毒素-抗毒素系统抵抗噬菌体感染研究进展
作者:
作者单位:

1.福建师范大学 生命科学学院,福建 福州;2.福建师范大学,南方生物医学研究中心,福建 福州

作者简介:

朱青健:负责论文的撰写与修改;欧阳松应:对论文进行了审阅;王勖荣:负责绘图工作并汇总了相关文献。

基金项目:

国家自然科学基金(32300035);福建省自然科学基金(2023J0123)


Toxin-antitoxin system resists phage infection: a review
Author:
Affiliation:

1.College of Life Science, Fujian Normal University, Fuzhou, Fujian, China;2.FJNU Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32300035) and the Fujian Provincial Natural Science Foundation (2023J0123).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [63]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    毒素-抗毒素(toxin-antitoxin, TA)系统广泛分布于细菌和古菌中。TA系统通常由一个能够抑制细菌生长的毒素和一个能够中和毒素毒性的抗毒素组成。目前,TA系统分为I-VIII型,其中II型TA系统的研究最为深入。然而,近年来也发现了一些非典型TA系统,如单顺反子TA系统和三组分TA系统等。自20世纪80年代发现首个TA系统(CcdB/CcdA)以来,TA系统被认为在微生物的多种生理过程中发挥重要功能。本文综述了近年来TA系统在抵抗噬菌体感染方面的功能,特别是TA系统如何特异性感知入侵噬菌体及其分子机制,旨在为探索未知TA系统的生物功能及调控机制提供参考。

    Abstract:

    The toxin-antitoxin (TA) system is ubiquitous in bacteria and archaea. A typical TA system generally consists of a toxin that inhibits bacterial growth and an antitoxin that neutralizes toxin toxicity. At present, TA systems are classified into types I-VIII, of which type II system is the most extensively studied. In addition, researchers have found that there are atypical TA systems such as monocistronic TA systems and three-component TA systems. After the discovery of the first TA system (CcdB/CcdA) in the 1980s, TA systems have been shown to play a key role in the physiological processes of microorganisms. In this paper, we review the research results about the roles of TA systems in resisting bacteriophage infections in recent years and summarize the neutralization mechanisms. In particular, we brief how TA systems specifically sense the invading bacteriophages and the underlying molecular mechanisms, aiming to provide reference for the research on the roles and regulation mechanisms of unknown TA systems in the future.

    参考文献
    [1] JUR?NAS D , FRAIKIN N , GOORMAGHTIGH F , van MELDEREN L . Biology and evolution of bacterial toxin-antitoxin systems[J]. Nature Reviews Microbiology, 2022, 20( 6): 335- 350.
    [2] SONG S , WOOD TK . A primary physiological role of toxin/antitoxin systems is phage inhibition[J]. Frontiers in Microbiology, 2020, 11: 1895.
    [3] OGURA T , HIRAGA S . Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80( 15): 4784- 4788.
    [4] NAKA KT , QI D , YONESAKI T , OTSUKA Y . RnlB antitoxin of the Escherichia coli RnlA-RnlB toxin-antitoxin module requires RNase HI for inhibition of RnlA toxin activity [J]. Toxins, 2017, 9( 1): 29.
    [5] BRIELLE R , PINEL-MARIE ML , FELDEN B . Linking bacterial type I toxins with their actions[J]. Current Opinion in Microbiology, 2016, 30: 114- 121.
    [6] GERDES K . The parB (hok/sok) locus of plasmid R1: a general purpose plasmid stabilization system[J]. Bio/Technology, 1988, 6: 1402- 1405.
    [7] JIANG Y , POGLIANO J , HELINSKI DR , KONIECZNY I . ParE toxin encoded by the broad-host-range plasmid RK2 is an inhibitor of Escherichia coli gyrase [J]. Molecular Microbiology, 2002, 44( 4): 971- 979.
    [8] BLOWER TR , SHORT FL , RAO F , MIZUGUCHI K , PEI XY , FINERAN PC , LUISI BF , SALMOND GP . Identification and classification of bacterial type III toxin-antitoxin systems encoded in chromosomal and plasmid genomes. Nucleic Acids Research, 2012, 40( 13): 6158- 6173.
    [9] BLOWER TR , FINERAN PC , JOHNSON MJ , TOTH IK , HUMPHREYS DP , SALMOND GPC . Mutagenesis and functional characterization of the RNA and protein components of the toxIN abortive infection and toxin-antitoxin locus of Erwinia [J]. Journal of Bacteriology, 2009, 191( 19): 6029- 6039.
    [10] MASUDA H , TAN Q , AWANO N , WU KP , INOUYE M . YeeU enhances the bundling of cytoskeletal polymers of MreB and FtsZ, antagonizing the CbtA (YeeV) toxicity in Escherichia coli [J]. Molecular Microbiology, 2012, 84( 5): 979- 989.
    [11] CHENG HY , SOO VWC, ISLAM S , McANULTY MJ , BENEDIK MJ , WOOD TK . Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress[J]. Environmental Microbiology, 2014, 16( 6): 1741- 1754.
    [12] MARKOVSKI M , WICKNER S . Preventing bacterial suicide: a novel toxin-antitoxin strategy[J]. Molecular Cell, 2013, 52( 5): 611- 612.
    [13] YAO JY , ZHEN XK , TANG KH , LIU TL , XU XL , CHEN Z , GUO YX , LIU XX , WOOD TK , OUYANG SY , WANG XX . Novel polyadenylylation-dependent neutralization mechanism of the HEPN/MNT toxin/antitoxin system[J]. Nucleic Acids Research, 2020, 48( 19): 11054- 11067.
    [14] CHOI JS , KIM W , SUK S, PARK H , BAK G, YOON J , LEE Y . The small RNA, SdsR, acts as a novel type of toxin in Escherichia coli [J]. RNA Biology, 2018, 15( 10): 1319- 1335.
    [15] WANG XX , YAO JY , SUN YC , WOOD TK . Type VII toxin/antitoxin classification system for antitoxins that enzymatically neutralize toxins[J]. Trends in Microbiology, 2021, 29( 5): 388- 393.
    [16] AHMAD S , WANG B , WALKER MD , TRAN HR , STOGIOS PJ , SAVCHENKO A , GRANT RA , MCARTHUR AG , LAUB MT , WHITNEY JC . An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp[J]. Nature, 2019, 575( 7784): 674- 678.
    [17] SWOBODA JG , CAMPBELL J , MEREDITH TC , WALKER S . Wall teichoic acid function, biosynthesis, and inhibition[J]. ChemBioChem, 2010, 11( 1): 35- 45.
    [18] SCHUSTER CF , BERTRAM R . Toxin-antitoxin systems of Staphylococcus aureus [J]. Toxins, 2016, 8( 5): 140.
    [19] VANG NIELSEN S , TURNBULL KJ , ROGHANIAN M , B?RENTSEN R , SEMANJSKI M , BRODERSEN DE , MACEK B , GERDES K . Serine-threonine kinases encoded by split hipA homologs inhibit tryptophanyl-tRNA synthetase [J]. mBio, 2019, 10( 3): e01138-19.
    [20] B?RENTSEN RL , NIELSEN SV , SKJERNING RB , LYNGS? J , BISIAK F , PEDERSEN JS , GERDES K , S?RENSEN MA , BRODERSEN DE . Structural basis for kinase inhibition in the tripartite E. coli HipBST toxin-antitoxin system [J]. eLife, 2023, 12: RP90400.
    [21] GERMAIN E , CASTRO-ROA D , ZENKIN N , GERDES K . Molecular mechanism of bacterial persistence by HipA[J]. Molecular Cell, 2013, 52( 2): 248- 254.
    [22] SAT B, RECHES M , ENGELBERG-KULKA H . The Escherichia coli mazEF suicide module mediates thymineless death [J]. Journal of Bacteriology, 2003, 185( 6): 1803- 1807.
    [23] FRAIKIN N , ROUSSEAU CJ , GOEDERS N , van MELDEREN L . Reassessing the role of the type II MqsRA toxin-antitoxin system in stress response and biofilm formation: mqsA is transcriptionally uncoupled from mqsR [J]. mBio, 2019, 10( 6): e02678-19.
    [24] MORI H , OGURA T , HIRAGA S . Prophage lambda induction caused by mini-F plasmid genes[J]. Molecular and General Genetics, 1984, 196( 2): 185- 193.
    [25] AFIF H , ALLALI N , COUTURIER M , van MELDEREN L . The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system[J]. Molecular Microbiology, 2001, 41( 1): 73- 82.
    [26] TAM JE, KLINE BC . The F plasmid ccd autorepressor is a complex of CcdA and CcdB proteins[J]. Molecular & General Genetics, 1989, 219( 1/2): 26- 32.
    [27] WOZNIAK RAF , WALDOR MK . A toxin-antitoxin system promotes the maintenance of an integrative conjugative element[J]. PLoS Genetics, 2009, 5( 3): e1000439.
    [28] KAI T, SELICK HE , YONESAKI T . Destabilization of bacteriophage T4 mRNAs by a mutation of gene 61.5[J]. Genetics, 1996, 144( 1): 7- 14.
    [29] OTSUKA Y , YONESAKI T . A novel endoribonuclease, RNase LS, in Escherichia coli [J]. Genetics, 2005, 169( 1): 13- 20.
    [30] IWAMOTO A , LEMIRE S , YONESAKI T . Post-transcriptional control of Crp-cAMP by RNase LS in Escherichia coli [J]. Molecular Microbiology, 2008, 70( 6): 1570- 1578.
    [31] KOGA M , OTSUKA Y , LEMIRE S , YONESAKI T . Escherichia coli rnlA and rnlB compose a novel toxin-antitoxin system [J]. Genetics, 2011, 187( 1): 123- 130.
    [32] GARCIA-RODRIGUEZ G , CHARLIER D , WILMAERTS D , MICHIELS J , LORIS R . Alternative dimerization is required for activity and inhibition of the HEPN ribonuclease RnlA[J]. Nucleic Acids Research, 2021, 49( 12): 7164- 7178.
    [33] OTSUKA Y , YONESAKI T . Dmd of bacteriophage T4 functions as an antitoxin against Escherichia coli LsoA and RnlA toxins [J]. Molecular Microbiology, 2012, 83( 4): 669- 681.
    [34] UENO H , YONESAKI T . Recognition and specific degradation of bacteriophage T4 mRNAs[J]. Genetics, 2001, 158( 1): 7- 17.
    [35] WEI Y , GAO ZQ , ZHANG H , DONG YH . Structural characterizations of phage antitoxin Dmd and its interactions with bacterial toxin RnlA[J]. Biochemical and Biophysical Research Communications, 2016, 472( 4): 592- 597.
    [36] SHORT FL , AKUSOBI C , BROADHURST WR , SALMOND GPC . The bacterial Type III toxin-antitoxin system, ToxIN, is a dynamic protein-RNA complex with stability-dependent antiviral abortive infection activity[J]. Scientific Reports, 2018, 8( 1): 1013.
    [37] BLOWER TR , PEI XY , SHORT FL , FINERAN PC , HUMPHREYS DP , LUISI BF , SALMOND GPC . A processed noncoding RNA regulates an altruistic bacterial antiviral system[J]. Nature Structural & Molecular Biology, 2011, 18( 2): 185- 190.
    [38] FINERAN PC , BLOWER TR , FOULDS IJ , HUMPHREYS DP , LILLEY KS , SALMOND GPC . The phage abortive infection system, ToxIN, functions as a protein-RNA toxin-antitoxin pair[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106( 3): 894- 899.
    [39] GUEGLER CK , LAUB MT . Shutoff of host transcription triggers a toxin-antitoxin system to cleave phage RNA and abort infection[J]. Molecular Cell, 2021, 81( 11): 2361- 2373.e9.
    [40] GUEGLER CK , TEODORO GIC , SRIKANT S , CHETLAPALLI K , DOERING CR , GHOSE DA , LAUB MT . A phage-encoded RNA-binding protein inhibits the antiviral activity of a toxin-antitoxin system[J]. Nucleic Acids Research, 2024, 52( 3): 1298- 1312.
    [41] Sundaram K , Vajravelu LK , Paul AJ . Functional characterization of toxin-antitoxin system in Mycobacterium tuberculosis [J]. Indian Journal of Tuberculosis, 2023, 70( 2): 149- 157.
    [42] SCHULLER M , BUTLER RE , ARIZA A , TROMANS-COIA C , JANKEVICIUS G , CLARIDGE TDW , KENDALL SL , GOH S, STEWART GR , AHEL I . Molecular basis for DarT ADP-ribosylation of a DNA base[J]. Nature, 2021, 596( 7873): 597- 602.
    [43] LAWARéE E , JANKEVICIUS G , COOPER C , AHEL I , UPHOFF S , TANG CM . DNA ADP-ribosylation stalls replication and is reversed by RecF-mediated homologous recombination and nucleotide excision repair[J]. Cell Reports, 2020, 30( 5): 1373- 1384.e4.
    [44] LeROUX M , SRIKANT S , TEODORO GIC , ZHANG T , LITTLEHALE ML , DORON S , BADIEE M , LEUNG AKL , SOREK R , LAUB MT . The DarTG toxin-antitoxin system provides phage defence by ADP-ribosylating viral DNA[J]. Nature Microbiology, 2022, 7( 7): 1028- 1040.
    [45] JANKEVICIUS G , ARIZA A , AHEL M , AHEL I . The toxin-antitoxin system DarTG catalyzes reversible ADP-ribosylation of DNA[J]. Molecular Cell, 2016, 64: 1109- 1116.
    [46] DEEP A , SINGH L , KAUR J , VELUSAMY M , BHARDWAJ P , SINGH R , THAKUR KG . Structural insights into DarT toxin neutralization by cognate DarG antitoxin: ssDNA mimicry by DarG C-terminal domain keeps the DarT toxin inhibited[J]. Structure, 2023, 31( 7): 780- 789.e4.
    [47] GROSLAMBERT J , PROKHOROVA E , AHEL I . ADP-ribosylation of DNA and RNA[J]. DNA Repair, 2021, 105: 103144.
    [48] GACA AO , KUDRIN P , COLOMER-WINTER C , BELJANTSEVA J , LIU K , ANDERSON B , WANG JD , REJMAN D , POTRYKUS K , CASHEL M , HAURYLIUK V , LEMOS JA . From (p)ppGpp to (pp)pGpp: characterization of regulatory effects of pGpp Synthesized by the small alarmone synthetase of Enterococcus faecalis [J]. Journal of Bacteriology, 2015, 197( 18): 2908- 2919.
    [49] JIMMY S , SAHA CK , KURATA T , STAVROPOULOS C , OLIVEIRA SRA , KOH A, CEPAUSKAS A , TAKADA H , REJMAN D , TENSON T , STRAHL H , GARCIA-PINO A , HAURYLIUK V , ATKINSON GC . A widespread toxin-antitoxin system exploiting growth control via alarmone signaling [J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117: 10500- 10510.
    [50] DOMINGUEZ-MOLINA L , KURATA T , CEPAUSKAS A , ECHEMENDIA-BLANCO D , ZEDEK S , TALAVERA-PEREZ A , ATKINSON GC , HAURYLIUK V , GARCIA-PINO A . Mechanisms of neutralization of toxSAS from toxin-antitoxin modules[J]. Nature Chemical Biology, 2024, 32( 7): 1059- 1073.
    [51] KURATA T , BRODIAZHENKO T , ALVES OLIVEIRA SR , ROGHANIAN M , SAKAGUCHI Y , TURNBULL KJ , BULVAS O , TAKADA H , TAMMAN H , AINELO A , POHL R , REJMAN D , TENSON T , SUZUKI T , GARCIA-PINO A , ATKINSON GC , HAURYLIUK V . RelA-SpoT homolog toxins pyrophosphorylate the CCA end of tRNA to inhibit protein synthesis[J]. Molecular Cell, 2021, 81( 15): 3160- 3170.
    [52] ZHANG T , CEPAUSKAS A , NADIEINA A , THUREAU A , WALLANT KC' , MARTENS C , LIM DC, GARCIA-PINO A , LAUB MT . A bacterial immunity protein directly senses two disparate phage proteins[J]. Nature, 2024, 635( 8039): 728- 735.
    [53] BORDES P , CIRINESI AM , UMMELS R , SALA A , SAKR S , BITTER W , GENEVAUX P . SecB-like chaperone controls a toxin-antitoxin stress-responsive system in Mycobacterium tuberculosis [J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108( 20): 8438- 8443.
    [54] SCHURECK MA , MAEHIGASHI T , MILES SJ , MARQUEZ J , DUNHAM CM . mRNA bound to the 30S subunit is a HigB toxin substrate[J]. RNA, 2016, 22( 8): 1261- 1270.
    [55] TEXIER P , BORDES P , NAGPAL J , SALA AJ , MANSOUR M , CIRINESI AM , XU XB , DOUGAN DA , GENEVAUX P . ClpXP-mediated degradation of the TAC antitoxin is neutralized by the SecB-like chaperone in Mycobacterium tuberculosis [J]. Journal of Molecular Biology, 2021, 433( 5): 166815.
    [56] METS T , KURATA T , ERNITS K , JOHANSSON MJO , CRAIG SZ , EVORA GM , BUTTRESS JA , ODAI R , WALLANT KC , NAKAMOTO JA , SHYROKOVA L , EGOROV AA , DOERING CR , BRODIAZHENKO T , LAUB MT , TENSON T , STRAHL H , MARTENS C , HARMS A , GARCIA-PINO A , et al . Mechanism of phage sensing and restriction by toxin-antitoxin-chaperone systems[J]. Cell Host & Microbe, 2024, 32( 7): 1059- 1073.e8.
    [57] VASSALLO CN , DOERING CR , LITTLEHALE ML , TEODORO GIC , LAUB MT . A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome [J]. Nature Microbiology, 2022, 7( 10): 1568- 1579.
    [58] ROUSSET F , DEPARDIEU F , MIELE S , DOWDING J , LAVAL AL , LIEBERMAN E , GARRY D , ROCHA EPC , BERNHEIM A , BIKARD D . Phages and their satellites encode hotspots of antiviral systems[J]. Cell Host & Microbe, 2022, 30( 5): 740- 753.e5.
    [59] ATANASIU C , SU TJ , STURROCK SS , DRYDEN DTF . Interaction of the ocr gene 0.3 protein of bacteriophage T7 with EcoKI restriction/modification enzyme[J]. Nucleic Acids Research, 2002, 30( 18): 3936- 3944.
    [60] HOPFNER KP , TAINER JA . Rad50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures[J]. Current Opinion in Structural Biology, 2003, 13( 2): 249- 255.
    [61] DEEP A , LIANG QS , ENUSTUN E , POGLIANO J , CORBETT KD . Architecture and activation mechanism of the bacterial PARIS defence system[J]. Nature, 2024, 634( 8033): 432- 439.
    [62] BURMAN N , BELUKHINA S , DEPARDIEU F , WILKINSON RA , SKUTEL M , SANTIAGO-FRANGOS A , GRAHAM AB , LIVENSKYI A , CHECHENINA A , MOROZOVA N , ZAHL T , HENRIQUES WS , BUYUKYORUK M , ROUILLON C , SAUDEMONT B , SHYROKOVA L , KURATA T , HAURYLIUK V , SEVERINOV K , GROSEILLE J , et al . A virally encoded tRNA neutralizes the PARIS antiviral defence system[J]. Nature, 2024, 634( 8033): 424- 431.
    [63] ZOU X , XIAO XH , MO ZR , GE YS , JIANG X , HUANG RL , LI MX , DENG ZX , CHEN S , WANG LR , LEE SY . Systematic strategies for developing phage resistant Escherichia coli strains [J]. Nature Communications, 2022, 13( 1): 4491.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱青健,欧阳松应,王勖荣. 毒素-抗毒素系统抵抗噬菌体感染研究进展[J]. 微生物学报, 2025, 65(3): 1007-1016

复制
分享
文章指标
  • 点击次数:107
  • 下载次数: 145
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2024-10-14
  • 在线发布日期: 2025-03-10
文章二维码