1): 149-160.
    [93] ROTHER M, RESCH A, WILTING R, B?CK A. Selenoprotein synthesis in archaea[J]. BioFactors, 2001, 14(1/2/3/4): 75-83.
    [94] POEHLEIN A, HEYM D, QUITZKE V, FERSCH J, DANIEL R, ROTHER M. Complete genome sequence of the Methanococcus maripaludis type strain JJ (DSM 2067), a model for selenoprotein synthesis in archaea[J]. Genome Announcements, 2018, 6(14): e00237-18.
    [95] QUITZKE V, FERSCH J, SEYHAN D, ROTHER M. Selenium-dependent gene expression in Methanococcus maripaludis: involvement of the transcriptional regulator HrsM[J]. Biochimica et Biophysica Acta (BBA) - General Subjects, 2018, 1862(11): 2441-2450.
    [96] FUNKNER K, POEHLEIN A, JEHMLICH N, EGELKAMP R, DANIEL R, von BERGEN M, ROTHER M. Proteomic and transcriptomic analysis of selenium utilization in Methanococcus maripaludis[J]. mSystems, 2024, 9(5): e0133823.
    [97] MUKHOPADHYAY B, JOHNSON EF, WOLFE RS. Reactor-scale cultivation of the hyperthermophilic methanarchaeon Methanococcus jannaschii to high cell densities[J]. Applied and Environmental Microbiology, 1999, 65(11): 5059-5065.
    [98] BURGGRAF S, FRICKE H, NEUNER A, KRISTJANSSON J, ROUVIER P, MANDELCO L, WOESE CR, STETTER KO. Methanococcus igneus sp. nov., a novel hyperthermophilic methanogen from a shallow submarine hydrothermal system[J]. Systematic and Applied Microbiology, 1990, 13: 263-269.
    [99] WHITMAN WB, ANKWANDA E, WOLFE RS. Nutrition and carbon metabolism of Methanococcus voltae[J]. Journal of Bacteriology, 1982, 149(3): 852-863.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄馨,李冠慧,梁艳萍,闫震. 产甲烷古菌介导()金属转化的研究进展[J]. 微生物学报, 2025, 65(6): 2433-2448

复制
分享
文章指标
  • 点击次数:43
  • 下载次数: 147
  • HTML阅读次数: 87
  • 引用次数: 0
历史
  • 收稿日期:2025-04-09
  • 在线发布日期: 2025-06-05
文章二维码