樱桃根际产吲哚乙酸促生菌的分离、鉴定及功能特性
作者:
基金项目:

国家自然科学基金(32472663,30900967);烟台市科技创新发展计划基础研究项目(2023JCYJ103);沈阳农业大学横向科研课题(H2022140)


Isolation, identification, and functional characterization of plant growth-promoting rhizobacteria capable of producing indole acetic acid from cherry rhizosphere
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】从东北山樱(Prunus sachalinensis)根际土壤中分离产吲哚-3-乙酸(indole-3-acetic acid,IAA)优势细菌,测定促生特性,通过反接种到甜樱桃常用砧木吉塞拉6号幼苗明确促生效果,为挖掘樱桃自身生物学潜力,建立良性根系-微生物互作关系,为解决根系发育较弱问题提供理论参考及实践途径。【方法】使用牛肉膏蛋白胨培养基分离根际土壤细菌,选择各类特异培养基筛选并测定细菌产IAA、固氮、溶磷、解钾和趋化性能力,通过16S rRNA基因序列的同源性分析构建系统发育树鉴定菌属,采用盆栽樱桃植株探究菌株的促生效果。【结果】从东北山樱根际土壤中筛选到5株产IAA菌株,其中菌株D46的IAA产量最高(53.10 mg/L)。通过16S rRNA基因序列分析将D5鉴定为普里斯特氏菌属(Priestiasp.),D27和D46鉴定为肠杆菌属(Enterobactersp.),D43和D79鉴定为芽孢杆菌属(Bacillussp.)。5株细菌均具有固氮能力,D27、D46和D79具有溶磷能力、D5和D43具有解钾能力。菌株D27、D46和D79对糖、有机酸和氨基酸的综合趋化性较强。盆栽促生试验显示,接种菌株D27、D43、D46和D79均显著提高了植株的根系活力。接种菌株D27后根系总呼吸速率较对照组(CK)显著提高了51.40%,并且根系糖酵解途径(glycolysis,EMP)、三羧酸循环途径(tricarboxylic acid cycle,TCA)和戊糖磷酸途径(pentose phosphate pathway,PPP)呼吸速率均显著提高。菌株D27显著改善了樱桃幼苗的根系构型。接种菌株D5后叶片净光合速率(net photosynthetic rate,Pn)较CK显著提高了58.82%,接种菌株D27对叶片水分利用效率(water use efficiency,WUE)提升最显著。菌株D27、D46和D79对植株生物量的综合促生效果较为显著。【结论】樱桃根际存在产IAA细菌,分离到的5株产IAA菌株兼具其他促生特性。菌株D27、D46和D79对樱桃幼苗的综合促生效果良好,后续可深入探究其促生对象的广谱性及环境耐受性,为发掘和丰富PGPR菌种资源提供理论基础。

    Abstract:

    [Objective] This study isolated the dominant indole-3-acetic acid (IAA)-producing bacteria from the rhizosphere soil of Prunus sachalinensis, determined their plant growth-promoting properties, and clarified the growth-promoting effect by inoculation to the seedlings of the common rootstock Gisela 6, aiming to provide theoretical reference and practical approaches for exploring the biological potential of cherry, establish a benign root-microbial interaction relationship, and solve weak root development. [Methods] We used the beef extract peptone medium to isolate bacteria from the rhizosphere soil and selected various specific media to screen the bacteria and determine the IAA-producing, nitrogen-fixing, phosphorus-solubilizing, potassium-solubilizing, and chemotactic abilities of the bacteria. Then, we constructed a phylogenetic tree based on 16S rRNA gene sequences to identify the bacteria. Finally, potted cherry plants were used to explore the plant growth-promoting effects of the strains. [Results] Five IAA-producing strains were screened from the rhizosphere soil of P. sachalinensis, among which strain D46 had the highest IAA yield (53.10 mg/L). D5 was identified as Priestia sp. D27 and D46 were identified as Enterobacter sp. D43 and D79 were identified as Bacillus sp. All the five strains had the ability to fix nitrogen. D27, D46, and D79 had the ability to solubilize phosphorus, and D5 and D43 had the ability to solubilize potassium. Strains D27, D46, and D79 showed strong integrative chemotaxis to sugars, organic acids, and amino acids. Pot experiments showed that the inoculation of strains D27, D43, D46, and D79 significantly increased the root activity. After the inoculation of strain D27, the total root respiration rate increased by 51.40% compared with that in the control group (CK), and the root respiration rates of glycolysis (EMP), tricarboxylic acid cycle (TCA), and pentose phosphate pathway (PPP) also significantly increased. Strain D27 significantly improved the root architecture of cherry seedlings. After inoculation of strain D5, the net photosynthetic rate of leaves significantly increased by 58.82% compared with that in CK, and the inoculation of strain D27 demonstrated the best performance in improving the water use efficiency of leaves. Strains D27, D46, and D79 significantly increased the plant biomass. [Conclusion] There were IAA-producing bacteria in the rhizosphere of cherry, and the five IAA-producing strains isolated had other plant growth-promoting properties. Strains D27, D46, and D79 demonstrated comprehensive plant growth-promoting effects on cherry seedlings. In the future, we can explore the spectra of plants with growth promoted by the strains and the environmental tolerance of the strains, providing a theoretical basis for mining and enriching the strain resources of plant growth-promoting rhizobacteria.

    参考文献
    [1] PRINSI B, NEGRI AS, ESPEN L, PIAGNANI MC. Proteomic comparison of fruit ripening between ‘hedelfinger’ sweet cherry (Prunus avium L.) and its somaclonal variant ‘HS’[J]. Journal of Agricultural and Food Chemistry, 2016, 64(20): 4171-4181.
    [2] ZHANG P, HE JL, LYU DG, QIN SJ. Physiological and biochemical mechanisms of Prunus sachalinensis root for coping with short-term waterlogging and subsequent recovery[J]. Journal of Soil Science and Plant Nutrition, 2024, 24(2): 2997-3010.
    [3] LI PF, CAO XQ, TAN H, WANG JH, REN SM, YANG PL. Studies on water uptake and heat status of cherry root under water-saving measures[J]. Agricultural Water Management, 2020, 242: 106359.
    [4] GUO YZ, WANG JY. Spatiotemporal changes of chemical fertilizer application and its environmental risks in China from 2000 to 2019[J]. International Journal of Environmental Research and Public Health, 2021, 18(22): 11911.
    [5] VERBON EH, LIBERMAN LM. Beneficial microbes affect endogenous mechanisms controlling root development[J]. Trends in Plant Science, 2016, 21(3): 218-229.
    [6] LUO P, DI DW. Precise regulation of the TAA1/TAR-YUCCA auxin biosynthesis pathway in plants[J]. International Journal of Molecular Sciences, 2023, 24(10): 8514.
    [7] 庞志强, 余迪求. 干旱胁迫下的植物根系-微生物互作体系及其应用[J]. 植物生理学报, 2020, 56(2): 109-126. PANG ZQ, YU DQ. Plant root system-microbial interaction system under drought stress and its application[J]. Plant Physiology Journal, 2020, 56(2): 109-126(in Chinese).
    [8] MAHMUD K, MAKAJU S, IBRAHIM R, MISSAOUI A. Current progress in nitrogen fixing plants and microbiome research[J]. Plants, 2020, 9(1): 97.
    [9] ZHANG H, HAN LZ, JIANG B, LONG CM. Identification of a phosphorus-solubilizing Tsukamurella tyrosinosolvens strain and its effect on the bacterial diversity of the rhizosphere soil of peanuts growth-promoting[J]. World Journal of Microbiology and Biotechnology, 2021, 37(7): 109.
    [10] RABIEI Z, HOSSEINI SJ, PIRDASHTI H, HAZRATI S. Physiological and biochemical traits in coriander affected by plant growth-promoting rhizobacteria under salt stress[J]. Heliyon, 2020, 6(10): e05321.
    [11] TSUKANOVA KA, СHЕBОTАR VК, MEYER JJM, BIBIKOVA TN. Effect of plant growth-promoting rhizobacteria on plant hormone homeostasis[J]. South African Journal of Botany, 2017, 113: 91-102.
    [12] GOSWAMI D, THAKKER JN, DHANDHUKIA PC. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review[J]. Cogent Food and Agriculture, 2016, 2(1): 1127500.
    [13] ZHANG QD, GONG M, XU X, LI HH, DENG W. Roles of auxin in the growth, development, and stress tolerance of horticultural plants[J]. Cells, 2022, 11(17): 2761.
    [14] 郭彦钊, 杜春辉, 于烽, 黄敏刚, 齐飞. 旱区盐生植物根际促生菌的分离鉴定及其干旱、盐胁迫下促生特性[J]. 微生物学报, 2023, 63(2): 610-622. GUO YZ, DU CH, YU F, HUANG MG, QI F. Isolation and identification of growth-promoting bacteria in halophyte rhizosphere in arid region and their growth-promoting characteristics under drought and salt stresses[J]. Acta Microbiologica Sinica, 2023, 63(2): 610-622(in Chinese).
    [15] JIANG WT, CHEN R, ZHAO L, DUAN YN, WANG HY, YAN ZB, SHEN X, CHEN XS, YIN CM, MAO ZQ. Isolation of phloridzin-degrading, IAA-producing bacterium Ochrobactrum haematophilum and its effects on the apple replant soil environment[J]. Horticultural Plant Journal, 2023, 9(2): 199-208.
    [16] MARTINS DS, REIS VM, SCHULTZ N, ALVES BJR, URQUIAGA S, PEREIRA W, SOUSA JS, BODDEY RM. Both the contribution of soil nitrogen and of biological N2 fixation to sugarcane can increase with the inoculation of diazotrophic bacteria[J]. Plant and Soil, 2020, 454(1): 155-169.
    [17] 陈越, 李虎林, 朱诗苗, 闫寒, 郎彬, 姬文秀. 产吲哚乙酸(IAA)促生菌的分离鉴定及对烟草种子萌发和幼苗生长发育的影响[J]. 作物杂志, 2020(2): 176-181. CHEN Y, LI HL, ZHU SM, YAN H, LANG B, JI WX. Isolation and identification of IAA-producing rhizobacteria and its effects on seed germination and seedling growth of tobacco[J]. Crops, 2020(2): 176-181(in Chinese).
    [18] WANG XN, ZHANG JC, WANG XF, AN JP, YOU CX, ZHOU B, HAO YJ. The growth-promoting mechanism of Brevibacillus laterosporus AMCC100017 on apple rootstock Malus robusta[J]. Horticultural Plant Journal, 2022, 8(1): 22-34.
    [19] 谢来工, 赵文瑾, 张磊. AI-2通过甲基化趋化受体McpU调控恶臭假单胞菌KT2440的趋化运动及生物膜形成[J]. 微生物学报, 2022, 62(2): 628-639. XIE LG, ZHAO WJ, ZHANG L. Autoinducer-2 regulates the chemotaxis and biofilm formation of Pseudomonas putida KT2440 by the methyl-accepting chemotaxis protein McpU[J]. Acta Microbiologica Sinica, 2022, 62(2): 628-639(in Chinese).
    [20] 赵龙飞, 徐亚军, 常佳丽, 李敏, 张艳玲, 党永杰, 王梦思, 程亚稳, 张斌月. 具ACC脱氨酶活性大豆根瘤内生菌的筛选、抗性及促生作用[J]. 微生物学报, 2016, 56(6): 1009-1021. ZHAO LF, XU YJ, CHANG JL, LI M, ZHANG YL, DANG YJ, WANG MS, CHENG YW, ZHANG BY. Screening, resistance and growth-promoting effect of endophytic bacteria with ACC deaminase activity isolated from soybean nodules[J]. Acta Microbiologica Sinica, 2016, 56(6): 1009-1021(in Chinese).
    [21] 张昊鑫, 王中华, 牛兵, 郭慷, 刘璐, 姜瑛, 张世祥. 产IAA兼具溶磷解钾高效促生菌的筛选、鉴定及其广谱性应用[J]. 生物技术通报, 2022, 35(5): 100-111. ZHAO LF, WANG ZH, NIU B, GUO K, LIU L, JIANG Y, ZHANG SX. Screening, identification and broad-spectrum application of efficient IAA-producing bacteria dissolving phosphorus and potassium[J]. Biotechnology Bulletin, 2022, 35(5): 100-111(in Chinese).
    [22] 王珣珏, 黄巧云, 蔡鹏, 陈雯莉. 解钾菌解钾效率检测方法的比较[J]. 华中农业大学学报, 2016, 35(1): 81-85. WANG XJ, HUANG QY, CAI P, CHEN WL. Comparing different methods of detecting potassium solubilizing efficiency with potassium solubilizing bacteria[J]. Journal of Huazhong Agricultural University, 2016, 35(1): 81-85(in Chinese).
    [23] OU T, ZHANG M, HUANG YZ, WANG L, WANG F, WANG RL, LIU XJ, ZHOU ZY, XIE J, XIANG ZH. Role of rhizospheric Bacillus megaterium HGS7 in maintaining mulberry growth under extremely abiotic stress in hydro-fluctuation belt of Three Gorges Reservoir[J]. Frontiers in Plant Science, 2022, 13: 880125.
    [24] 余让才, 潘瑞炽. 蓝光对水稻幼苗呼吸代谢的影响[J]. 中国水稻科学, 1996, 10(3): 159-162. YU RC, PAN RC. Effect of blue light on the respiration of rice (Oryza sativa) seedlings[J]. Chinese Journal of Rice Science, 1996, 10(3): 159-162(in Chinese).
    [25] PRAMANIK K, MANDAL S, BANERJEE S, GHOSH A, MAITI TK, MANDAL NC. Unraveling the heavy metal resistance and biocontrol potential of Pseudomonas sp. K32 strain facilitating rice seedling growth under Cd stress[J]. Chemosphere, 2021, 274: 129819.
    [26] GUPTA V, BUCH A. Pseudomonas aeruginosa predominates as multifaceted rhizospheric bacteria with combined abilities of P-solubilization and biocontrol[J]. Journal of Pure and Applied Microbiology, 2019, 13(1): 319-328.
    [27] 杨芾, 王辉, 王琴, 姜春前, 周妍旭, 李潞滨. 浙江地区毛竹林根际土壤促生细菌筛选及促生效应研究[J]. 南京林业大学学报(自然科学版), 2024. DOI:10.12302/j.issn.1000-2006.202307015. YANG F, WANG H, WANG Q, JIANG CQ, ZHOU YX LI LB. Screening of growth promoting bacteria in the rhizosphere soil of Phyllostachys edulis and study on the growth promoting effects in Zhejiang province[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2024. DOI:10.12302/j.issn.1000-2006. 202307015(in Chinese).
    [28] CHU DP, WANG XQ, FAN JJ, PENG LJ, LIANG JC, ZHENG YF, WANG R, YOU XW, JING CL, CLARK J, LI YQ, YUAN Y. Ulva prolifera polysaccharide enhances the root colonisation by Bacillus amyloliquefaciens strain Cas02[J]. Carbohydrate Polymers, 2023, 299: 120171.
    [29] TIAN T, SUN BB, SHI HW, GAO TT, HE YH, LI Y, LIU YX, LI XX, ZHANG LQ, LI SD, WANG Q, CHAI YR. Sucrose triggers a novel signaling cascade promoting Bacillus subtilis rhizosphere colonization[J]. The ISME Journal, 2021, 15(9): 2723-2737.
    [30] TAN SY, YANG CL, MEI XL, SHEN SY, RAZA W, SHEN QR, XU YC. The effect of organic acids from tomato root exudates on rhizosphere colonization of Bacillus amyloliquefaciens T-5[J]. Applied Soil Ecology, 2013, 64: 15-22.
    [31] 李培根, 要雅倩, 宋吉祥, 王天琪, 周波, 王冰, 林榕姗. 马铃薯根际产IAA芽孢杆菌的分离鉴定及促生效果研究[J]. 生物技术通报, 2020, 36(9): 109-116. LI PG, YAO YQ, SONG JX, WANG TQ, ZHOU B, WANG B, LIN RS. Isolation and identification of IAA-producing Bacillus sp on potato rhizosphere and its growth-promoting effect[J]. Biotechnology Bulletin, 2020, 36(9): 109-116(in Chinese).
    [32] OU KM, HE XY, CAI K, ZHAO WR, JIANG XX, AI WF, DING Y, CAO YY. Phosphate-solubilizing Pseudomonas sp. strain WS32 rhizosphere colonization-induced expression changes in wheat roots[J]. Frontiers in Microbiology, 2022, 13: 927889.
    [33] LEE KE, RADHAKRISHNAN R, KANG SM, YOU YH, JOO GJ, LEE IJ, KO JH, KIM JH. Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion[J]. Journal of Microbiology and Biotechnology, 2015, 25(9): 1467-1475.
    [34] FAHEY TJ, YAVITT JB. An in situ approach for measuring root-associated respiration and nitrate uptake of forest trees[J]. Plant and Soil, 2005, 272(1): 125-131.
    [35] 杜国栋, 刘志琨, 赵玲, 吕三三, 汪晓谦, 吕德国. 生物炭减缓干旱胁迫对秋子梨根系呼吸生理功能的影响[J]. 果树学报, 2016, 33(S1): 90-97. DU GD, LIU ZK, ZHAO L, LÜ SS, WANG XQ, LÜ DG. Biochar alleviates effects of drought stress on root respiration in Pyrus ussuriensis[J]. Journal of Fruit Science, 2016, 33(S1): 90-97(in Chinese).
    [36] 潘晶, 黄翠华, 彭飞, 尤全刚, 刘斐耀, 薛娴. 植物根际促生菌诱导植物耐盐促生作用机制[J]. 生物技术通报, 2020, 36(9): 75-87. PAN J, HUANG CH, PENG F, YOU QG, LIU FY, XUE X. Mechanisms of salt tolerance and growth promotion in plant induced by plant growth-promoting rhizobacteria[J]. Biotechnology Bulletin, 2020, 36(9): 75-87(in Chinese).
    [37] GUO DJ, SINGH P, YANG B, SINGH RK, VERMA KK, SHARMA A, KHAN Q, QIN Y, CHEN TS, SONG XP, ZHANG BQ, LI DP, LI YR. Complete genome analysis of sugarcane root associated endophytic diazotroph Pseudomonas aeruginosa DJ06 revealing versatile molecular mechanism involved in sugarcane development[J]. Frontiers in Microbiology, 2023, 14: 1096754.
    [38] AYAZ M, ALI Q, JIANG QF, WANG RY, WANG ZQ, MU GY, KHAN SA, KHAN AR, MANGHWAR H, WU HJ, GAO XW, GU Q. Salt tolerant Bacillus strains improve plant growth traits and regulation of phytohormones in wheat under salinity stress[J]. Plants, 2022, 11(20): 2769.
    [39] Chandran H, Meena M, Swapnil P. Plant growth-promoting rhizobacteria as a green alternative for sustainable agriculture[J]. Sustainability, 2021, 13(19): 10986.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陶泽,佟兆庆,秦嗣军. 樱桃根际产吲哚乙酸促生菌的分离、鉴定及功能特性[J]. 微生物学报, 2025, 65(1): 122-135

复制
分享
文章指标
  • 点击次数:156
  • 下载次数: 210
  • HTML阅读次数: 157
  • 引用次数: 0
历史
  • 收稿日期:2024-07-04
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码