LisK/R通过调控鞭毛基因表达影响单增李斯特菌低温生长
作者:
作者单位:

华中农业大学 动物医学院,湖北 武汉

作者简介:

汪国俊:实验设计、实施、结果分析、稿件的撰写和修改;黄金梅:实验菌株的构建、结果分析;栗绍文:实验设计、稿件撰写指导;刘梅:实验设计、实施指导、结果分析、稿件的撰写和修改。

基金项目:

国家重点研发计划(2022YFD1800100)


LisK/R plays a role in Listeria monocytogenes growth at low temperatures by regulating the expression of flagellar genes
Author:
Affiliation:

College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2022YFD1800100).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [42]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 单增李斯特菌(Listeria monocytogenes, Lm)是一种革兰阳性食源性病原菌,可导致病死率高达20%-30%的人兽共患病——李斯特菌病(listeriosis)。Lm能够在低温下生长繁殖,对食品安全和人类健康构成极大的威胁。探究Lm低温生长机制,将为制定控制Lm低温生长的措施以及研发低温生长抑制剂提供理论依据。研究发现细菌双组分系统(two-component signal transduction system, TCS) LisK/R对Lm低温生长具有调控作用,但其具体机制尚未明确。因此,本研究旨在探讨LisK/R对Lm低温生长的作用机制。 方法Lm食品分离株LM201为亲本株,构建3个菌株:ΔlisR (LisK/R的RR缺失株)、ΔlisRc (ΔlisR的回补株)和ΔlisKc [LisK/R的HK缺失株ΔlisK (课题组之前已构建)的回补株]。测定亲本株、缺失株和回补株在4 ℃下的生长曲线;对4 ℃下生长的缺失株ΔlisK和亲本株进行RNA-Seq及数据分析;在4 ℃下,用软琼脂平板测定亲本株、缺失株和回补株的菌株运动圈直径,用透射电镜观察菌体鞭毛形成情况,用RT-qPCR测定鞭毛基因表达量。 结果 在4 ℃低温条件下,缺失株的生长速率显著低于亲本株(P<0.05),而回补株的生长情况与亲本株一致。RNA-Seq基因表达差异性分析结果显示,与亲本株相比,缺失株ΔlisK的鞭毛基因表达普遍显著上调(P<0.05)。在4 ℃低温条件下,缺失株的运动圈直径显著大于亲本株和回补株(P<0.05);电镜观察的结果显示,缺失株的鞭毛数量多,而亲本株和回补株的鞭毛数量较少;RT-qPCR测定结果也显示,缺失株的鞭毛基因表达量显著高于亲本株和回补株(P<0.05)。 结论 在4 ℃低温条件下,生长速率低的LisK/R缺失株鞭毛数量多,而生长速率高的亲本株鞭毛数量少,表明Lm通过LisK/R抑制鞭毛基因的表达,减少鞭毛产量,从而将能量用于生长以促进Lm在低温下的生长,其具体的分子调控机制尚需进一步研究。本研究为阐明Lm低温生长机制提供了新的信息。

    Abstract:

    Objective Listeria monocytogenes (Lm) is a Gram-positive foodborne pathogen causing human and animal listeriosis with high case fatality rates (20%-30%). Lm can grow at low temperatures, which brings great risks to food safety and human health. Exploring the mechanism of Lm growth at low temperatures will provide a theoretical basis for the formulation of measures to control Lm growth at low temperatures and the development of low-temperature growth inhibitors. Studies have shown that LisK/R, a two-component signal transduction system (TCS) in Lm, plays a role in regulating the growth of Lm at low temperatures, while the specific mechanism remains unclear. This study aims to reveal the mechanism of LisK/R in regulating the growth of Lm at low temperatures. Methods With the Lm strain LM201 isolated from foodstuff as the parental strain, we constructed three strains: ΔlisR (RR-deleted mutant of LisK/R), ΔlisRc (complementary strain of ΔlisR), and ΔlisKc (complementary strain of ΔlisK, which was constructed before this study in our laboratory). The growth curves of these strains were determined at 4 ℃. RNA-Seq was performed for ΔlisK and the parental strain growing at 4 ℃, and the obtained data were analyzed. We assayed the swarming area diameter on soft agar plate, flagellar biosynthesis by transmission electron microscopy, and transcriptional levels of flagellar genes by RT-qPCR for all the strains at 4 ℃. Results The growth of deletion mutants was slower than that of the parental strain (P<0.05), and the growth of complementary strains was consistent with that of the parental strain at 4 ℃. The RNA-Seq data showed that compared with that in the parental strain, the expression of flagellar genes in ΔlisK was up-regulated (P<0.05). At 4 ℃, the swarming area diameters of deletion mutants on soft agar plates were bigger than those of the parental strain and complementary strains (P<0.05); the deletion mutants had more flagella, while the parental and complementary strains had fewer flagella; the expression of flagellar genes in the deletion mutants was higher than that in the parental and complementary strains (P<0.05). Conclusion At 4 ℃, the LisK/R mutants with slow growth had more flagella, while the parental strain with rapid growth had fewer flagella. The results indicate that LisK/R inhibits the expression of flagellar genes in Lm to reduce flagellar production, and the energy is used to promote Lm growth at low temperatures. The specific molecular regulatory mechanism of LisK/R needs further study. This study provides new information for elucidating the mechanism of Lm growth at low temperatures.

    参考文献
    [1] De NOORDHOUT CM , DEVLEESSCHAUWER B , ANGULO FJ , VERBEKE G , HAAGSMA J , KIRK M , HAVELAAR A , SPEYBROECK N . The global burden of listeriosis: a systematic review and meta-analysis[J]. The Lancet Infectious Diseases, 2014, 14(11): 1073-1082.
    [2] RADOSHEVICH L , COSSART P . Listeria monocytogenes: towards a complete picture of its physiology and pathogenesis[J]. Nature Reviews Microbiology, 2018, 16(1): 32-46.
    [3] European Food Safety Authority (EFSA), European Centre for Disease Prevention and Control (ECDC) . The European Union One Health 2022 Zoonoses Report[J]. EFSA Journal, 2023, 21(12): e8442.
    [4] PEEL M , DONACHIE W , SHAW A . Temperature-dependent expression of flagella of Listeria monocytogenes studied by electron microscopy, SDS-PAGE and western blotting[J]. Journal of General Microbiology, 1988, 134(8): 2171-2178.
    [5] LIU M , DING Y , YE Q , WU S , GU Q , CHEN L , ZHANG Y , WEI X , DENG M , ZHANG J , WU Q , WANG J . Cold-tolerance mechanisms in foodborne pathogens: Escherichia coli and Listeria monocytogenes as examples[J]. Critical Reviews in Food Science and Nutrition, 2024: 1-15.
    [6] HAUF S , M?LLER L , FUCHS S , HALBEDEL S . PadR-type repressors controlling production of a non-canonical FtsW/RodA homologue and other trans-membrane proteins[J]. Scientific Reports, 2019, 9(1): 10023.
    [7] KIM J , PARK J , CHOI Z , HONG M . Structure-based molecular characterization of the LltR transcription factor from Listeria monocytogenes [J]. Biochemical and Biophysical Research Communications, 2022, 600: 142-149.
    [8] VáSQUEZ L , PARRA A , QUESILLE-VILLALOBOS AM , GáLVEZ G , NAVARRETE P , LATORRE M , TORO M , GONZáLEZ M , REYES-JARA A . Cobalamin cbiP mutant shows decreased tolerance to low temperature and copper stress in Listeria monocytogenes [J]. Biological Research, 2022, 55(1): 9.
    [9] HINGSTON P , CHEN J , ALLEN K , TRUELSTRUP HANSEN L , WANG S . Strand specific RNA-sequencing and membrane lipid profiling reveals growth phase-dependent cold stress response mechanisms in Listeria monocytogenes [J]. PLoS One, 2017, 12(6): e0180123.
    [10] HINGSTON PA , TRUELSTRUP HANSEN L , POMBERT JF , WANG S . Characterization of Listeria monocytogenes enhanced cold-tolerance variants isolated during prolonged cold storage[J]. International Journal of Food Microbiology, 2019, 306: 108262.
    [11] SEEL W , FLEGLER A , ZUNABOVIC-PICHLER M , LIPSKI A . Increased isoprenoid quinone concentration modulates membrane fluidity in Listeria monocytogenes at low growth temperatures[J]. Journal of Bacteriology, 2018, 200(13): e00148-18.
    [12] FLEGLER A , ISWARA J , M?NZ AT , SCHOCKE FS , FA?BENDER WA , H?LZL G , LIPSKI A . Exogenous fatty acids affect membrane properties and cold adaptation of Listeria monocytogenes [J]. Scientific Reports, 2022, 12: 1499.
    [13] TOUCHE C , HAMCHAOUI S , QUILLERé A , DARSONVAL M , DUBOIS-BRISSONNET F . Growth of Listeria monocytogenes is promoted at low temperature when exogenous unsaturated fatty acids are incorporated in its membrane[J]. Food Microbiology, 2023, 110: 104170.
    [14] QUILLERé A , DARSONVAL M , PAPADOCHRISTOPOULOS A , AMOROS A , NICOLAS P , DUBOIS-BRISSONNET F . Deciphering the impact of exogenous fatty acids on Listeria monocytogenes at low temperature by transcriptome analysis[J]. Frontiers in Microbiology, 2024, 15: 1441784.
    [15] HORN G , HOFWEBER R , KREMER W , KALBITZER HR . Structure and function of bacterial cold shock proteins[J]. Cellular and Molecular Life Sciences, 2007, 64(12): 1457-1470.
    [16] SCHMID B , KLUMPP J , RAIMANN E , LOESSNER MJ , STEPHAN R , TASARA T . Role of cold shock proteins in growth of Listeria monocytogenes under cold and osmotic stress conditions[J]. Applied and Environmental Microbiology, 2009, 75(6): 1621-1627.
    [17] LEE JH , JEONG KW , KIM YM . Purification and structural characterization of cold shock protein from Listeria monocytogenes [J]. Bulletin of the Korean Chemical Society, 2012, 33(8): 2508-2512.
    [18] MUCHAAMBA F , von AH U , STEPHAN R , STEVENS MJA , TASARA T . Deciphering the global roles of cold shock proteins in Listeria monocytogenes nutrient metabolism and stress tolerance[J]. Frontiers in Microbiology, 2022, 13: 1057754.
    [19] ANGELIDIS AS , SMITH GM . Role of the glycine betaine and carnitine transporters in adaptation of Listeria monocytogenes to chill stress in defined medium[J]. Applied and Environmental Microbiology, 2003, 69(12): 7492-7498.
    [20] SHIVAJI S , PRAKASH JSS . How do bacteria sense and respond to low temperature[J]. Archives of Microbiology, 2010, 192(2): 85-95.
    [21] WU Y , PANG X , LIU X , WU Y , ZHANG X . Functional genomics identified novel genes involved in growth at low temperatures in Listeria monocytogenes [J]. Microbiology Spectrum, 2022, 10(4): e0071022.
    [22] 汪国俊, 邓霞, 栗绍文, 刘梅 . 低温下阻遏蛋白MogR对单增李斯特菌鞭毛形成的影响[J]. 微生物学报, 2024, 64(5): 1506-1520. WANG GJ , DENG X , LI SW , LIU M . Role of repressor MogR in flagellar biosynthesis of Listeria monocytogenes at low temperatures[J]. Acta Microbiologica Sinica, 2024, 64(5): 1506-1520 (in Chinese).
    [23] CHAN YC , RAENGPRADUB S , BOOR KJ , WIEDMANN M . Microarray-based characterization of the Listeria monocytogenes cold regulon in log- and stationary-phase cells[J]. Applied and Environmental Microbiology, 2007, 73(20): 6484-6498.
    [24] CHAN YC , HU YW , CHATURONGAKUL S , FILES KD , BOWEN BM , BOOR KJ , WIEDMANN M . Contributions of two-component regulatory systems, alternative sigma factors, and negative regulators to Listeria monocytogenes cold adaptation and cold growth[J]. Journal of Food Protection, 2008, 71(2): 420-425.
    [25] P?NTINEN A , MARKKULA A , LINDSTR?M M , KORKEALA H . Two-component-system histidine kinases involved in growth of Listeria monocytogenes EGD-e at low temperatures[J]. Applied and Environmental Microbiology, 2015, 81(12): 3994-4004.
    [26] ALEJANDRO-NAVARRETO X , FREITAG NE . Revisiting old friends: updates on the role of two-component signaling systems in Listeria monocytogenes survival and pathogenesis[J]. Infection and Immunity, 2024, 92(4): e0034523.
    [27] BOURRET RB , SILVERSMITH RE . Two-component signal transduction[J]. Current Opinion in Microbiology, 2010, 13(2): 113-115.
    [28] ISHII E , EGUCHI Y . Diversity in sensing and signaling of bacterial sensor histidine kinases[J]. Biomolecules, 2021, 11(10): 1524.
    [29] PAPON N , STOCK AM . Two-component systems[J]. Current Biology, 2019, 29(15): R724-R725.
    [30] CASINO P , RUBIO V , MARINA A . The mechanism of signal transduction by two-component systems[J]. Current Opinion in Structural Biology, 2010, 20(6): 763-771.
    [31] WU Y , ZHENG J , WANG Y , LI S , JIN H , LI Z , BI D , SUN M , LIU M . Draft genome sequence of Listeria monocytogenes LM201, isolated from foodstuff[J]. Genome Announcements, 2015, 3(1): e01417-14.
    [32] 张娜, 欧娅, 郑金水, 刘梅 . 单增李斯特菌食品分离株LM201的双组分信号转导系统的生物信息学分析[J]. 微生物学杂志, 2018, 38(1): 96-104. ZHANG N , OU Y, ZHENG JS , LIU M . Bioinformatics analysis of double-component signal transduction systems of Listeria monocytogenes LM201 isolated strain from foodstuff[J]. Journal of Microbiology, 2018, 38(1): 96-104 (in Chinese).
    [33] TASARA T , STEPHAN R . Evaluation of housekeeping genes in Listeria monocytogenes as potential internal control references for normalizing mRNA expression levels in stress adaptation models using real-time PCR[J]. FEMS Microbiology Letters, 2007, 269(2): 265-272.
    [34] CHENG C , DONG Z , HAN X , WANG H , JIANG L , SUN J , YANG Y , MA T , SHAO C , WANG X , CHEN Z , FANG W , FREITAG NE , HUANG H , SONG H . Thioredoxin A is essential for motility and contributes to host infection of Listeria monocytogenes via redox interactions[J]. Frontiers in Cellular and Infection Microbiology, 2017, 7: 287.
    [35] W?STEN MM , WAGENAAR JA , van PUTTEN JP . The FlgS/FlgR two-component signal transduction system regulates the fla regulon in Campylobacter jejuni [J]. Journal of Biological Chemistry, 2004, 279(16): 16214-16222.
    [36] AKERLEY BJ , MONACK DM , FALKOW S , MILLER JF . The bvgAS locus negatively controls motility and synthesis of flagella in Bordetella bronchiseptica [J]. Journal of Bacteriology, 1992, 174(3): 980-990.
    [37] FREITAG NE , PORT GC , MINER MD . Listeria monocytogenes-from saprophyte to intracellular pathogen[J]. Nature Reviews Microbiology, 2009, 7(9): 623-628.
    [38] HAYASHI F , SMITH KD , OZINSKY A , HAWN TR , YI EC , GOODLETT DR , ENG JK, AKIRA S , UNDERHILL DM , ADEREM A . The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5[J]. Nature, 2001, 410(6832): 1099-1103.
    [39] GRüNDLING A , BURRACK LS , BOUWER HG , HIGGINS DE . Listeria monocytogenes regulates flagellar motility gene expression through MogR, a transcriptional repressor required for virulence[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(33): 12318-12323.
    [40] DURACK J , ROSS T , BOWMAN JP . Characterisation of the transcriptomes of genetically diverse Listeria monocytogenes exposed to hyperosmotic and low temperature conditions reveal global stress-adaptation mechanisms[J]. PLoS One, 2013, 8(9): e73603.
    [41] ARMITAGE JP . Bacterial tactic responses[J]. Advances in Microbial Physiology, 1999, 41: 229-289.
    [42] JAEGER T , MAYER C . The transcriptional factors MurR and catabolite activator protein regulate N-acetylmuramic acid catabolism in Escherichia coli [J]. Journal of Bacteriology, 2008, 190(20): 6598-6608.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

汪国俊,黄金梅,栗绍文,刘梅. LisK/R通过调控鞭毛基因表达影响单增李斯特菌低温生长[J]. 微生物学报, 2025, 65(7): 2889-2902

复制
分享
文章指标
  • 点击次数:42
  • 下载次数: 94
  • HTML阅读次数: 41
  • 引用次数: 0
历史
  • 收稿日期:2024-11-27
  • 在线发布日期: 2025-07-04
文章二维码