甲烷氧化菌群介导的Fe(III)还原和生物固氮及其耦合机制
作者:
作者单位:

福建农林大学 资源与环境学院,福建 福州

作者简介:

李书安:实验操作、数据处理与分析、文稿写作及编辑;余林鹏:实验方案设计、监督指导、文稿审查及编辑;杨琳:实验操作、数据处理与分析;沈彦汐:数据处理与分析;周顺桂:实验方案设计、文稿审查。

基金项目:

国家自然科学基金(42477255, 42077284);福建农林大学科技创新专项基金(KFB23121)


Fe(III) reduction and biological nitrogen fixation mediated by a methane-oxidizing consortium and their coupling mechanism
Author:
Affiliation:

College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (42477255, 42077284) and the Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University (KFB23121).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [46]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 铁还原依赖的甲烷厌氧氧化(Fe-AOM)是厌氧环境中甲烷减排的重要途径,然而在缺氮条件下甲烷氧化微生物如何进行Fe-AOM仍不清楚。方法 选取甲烷氧化培养物和水铁矿为研究对象,通过氮同位素示踪、三维荧光光谱分析、电化学分析和高通量测序等方法,探究缺氮条件下Fe-AOM的效率及其耦合生物固氮的可能性。结果 在缺氮条件下,甲烷氧化培养物能够催化Fe-AOM,将水铁矿还原转化为菱铁矿等矿物。当添加甲烷时,甲烷氧化培养物的固氮酶活性和15N同化量显著高于无甲烷组,证明甲烷氧化培养物能够耦合Fe-AOM和生物固氮过程。三维荧光光谱分析和电化学分析表明,Fe-AOM促进了溶解态蛋白质类物质的产生,增加了甲烷氧化培养物的氧化还原活性,并且以直接电子传递的方式进行水铁矿的还原。微生物群落结构分析显示,甲烷杆菌属(Methanobacterium,19.32%),地杆菌属(Geobacter,6.14%)、脱硫弧菌属(Desulfovibrio,17.52%)等铁还原菌及固氮弯曲菌属(Azoarcus,1.69%)、固氮螺菌属(Azospirillum,0.43%)等固氮菌在Fe-AOM过程中显著富集。DNA-SIP分析发现,Azoarcus在标记同位素组的重层显著富集,证实其固定了同位素氮结论 因此推测在该Fe-AOM耦合生物固氮过程主要由Methanobacterium进行甲烷氧化,而GeobacterDesulfovibrio等铁还原菌负责水铁矿的还原,Azoarcus则催化了生物固氮。此外,甲烷氧化细菌[甲基胞囊菌属(Methylocystis)]与铁还原菌和固氮菌之间呈现正相关关系,暗示其可能对该过程具有一定的贡献。这些结果为理解厌氧环境中铁依赖型甲烷氧化耦合固氮过程提供了新视角。

    Abstract:

    Objective Iron reduction-dependent anaerobic oxidation of methane (Fe-AOM) is an important pathway for methane emission reduction in anaerobic environments. However, it remains unclear how methane-oxidizing microbes perform Fe-AOM under nitrogen-limiting conditions.Methods Focusing on a methane-oxidizing consortium and ferrihydrite, this study employed nitrogen isotope tracing, three-dimensional fluorescence spectroscopy, electrochemical analysis, and high-throughput sequencing to investigate the Fe-AOM efficiency and the possibility of coupling Fe-AOM with biological nitrogen fixation under nitrogen-limiting conditions.Results The methane-oxidizing consortium was able to catalyze Fe-AOM under nitrogen-limiting conditions, reducing ferrihydrite to minerals such as siderite. The nitrogenase activity and 15N assimilation of the methane-oxidizing consortium in the presence of methane were significantly higher than those in the absence of methane, which demonstrated that the consortium could couple Fe-AOM with biological nitrogen fixation. Three-dimensional fluorescence spectroscopy and electrochemical analysis revealed that Fe-AOM promoted the production of dissolved protein-like substances, enhanced the redox activity of the methane-oxidizing consortium, and reduced ferrihydrite via direct electron transfer. Microbial community structure analysis showed significant enrichment of Methanobacterium (19.32%), iron-reducing bacteria such as Geobacter (6.14%) and Desulfovibrio (17.52%), as well as nitrogen-fixing bacteria like Azoarcus (1.69%) and Azospirillum (0.43%) during the Fe-AOM process. DNA-SIP analysis found that Azoarcus was significantly enriched in the heavy fraction of the labeled isotope group, confirming that it fixed isotope nitrogen.Conclusion It is thus hypothesized that the coupling of Fe-AOM with biological nitrogen fixation was primarily carried out by Methanobacterium which oxidized methane, Geobacter and Desulfovibrio responsible for the reduction of ferrihydrite, and Azoarcus catalyzing biological nitrogen fixation. Additionally, the positive correlations of the methane-oxidizing bacterium Methylocystis with iron-reducing bacteria and nitrogen-fixing bacteria suggested a certain contribution of Methylocystis to this process. These results provide new insights into understanding iron-dependent methane oxidation and nitrogen fixation in anaerobic environments.

    参考文献
    [1] CAI YF, ZHENG Y, BODELIER PLE, CONRAD R, JIA ZJ. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils[J]. Nature Communications, 2016, 7: 11728.
    [2] CHENG C, ZHANG J, HE Q, WU HM, CHEN Y, XIE HJ, PAVLOSTATHIS SG. Exploring simultaneous nitrous oxide and methane sink in wetland sediments under anoxic conditions[J]. Water Research, 2021, 194: 116958.
    [3] REEBURGH WS. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344.
    [4] RAGHOEBARSING AA, POL A, van de PAS-SCHOONEN KT, SMOLDERS AJP, ETTWIG KF, RIJPSTRA WI, SCHOUTEN S, DAMSTé JS, DEN CAMP HJ OP, JETTEN MSM, STROUS M. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7086): 918-921.
    [5] ETTWIG KF, BUTLER MK, le PASLIER D, PELLETIER E, MANGENOT S, KUYPERS MMM, SCHREIBER F, DUTILH BE, ZEDELIUS J, de BEER D, GLOERICH J, WESSELS HJCT, van ALEN T, LUESKEN F, WU ML, van de PAS-SCHOONEN KT, DEN CAMP HJM OP, JANSSEN-MEGENS EM, FRANCOIJS KJ, STUNNENBERG H, et al. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria[J]. Nature, 2010, 464(7288): 543-548.
    [6] SEGARRA KEA, COMERFORD C, SLAUGHTER J, JOYE SB. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments[J]. Geochimica et Cosmochimica Acta, 2013, 115: 15-30.
    [7] SCHELLER S, YU H, CHADWICK GL, MCGLYNN SE, ORPHAN VJ. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction[J]. Science, 2016, 351(6274): 703-707.
    [8] CAI C, LEU AO, XIE GJ, GUO JH, FENG YX, ZHAO JX, TYSON GW, YUAN ZG, HU SH. A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction[J]. The ISME Journal, 2018, 12(8): 1929-1939.
    [9] YANG HL, YU S, LU HL. Iron-coupled anaerobic oxidation of methane in marine sediments: a review[J]. Journal of Marine Science and Engineering, 2021, 9(8): 875.
    [10] SIVAN O, ANTLER G, TURCHYN AV, MARLOW JJ, ORPHAN VJ. Iron oxides stimulate sulfate-driven anaerobic methane oxidation in seeps[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(40): E4139-E4147.
    [11] WERSIN P, H?HENER P, GIOVANOLI R, STUMM W. Early diagenetic influences on iron transformations in a freshwater lake sediment[J]. Chemical Geology, 1991, 90(3/4): 233-252.
    [12] CROWE SA, KATSEV S, LESLIE K, STURM A, MAGEN C, NOMOSATRYO S, PACK MA, KESSLER JD, REEBURGH WS, ROBERTS JA, GONZáLEZ L, DOUGLAS HAFFNER G, MUCCI A, SUNDBY B, FOWLE DA. The methane cycle in ferruginous Lake Matano[J]. Geobiology, 2011, 9(1): 61-78.
    [13] SIVAN O, ADLER M, PEARSON A, GELMAN F, BAR-OR I, JOHN SG, ECKERT W. Geochemical evidence for iron-mediated anaerobic oxidation of methane[J]. Limnology and Oceanography, 2011, 56(4): 1536-1544.
    [14] Kà NORDI, THAMDRUP B, SCHUBERT CJ. Anaerobic oxidation of methane in an iron-rich Danish freshwater lake sediment[J]. Limnology and Oceanography, 2013, 58(2): 546-554.
    [15] SLOMP CP, MORT HP, JILBERT T, REED DC, GUSTAFSSON BG, WOLTHERS M. Coupled dynamics of iron and phosphorus in sediments of an oligotrophic coastal basin and the impact of anaerobic oxidation of methane[J]. PLoS One, 2013, 8(4): e62386.
    [16] EGGER M, RASIGRAF O, SAPART CJ, JILBERT T, JETTEN MSM, R?CKMANN T, van der VEEN C, B?ND? N, KARTAL B, ETTWIG KF, SLOMP CP. Iron-mediated anaerobic oxidation of methane in brackish coastal sediments[J]. Environmental Science & Technology, 2015, 49(1): 277-283.
    [17] DEKAS AE, PORETSKY RS, ORPHAN VJ. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia[J]. Science, 2009, 326(5951): 422-426.
    [18] DONG XY, ZHANG CW, PENG YY, ZHANG HX, SHI LD, WEI GS, HUBERT CRJ, WANG Y, GREENING C. Phylogenetically and catabolically diverse diazotrophs reside in deep-sea cold seep sediments[J]. Nature Communications, 2022, 13(1): 4885.
    [19] LIU XH, LI P, WANG HL, HAN LL, YANG K, WANG YH, JIANG Z, CUI L, KAO SJ. Nitrogen fixation and diazotroph diversity in groundwater systems[J]. The ISME Journal, 2023, 17(11): 2023-2034.
    [20] YU LP, JIA R, LIU SQ, LI S, ZHONG SN, LIU GH, ZENG RJ, RENSING C, ZHOU SG. Ferrihydrite-mediated methanotrophic nitrogen fixation in paddy soil under hypoxia[J]. ISME Communications, 2024, 4(1): ycae030.
    [21] BODELIER PLE, LAANBROEK HJ. Nitrogen as a regulatory factor of methane oxidation in soils and sediments[J]. FEMS Microbiology Ecology, 2004, 47(3): 265-277.
    [22] YU LP, YANG ZJ, HE QX, ZENG RJ, BAI YN, ZHOU SG. Novel gas diffusion cloth bioanodes for high-performance methane-powered microbial fuel cells[J]. Environmental Science & Technology, 2019, 53(1): 530-538.
    [23] ETTWIG KF, van ALEN T, van de PAS-SCHOONEN KT, JETTEN MSM, STROUS M. Enrichment and molecular detection of denitrifying methanotrophic bacteria of the NC10 phylum[J]. Applied and Environmental Microbiology, 2009, 75(11): 3656-3662.
    [24] SOO VWC, MCANULTY MJ, TRIPATHI A, ZHU FY, ZHANG LM, HATZAKIS E, SMITH PB, AGRAWAL S, NAZEM-BOKAEE H, GOPALAKRISHNAN S, SALIS HM, FERRY JG, MARANAS CD, PATTERSON AD, WOOD TK. Reversing methanogenesis to capture methane for liquid biofuel precursors[J]. Microbial Cell Factories, 2016, 15: 11.
    [25] ZHOU SG, XU JL, YANG GQ, ZHUANG L. Methanogenesis affected by the co-occurrence of iron(III) oxides and humic substances[J]. FEMS Microbiology Ecology, 2014, 88(1): 107-120.
    [26] MONTES-LUZ B, CONRADO AC, ELLINGSEN JK, MONTEIRO RA, de SOUZA EM, STACEY G. Acetylene reduction assay: a measure of nitrogenase activity in plants and bacteria[J]. Current Protocols, 2023, 3(5): e766.
    [27] SU JF, SHAO SC, HUANG TL, MA F, YANG SF, ZHOU ZM, ZHENG SC. Anaerobic nitrate-dependent iron(II) oxidation by a novel autotrophic bacterium, Pseudomonas sp. SZF15[J]. Journal of Environmental Chemical Engineering, 2015, 3(3): 2187-2193.
    [28] HUSTON WM, JENNINGS MP, MCEWAN AG. The multicopper oxidase of Pseudomonas aeruginosa is a ferroxidase with a central role in iron acquisition[J]. Molecular Microbiology, 2002, 45(6): 1741-1750.
    [29] HE QX, YU LP, LI JB, HE D, CAI XX, ZHOU SG. Electron shuttles enhance anaerobic oxidation of methane coupled to iron(III) reduction[J]. Science of the Total Environment, 2019, 688: 664-672.
    [30] FU L, LI SW, DING ZW, DING J, LU YZ, ZENG RJ. Iron reduction in the DAMO/Shewanella oneidensis MR-1 coculture system and the fate of Fe(II)[J]. Water Research, 2016, 88: 808-815.
    [31] GONZáLEZ-FERNáNDEZ C, GARCíA-ENCINA PA. Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry[J]. Biomass and Bioenergy, 2009, 33(8): 1065-1069.
    [32] SHINODA R, BAO ZH, MINAMISAWA K. CH4 oxidation-dependent 15N2 fixation in rice roots in a low-nitrogen paddy field and in Methylosinus sp. strain 3S-1 isolated from the roots[J]. Soil Biology and Biochemistry, 2019, 132: 40-46.
    [33] JIA YT, QIAN DS, CHEN YC, HU YY. Intra/extracellular electron transfer for aerobic denitrification mediated by in situ biosynthesis palladium nanoparticles[J]. Water Research, 2021, 189: 116612.
    [34] CAI XX, HUANG LY, YANG GQ, YU Z, WEN JL, ZHOU SG. Transcriptomic, proteomic, and bioelectrochemical characterization of an exoelectrogen Geobacter soli grown with different electron acceptors[J]. Frontiers in Microbiology, 2018, 9: 1075.
    [35] KIKUCHI S, MAKITA H, KONNO U, SHIRAISHI F, IJIRI A, TAKAI K, MAEDA M, TAKAHASHI Y. Limited reduction of ferrihydrite encrusted by goethite in freshwater sediment[J]. Geobiology, 2016, 14(4): 374-389.
    [36] 陈诗雨, 李燕, 李爱民. 溶解性有机物研究中三维荧光光谱分析的应用[J]. 环境科学与技术, 2015, 38(5): 64-68, 73.CHEN SY, LI Y, LI AM. Application of three-dimensional fluorescence spectroscopy in the study of dissolved organic matter[J]. Environmental Science & Technology, 2015, 38(5): 64-68, 73 (in Chinese).
    [37] HE R, MA RC, YAO XZ, WEI XM. Response of methanotrophic activity to extracellular polymeric substance production and its influencing factors[J]. Waste Management, 2017, 69: 289-297.
    [38] SCARINCI G, SOURJIK V. Impact of direct physical association and motility on fitness of a synthetic interkingdom microbial community[J]. The ISME Journal, 2023, 17(3): 371-381.
    [39] 丁阿强, 李朝洋, 李微薇, 卢培利. 厌氧甲烷氧化微生物物质代谢与能量代谢研究进展[J]. 微生物学报, 2022, 62(5): 1669-1687.DING AQ, LI CY, LI WW, LU PL. Advances in catabolism and energy metabolism of anaerobic methane-oxidizing microorganisms[J]. Acta Microbiologica Sinica, 2022, 62(5): 1669-1687 (in Chinese).
    [40] XIAO Y, ZHANG EH, ZHANG JD, DAI YF, YANG ZH, CHRISTENSEN HEM, ULSTRUP J, ZHAO F. Extracellular polymeric substances are transient media for microbial extracellular electron transfer[J]. Science Advances, 2017, 3(7): e1700623.
    [41] HE ZF, XU YT, ZHU YH, FENG JN, ZHANG DY, PAN XL. Long-term effects of soluble and insoluble ferric irons on anaerobic oxidation of methane in paddy soil[J]. Chemosphere, 2023, 317: 137901.
    [42] LI S, LI XM, LI FB. Fe(II) oxidation and nitrate reduction by a denitrifying bacterium, Pseudomonas stutzeri LS-2, isolated from paddy soil[J]. Journal of Soils and Sediments, 2018, 18(4): 1668-1678.
    [43] CAO Q, LI XZ, XIE ZJ, LI CN, HUANG SY, ZHU BJ, LI D, LIU XF. Compartmentation of microbial communities in structure and function for methane oxidation coupled to nitrification-denitrification[J]. Bioresource Technology, 2021, 341: 125761.
    [44] REINHOLD-HUREK B, HUREK T. Interactions of gramineous plants with Azoarcus spp. and other diazotrophs: Identification, localization, and perspectives to study their function[J]. Critical Reviews in Plant Sciences, 1998, 17(1): 29-54.
    [45] JUNG MY, KIM SJ, KIM JG, HONG H, GWAK JH, PARK SJ, KIM YH, RHEE SK. Comparative genomic analysis of Geosporobacter ferrireducens and its versatility of anaerobic energy metabolism[J]. Journal of Microbiology, 2018, 56(5): 365-371.
    [46] JING XY, LIU X, ZHANG ZS, WANG X, RENSING C, ZHOU SG. Anode respiration-dependent biological nitrogen fixation by Geobacter sulfurreducens[J]. Water Research, 2022, 208: 117860.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李书安,余林鹏,杨琳,沈彦汐,周顺桂. 甲烷氧化菌群介导的Fe(III)还原和生物固氮及其耦合机制[J]. 微生物学报, 2025, 65(6): 2449-2462

复制
分享
文章指标
  • 点击次数:12
  • 下载次数: 72
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2024-11-14
  • 在线发布日期: 2025-06-05
文章二维码