巨型噬菌体的研究进展
作者:
作者单位:

1.陆军军医大学 基础医学院,微生物学教研室,重庆市微生物工程重点实验室,重庆;2.陆军军医大学 第一附属医院(重庆西南医院) 心血管内科,重庆

作者简介:

何博:文章撰写,绘制图5、图6,引用图1、图7;姜昕宇:文章审阅;廖江林:生物信息学统计分析,绘制图3、图4;卢曙光:文章审核与修改,整理相关数据并绘制图2;乐率:综述选题及确定文章主旨和结构,文章修改。

基金项目:

国家重点研发计划(2021YFA0911200)


Research progress in jumbo phages
Author:
Affiliation:

1.Key Laboratory of Microbial Engineering under the Educational Committee in Chongqing, Department of Microbiology, College of Basic Medical Sciences, Army Medical University, Chongqing, China;2.Department of Cardiovascular Medicine, the Southwest Hospital of Army Medical University, Chongqing, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2021YFA0911200).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [98]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在后抗生素时代,噬菌体疗法是对抗耐药菌的重要候选武器。噬菌体具有丰富的多样性,其中的巨型噬菌体是一类基因组大于200 kb的噬菌体。由于其基因组容量大,功能基因类型丰富且排布分散。巨型噬菌体在生物学机制上具有许多特性,如拥有超大的噬菌体颗粒、独特的复制周期和结构(如核状区室、内体和长波浪卷曲尾丝)等。本文旨在对巨型噬菌体及其研究进展进行综述,重点剖析其生物学特点、基因组与进化、特殊的复制机制与结构,并探讨其在抗耐药菌感染、环境治理、水产养殖和生物防治等领域的应用潜力,为巨型噬菌体的相关研究和应用提供参考与启示。

    Abstract:

    In the post-antibiotic era, phage therapy becomes a candidate for treating drug-resistant bacteria. Phages are diverse, and jumbo phages are a class of phages with genomes longer than 200 kb. Their large genomes carry abundant functional genes with scattered distribution. Jumbo phages have a variety of unique biological characteristics, such as oversized phage particles, unique replication cycles, and unique structures such as the nucleus-like compartment, the “inner body”, and the long-wavy curly tail fiber. This paper reviews the research progress in jumbo phages, focusing on their biological characteristics, genomes, evolution, and special replication mechanisms and structures. Furthermore, this review explores the application potential of jumbo phages in the treatment of drug-resistant bacterial infection, environmental management, aquaculture, and biocontrol, aiming to provide reference and implications for the research and application of jumbo phages.

    参考文献
    [1] ZHANG C, FU XH, LIU YQ, ZHAO H, WANG GQ. Burden of infectious diseases and bacterial antimicrobial resistance in China: a systematic analysis for the global burden of disease study 2019[J]. The Lancet Regional Health Western Pacific, 2023, 43: 100972.
    [2] COLLABORATORS AR. Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis[J]. Lancet, 2022, 399(10325): 629-655.
    [3] GBD 2019 Antimicrobial Resistance Collaborators. Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. Lancet, 2022, 400(10369): 2221-2248.
    [4] HATFULL GF, DEDRICK RM, SCHOOLEY RT. Phage therapy for antibiotic-resistant bacterial infections[J]. Annual Review of Medicine, 2022, 73: 197-211.
    [5] REARDON S. Phage therapy gets revitalized[J]. Nature, 2014, 510(7503): 15-16.
    [6] DION MB, OECHSLIN F, MOINEAU S. Phage diversity, genomics and phylogeny[J]. Nature Reviews Microbiology, 2020, 18(3): 125-138.
    [7] ZHAO LY, SHI Y, LAU HCH, LIU WX, LUO GW, WANG GP, LIU CG, PAN YS, ZHOU QM, DING YQ, SUNG JJY, YU J. Uncovering 1058 novel human enteric DNA viruses through deep long-read third-generation sequencing and their clinical impact[J]. Gastroenterology, 2022, 163(3): 699-711.
    [8] HENDRIX RW. Bacteriophage genomics[J]. Current Opinion in Microbiology, 2003, 6(5): 506-511.
    [9] DEVOTO AE, SANTINI JM, OLM MR, ANANTHARAMAN K, MUNK P, TUNG J, ARCHIE EA, TURNBAUGH PJ, SEED KD, BLEKHMAN R, AARESTRUP FM, THOMAS BC, BANFIELD JF. Megaphages infect Prevotella and variants are widespread in gut microbiomes[J]. Nature Microbiology, 2019, 4(4): 693-700.
    [10] AL-SHAYEB B, SACHDEVA R, CHEN LX, WARD F, MUNK P, DEVOTO A, CASTELLE CJ, OLM MR, BOUMA-GREGSON K, AMANO Y, HE C, MéHEUST R, BROOKS B, THOMAS A, LAVY A, MATHEUS-CARNEVALI P, SUN C, GOLTSMAN DSA, BORTON MA, SHARRAR A, et al. Clades of huge phages from across Earth’s ecosystems[J]. Nature, 2020, 578(7795): 425-431.
    [11] HENDRIX RW. Jumbo bacteriophages[M]//Current Topics in Microbiology and Immunology. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009: 229-240.
    [12] KRYLOV VN, SMIRNOVA TA, REBENTISH BA, MINENKOVA IB. Stucture of PhiKZ bacteriophage particles[J]. Voprosy Virusologii, 1978, 5: 568-571.
    [13] KRYLOV VN, ZHAZYKOV IZ. Pseudomonas bacteriophage phiKZ: possible model for studying the genetic control of morphogenesis[J]. Genetika, 1978, 14(4): 678-685.
    [14] GONZáLEZ B, MONROE L, LI KP, YAN R, WRIGHT E, WALTER T, KIHARA D, WEINTRAUB ST, THOMAS JA, SERWER P, JIANG W. Phage G structure at 6.1 ? resolution, condensed DNA, and host identity revision to a Lysinibacillus[J]. Journal of Molecular Biology, 2020, 432(14): 4139-4153.
    [15] DONELLI G, DORE E, FRONTALI C, GRANDOLFO ME. Structure and physico-chemical properties of bacteriophage G. III. A homogeneous DNA of molecular weight 5×108[J]. Journal of Molecular Biology, 1975, 94(4): 555-565.
    [16] SERWER P, HAYES SJ, THOMAS JA, HARDIES SC. Propagating the missing bacteriophages: a large bacteriophage in a new class[J]. Virology Journal, 2007, 4: 21.
    [17] HARDING KR, KYTE N, FINERAN PC. Jumbo phages[J]. Current Biology, 2023, 33(14): R750-R751.
    [18] IYER L M, ANANTHARAMAN V, KRISHNAN A, BURROUGHS AM, ARAVIND L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts[J]. Viruses, 2021, 13(1): 63.
    [19] YUAN YH, GAO MY. Jumbo bacteriophages: an overview[J]. Frontiers in Microbiology, 2017, 8: 403.
    [20] SHKOPOROV AN, HILL C. Bacteriophages of the human gut: the “known unknown” of the microbiome[J]. Cell Host & Microbe, 2019, 25(2): 195-209.
    [21] ALEXYUK P, BOGOYAVLENSKIY A, ALEXYUK M, AKANOVA K, MOLDAKHANOV Y, BEREZIN V. Isolation and characterization of jumbo coliphage vB_EcoM_Lh1B as a promising therapeutic agent against chicken colibacillosis[J]. Microorganisms, 2023, 11(6): 1524.
    [22] DECEWICZ P, GOLEC P, SZYMCZAK M, RADLINSKA M, DZIEWIT L. Identification and characterization of the first virulent phages, including a novel jumbo virus, infecting Ochrobactrum spp.[J]. International Journal of Molecular Sciences, 2020, 21(6): 2096.
    [23] HOU YT, WU ZH, REN L, CHEN Y, ZHANG YA, ZHOU Y. Characterization and application of a lytic jumbo phage ZPAH34 against multidrug-resistant Aeromonas hydrophila[J]. Frontiers in Microbiology, 2023, 14: 1178876.
    [24] HU M, XING B, YANG MH, HAN R, PAN HZ, GUO H, LIU Z, HUANG T, DU K, JIANG SY, ZHANG Q, LU WJ, HUANG X, ZHOU CZ, LI JH, SONG WC, DENG ZQ, XIAO MF. Characterization of a novel genus of jumbo phages and their application in wastewater treatment[J]. iScience, 2023, 26(6): 106947.
    [25] JO D, KIM H, LEE Y, KIM J, RYU S. Characterization and genomic study of EJP2, a novel jumbo phage targeting antimicrobial resistant Escherichia coli[J]. Frontiers in Microbiology, 2023, 14: 1194435.
    [26] KANAIZUKA A, SASAKI R, MIYASHITA S, ANDO S, ITO K, FUKUHARA T, TAKAHASHI H. Isolation of Burkholderia jumbo phages and their utilization as biocontrol agents to suppress rice seedling rot disease[J]. Journal of General Plant Pathology, 2023, 89(1): 24-34.
    [27] KAWATO Y, ISTIQOMAH I, GAAFAR AY, HANAOKA M, ISHIMARU K, YASUIKE M, NISHIKI I, NAKAMURA Y, FUJIWARA A, NAKAI T. A novel jumbo Tenacibaculum maritimum lytic phage with head-fiber-like appendages[J]. Archives of Virology, 2020, 165(2): 303-311.
    [28] KWON J, KIM SG, KIM HJ, GIRI SS, KIM SW, LEE SB, PARK SC. Isolation and characterization of Salmonella jumbo-phage pSal-SNUABM-04[J]. Viruses, 2020, 13(1): 27.
    [29] MARQUIONI V, ROSSI FPN, MENDON?A DC, MARTINS LF, BEHLAU F, SETUBAL JC, da SILVA AM, NOVO-MANSUR MTM. Isolation and characterization of vB_XciM_LucasX, a new jumbo phage that infects Xanthomonas citri and Xanthomonas fuscans[J]. PLoS One, 2022, 17(4): e0266891.
    [30] MOROZOVA V, BABKIN I, KOZLOVA Y, TIKUNOV A, USHAKOVA T, BARDASHEVA A, FEDORETS V, ZHIRAKOVSKAYA E, TIKUNOVA N. Isolation, characterization and genomic analysis of a novel jumbo phage, AerS266, that infects Aeromonas salmonicida[J]. Microorganisms, 2023, 11(11): 2649.
    [31] NAKNAEN A, SUTTINUN O, SURACHAT K, KHAN E, POMWISED R. A novel jumbo phage PhiMa05 inhibits harmful Microcystis sp.[J]. Frontiers in Microbiology, 2021, 12: 660351.
    [32] RAI P, SHETTY SS, PRABELL S, KUNTAR A, PINTO D, KUMAR BK, DIVYASHREE M, RAJ JRM, PREMANATH R, DEEKSHIT VK, KARUNASAGAR I, KARUNASAGAR I. Characterisation of broad-spectrum phiKZ-like jumbo phage and its utilisation in controlling multidrug-resistant Pseudomonas aeruginosa isolates[J]. Microbial Pathogenesis, 2022, 172: 105767.
    [33] SASAKI R, MIYASHITA S, ANDO S, ITO K, FUKUHARA T, TAKAHASHI H. Isolation and characterization of a novel jumbo phage from leaf litter compost and its suppressive effect on rice seedling rot diseases[J]. Viruses, 2021, 13(4): 591.
    [34] OVERBEEK R, FONSTEIN M, D’SOUZA M, PUSCH GD, MALTSEV N. The use of gene clusters to infer functional coupling[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(6): 2896-2901.
    [35] PETROV VM, NOLAN JM, BERTRAND C, LEVY D, DESPLATS C, KRISCH HM, KARAM JD. Plasticity of the gene functions for DNA replication in the T4-like phages[J]. Journal of Molecular Biology, 2006, 361(1): 46-68.
    [36] MESYANZHINOV VV, ROBBEN J, GRYMONPREZ B, KOSTYUCHENKO VA, BOURKALTSEVA MV, SYKILINDA NN, KRYLOV VN, VOLCKAERT G. The genome of bacteriophage phiKZ of Pseudomonas aeruginosa[J]. Journal of Molecular Biology, 2002, 317(1): 1-19.
    [37] SKURNIK M, HYYTI?INEN HJ, HAPPONEN LJ, KILJUNEN S, DATTA N, MATTINEN L, WILLIAMSON K, KRISTO P, SZELIGA M, KALIN-M?NTT?RI L, AHOLA-IIVARINEN E, KALKKINEN N, BUTCHER SJ. Characterization of the genome, proteome, and structure of yersiniophage ?R1-37[J]. Journal of Virology, 2012, 86(23): 12625-12642.
    [38] HARDIES SC, THOMAS JA, SERWER P. Comparative genomics of Bacillus thuringiensis phage 0305phi8-36: defining patterns of descent in a novel ancient phage lineage[J]. Virology Journal, 2007, 4: 97.
    [39] THOMAS JA, HARDIES SC, ROLANDO M, HAYES SJ, LIEMAN KR, CARROLL CA, WEINTRAUB ST, SERWER P. Complete genomic sequence and mass spectrometric analysis of highly diverse, atypical Bacillus thuringiensis phage 0305phi8-36[J]. Virology, 2007, 368(2): 405-421.
    [40] YUAN YH, GAO MY. Proteomic analysis of a novel Bacillus jumbo phage revealing glycoside hydrolase as structural component[J]. Frontiers in Microbiology, 2016, 7: 745.
    [41] YUAN YH, GAO MY. Characteristics and complete genome analysis of a novel jumbo phage infecting pathogenic Bacillus pumilus causing ginger rhizome rot disease[J]. Archives of Virology, 2016, 161(12): 3597-3600.
    [42] KRYLOV VN, SMIRNOVA TA, MINENKOVA IB, PLOTNIKOVA TG, ZHAZIKOV IZ, KHRENOVA EA. Pseudomonas bacteriophage contains an inner body in its capsid[J]. Canadian Journal of Microbiology, 1984, 30(6): 758-762.
    [43] WU WM, THOMAS JA, CHENG NQ, BLACK LW, STEVEN AC. Bubblegrams reveal the inner body of bacteriophage φKZ[J]. Science, 2012, 335(6065): 182.
    [44] NICHIPORENKO A, ANTONOVA D, KURDYUMOVA I, KHODORKOVSKII M, YAKUNINA MV. Assembly of phiKZ bacteriophage inner body during infection[J]. Biochemical and Biophysical Research Communications, 2024, 693: 149372.
    [45] THOMAS JA, WEINTRAUB ST, WU WM, WINKLER DC, CHENG NQ, STEVEN AC, BLACK LW. Extensive proteolysis of head and inner body proteins by a morphogenetic protease in the giant Pseudomonas aeruginosa phage φKZ[J]. Molecular Microbiology, 2012, 84(2): 324-339.
    [46] PRICHARD A, LEE JN, LAUGHLIN TG, LEE A, THOMAS KP, SY AE, SPENCER T, ASAVAVIMOL A, CAFFERATA A, CAMERON M, CHIU N, DAVYDOV D, DESAI I, DIAZ G, GUERECA M, HEARST K, HUANG LY, JACOBS E, JOHNSON A, KAHN S, et al. Identifying the core genome of the nucleus-forming bacteriophage family and characterization of Erwinia phage RAY[J]. Cell Reports, 2023, 42(5): 112432.
    [47] JANG HB, FAGUTAO FF, NHO SW, PARK SB, CHA IS, YU JE, LEE JS, IM SP, AOKI T, JUNG TS. Phylogenomic network and comparative genomics reveal a diverged member of the ΦKZ-related group, marine vibrio phage ΦJM-2012[J]. Journal of Virology, 2013, 87(23): 12866-12878.
    [48] MAGAR S, KOLTE V, SHARMA G, GOVINDARAJAN S. Exploring pangenomic diversity and CRISPR-Cas evasion potential in jumbo phages: a comparative genomics study[J]. Microbiology Spectrum, 2024, 12(10): e0420023.
    [49] LE S, WEI LL, WANG J, TIAN F, YANG Q, ZHAO JR, ZHONG ZJ, LIU JZ, HE XS, ZHONG Q, LU SG, LIANG HH. Bacteriophage protein Dap1 regulates evasion of antiphage immunity and Pseudomonas aeruginosa virulence impacting phage therapy in mice[J]. Nature Microbiology, 2024, 9(7): 1828-1841.
    [50] CEYSSENS PJ, MINAKHIN L, van den BOSSCHE A, YAKUNINA M, KLIMUK E, BLASDEL B, de SMET J, NOBEN JP, BL?SI U, SEVERINOV K, LAVIGNE R. Development of giant bacteriophage ?KZ is independent of the host transcription apparatus[J]. Journal of Virology, 2014, 88(18): 10501-10510.
    [51] YAKUNINA M, ARTAMONOVA T, BORUKHOV S, MAKAROVA KS, SEVERINOV K, MINAKHIN L. A non-canonical multisubunit RNA polymerase encoded by a giant bacteriophage[J]. Nucleic Acids Research, 2015, 43(21): 10411-10420.
    [52] OREKHOVA M, KORESHOVA A, ARTAMONOVA T, KHODORKOVSKII M, YAKUNINA M. The study of the phiKZ phage non-canonical non-virion RNA polymerase[J]. Biochemical and Biophysical Research Communications, 2019, 511(4): 759-764.
    [53] SOKOLOVA ML, MISOVETC I, SEVERINOV KV. Multisubunit RNA polymerases of jumbo bacteriophages[J]. Viruses, 2020, 12(10): 1064.
    [54] GEROVAC M, CHIHARA K, WICKE L, B?TTCHER B, LAVIGNE R, VOGEL J. Phage proteins target and co-opt host ribosomes immediately upon infection[J]. Nature Microbiology, 2024, 9(3): 787-800.
    [55] THOMAS JA, ROLANDO MR, CARROLL CA, SHEN PS, BELNAP DM, WEINTRAUB ST, SERWER P, HARDIES SC. Characterization of Pseudomonas chlororaphis myovirus 201varphi2-1 via genomic sequencing, mass spectrometry, and electron microscopy[J]. Virology, 2008, 376(2): 330-338.
    [56] CHAIKEERATISAK V, NGUYEN K, KHANNA K, BRILOT AF, ERB ML, COKER JKC, VAVILINA A, NEWTON GL, BUSCHAUER R, POGLIANO K, VILLA E, AGARD DA, POGLIANO J. Assembly of a nucleus-like structure during viral replication in bacteria[J]. Science, 2017, 355(6321): 194-197.
    [57] LAUGHLIN TG, DEEP A, PRICHARD AM, SEITZ C, GU YJ, ENUSTUN E, SUSLOV S, KHANNA K, BIRKHOLZ EA, ARMBRUSTER E, McCAMMON JA, AMARO RE, POGLIANO J, CORBETT KD, VILLA E. Architecture and self-assembly of the jumbo bacteriophage nuclear shell[J]. Nature, 2022, 608(7922): 429-435.
    [58] KRAEMER JA, ERB ML, WADDLING CA, MONTABANA EA, ZEHR EA, WANG H, NGUYEN K, PHAM DSL, AGARD DA, POGLIANO J. A phage tubulin assembles dynamic filaments by an atypical mechanism to center viral DNA within the host cell[J]. Cell, 2012, 149(7): 1488-1499.
    [59] ZEHR EA, KRAEMER JA, ERB ML, COKER JKC, MONTABANA EA, POGLIANO J, AGARD DA. The structure and assembly mechanism of a novel three-stranded tubulin filament that centers phage DNA[J]. Structure, 2014, 22(4): 539-548.
    [60] CHAIKEERATISAK V, BIRKHOLZ EA, POGLIANO J. The phage nucleus and PhuZ spindle: defining features of the subcellular organization and speciation of nucleus-forming jumbo phages[J]. Frontiers in Microbiology, 2021, 12: 641317.
    [61] CHAIKEERATISAK V, KHANNA K, NGUYEN KT, SUGIE J, EGAN ME, ERB ML, VAVILINA A, NONEJUIE P, NIEWEGLOWSKA E, POGLIANO K, AGARD DA, VILLA E, POGLIANO J. Viral capsid trafficking along treadmilling tubulin filaments in bacteria[J]. Cell, 2019, 177(7): 1771-1780.e12.
    [62] NIEWEGLOWSKA ES, BRILOT AF, MéNDEZ-MORAN M, KOKONTIS C, BAEK M, LI JR, CHENG YF, BAKER D, BONDY-DENOMY J, AGARD DA. The ?PA3 phage nucleus is enclosed by a self-assembling 2D crystalline lattice[J]. Nature Communications, 2023, 14: 927.
    [63] ENUSTUN E, ARMBRUSTER EG, LEE JN, ZHANG ST, BA YEE, MALUKHINA K, GU YJ, DEEP A, NARITOMI JT, LIANG QS, AIGNER S, ADLER BA, CRESS BF, DOUDNA JA, CHAIKEERATISAK V, CLEVELAND DW, GHASSEMIAN M, BINTU B, YEO GW, POGLIANO J, et al. A phage nucleus-associated RNA-binding protein is required for jumbo phage infection[J]. Nucleic Acids Research, 2024, 52(8): 4440-4455.
    [64] MODELL AE, SIRIWARDENA SU, CHOUDHARY A. A jumbo phage forms a nucleus-like compartment to evade bacterial defense systems[J]. Biochemistry, 2020, 59(20): 1869-1870.
    [65] BONDY-DENOMY J, PAWLUK A, MAXWELL KL, DAVIDSON AR. Bacteriophage genes that inactivate the CRISPR/Cas bacterial immune system[J]. Nature, 2013, 493(7432): 429-432.
    [66] MENDOZA SD, NIEWEGLOWSKA ES, GOVINDARAJAN S, LEON LM, BERRY JD, TIWARI A, CHAIKEERATISAK V, POGLIANO J, AGARD DA, BONDY-DENOMY J. A bacteriophage nucleus-like compartment shields DNA from CRISPR nucleases[J]. Nature, 2020, 577(7789): 244-248.
    [67] GUAN JW, OROMí-BOSCH A, MENDOZA SD, KARAMBELKAR S, BERRY JD, BONDY-DENOMY J. Bacteriophage genome engineering with CRISPR-Cas13a[J]. Nature Microbiology, 2022, 7(12): 1956-1966.
    [68] MALONE LM, WARRING SL, JACKSON SA, WARNECKE C, GARDNER PP, GUMY LF, FINERAN PC. A jumbo phage that forms a nucleus-like structure evades CRISPR-Cas DNA targeting but is vulnerable to type III RNA-based immunity[J]. Nature Microbiology, 2020, 5(1): 48-55.
    [69] MAYO-MU?OZ D, SMITH LM, GARCIA-DOVAL C, MALONE LM, HARDING KR, JACKSON SA, HAMPTON HG, FAGERLUND RD, GUMY LF, FINERAN PC. Type III CRISPR-Cas provides resistance against nucleus-forming jumbo phages via abortive infection[J]. Molecular Cell, 2022, 82(23): 4471-4486.e9.
    [70] BIRKHOLZ EA, MORGAN CJ, LAUGHLIN TG, LAU RK, PRICHARD A, RANGARAJAN S, MEZA GN, LEE JN, ARMBRUSTER E, SUSLOV S, POGLIANO K, MEYER JR, VILLA E, CORBETT KD, POGLIANO J. An intron endonuclease facilitates interference competition between coinfecting viruses[J]. Science, 2024, 385(6704): 105-112.
    [71] CHAIKEERATISAK V, BIRKHOLZ EA, PRICHARD AM, EGAN ME, MYLVARA A, NONEJUIE P, NGUYEN KT, SUGIE J, MEYER JR, POGLIANO J. Viral speciation through subcellular genetic isolation and virogenesis incompatibility[J]. Nature Communications, 2021, 12(1): 342.
    [72] ARMBRUSTER EG, LEE J, HUTCHINGS J, VANDERWAL AR, ENUSTUN E, ADLER BA, AINDOW A, DEEP A, RODRIGUEZ ZK, MORGAN CJ, GHASSEMIAN M, CHARLES E, CRESS BF, SAVAGE DF, DOUDNA JA, POGLIANO K, CORBETT KD, VILLA E, POGLIANO J. Sequential membrane- and protein-bound organelles compartmentalize genomes during phage infection[J]. bioRxiv, 2023. DOI: 10.1101/2023.09.20.558163.
    [73] KNIPE DM, PRICHARD A, SHARMA S, POGLIANO J. Replication compartments of eukaryotic and bacterial DNA viruses: common themes between different domains of host cells[J]. Annual Review of Virology, 2022, 9(1): 307-327.
    [74] CHAIKEERATISAK V, NGUYEN K, EGAN ME, ERB ML, VAVILINA A, POGLIANO J. The phage nucleus and tubulin spindle are conserved among large Pseudomonas phages[J]. Cell Reports, 2017, 20(7): 1563-1571.
    [75] BIRKHOLZ EA, LAUGHLIN TG, ARMBRUSTER E, SUSLOV S, LEE JN, WITTMANN J, CORBETT KD, VILLA E, POGLIANO J. A cytoskeletal vortex drives phage nucleus rotation during jumbo phage replication in E. coli[J]. Cell Reports, 2022, 40(7): 111179.
    [76] CHAIKEERATISAK V, KHANNA K, NGUYEN KT, EGAN ME, ENUSTUN E, ARMBRUSTER E, LEE JN, POGLIANO K, VILLA E, POGLIANO J. Subcellular organization of viral particles during maturation of nucleus-forming jumbo phage[J]. Science Advances, 2022, 8(18): eabj9670.
    [77] ENUSTUN E, DEEP A, GU YJ, NGUYEN KT, CHAIKEERATISAK V, ARMBRUSTER E, GHASSEMIAN M, VILLA E, POGLIANO J, CORBETT KD. Identification of the bacteriophage nucleus protein interaction network[J]. Nature Structural & Molecular Biology, 2023, 30(11): 1653-1662.
    [78] MORGAN CJ, ENUSTUN E, ARMBRUSTER EG, BIRKHOLZ EA, PRICHARD A, FORMAN T, AINDOW A, WANNASRICHAN W, PETERS S, INLOW K, SHEPHERD IL, RAZAVILAR A, CHAIKEERATISAK V, ADLER BA, CRESS BF, DOUDNA JA, POGLIANO K, VILLA E, CORBETT KD, POGLIANO J. An essential and highly selective protein import pathway encoded by nucleus-forming phage[J]. bioRxiv, 2024. DOI: 2024.03.21.585822.
    [79] FOKINE A, KOSTYUCHENKO VA, EFIMOV AV, KUROCHKINA LP, SYKILINDA NN, ROBBEN J, VOLCKAERT G, HOENGER A, CHIPMAN PR, BATTISTI AJ, ROSSMANN MG, MESYANZHINOV VV. A three-dimensional cryo-electron microscopy structure of the bacteriophage phiKZ head[J]. Journal of Molecular Biology, 2005, 352(1): 117-124.
    [80] KRYLOV VN, DELA CRUZ DM, HERTVELDT K, ACKERMANN HW. “φKZ-like viruses”, a proposed new genus of myovirus bacteriophages[J]. Archives of Virology, 2007, 152(10): 1955-1959.
    [81] SOKOLOVA OS, SHABUROVA OV, PECHNIKOVA EV, SHAYTAN AK, KRYLOV SV, KISELEV NA, KRYLOV VN. Genome packaging in EL and Lin68, two giant phiKZ-like bacteriophages of P. aeruginosa[J]. Virology, 2014, 468: 472-478.
    [82] THOMAS JA, BLACK LW. Mutational analysis of the Pseudomonas aeruginosa myovirus KZ morphogenetic protease gp175[J]. Journal of Virology, 2013, 87(15): 8713-8725.
    [83] FOSSATI A, MOZUMDAR D, KOKONTIS C, MèNDEZ-MORAN M, NIEWEGLOWSKA E, PELIN A, LI YP, GUO B, KROGAN NJ, AGARD DA, BONDY-DENOMY J, SWANEY DL. Next-generation proteomics for quantitative Jumbophage-bacteria interaction mapping[J]. Nature Communications, 2023, 14(1): 5156.
    [84] LI YP, GUAN J, HAREENDRANATH S, CRAWFORD E, AGARD D, MAKAROVA K, KOONIN E, BONDY-DENOMY J. A family of novel immune systems targets early infection of nucleus-forming jumbo phages[J]. bioRxiv, 2022. DOI: https://doi.org/10.1101/2022.09.17.508391.
    [85] RODRIGUEZ ZK, LAUGHLIN TG, VanderWAL A, AINDOW A, RAZAVILAR A, PRICHARD AM, LEE JN, ARMBRUSTER E, POGLIANO J, VILLA E. Investigating the early stages of infection of nucleus-forming jumbo phage[J]. Biophysical Journal, 2023, 122(3): 414a.
    [86] ATTAI H, BOON M, PHILLIPS K, NOBEN JP, LAVIGNE R, BROWN PJB. Larger than life: isolation and genomic characterization of a jumbo phage that infects the bacterial plant pathogen, Agrobacterium tumefaciens[J]. Frontiers in Microbiology, 2018, 9: 1861.
    [87] THANKI AM, BROWN N, MILLARD AD, CLOKIE MRJ. Genomic characterization of jumbo Salmonella phages that effectively target United Kingdom pig-associated Salmonella serotypes[J]. Frontiers in Microbiology, 2019, 10: 1491.
    [88] KRYLOV V. Bacteriophages of Pseudomonas aeruginosa: long-term prospects for use in phage therapy[J]. Advances in Virus Research, 2014, 88: 227-278.
    [89] MONSON R, FOULDS I, FOWERAKER J, WELCH M, SALMOND GPC. The Pseudomonas aeruginosa generalized transducing phage phiPA3 is a new member of the phiKZ-like group of ‘jumbo’ phages, and infects model laboratory strains and clinical isolates from cystic fibrosis patients[J]. Microbiology, 2011, 157(Pt 3): 859-867.
    [90] PLETENEVA EA, SHABUROVA OV, BURKALTSEVA MV, KRYLOV SV, KAPLAN AM, CHESNOKOVA EN, POLYGACH OA, VOROSHILOVA NN, MIKHAILOVA NA, ZVEREV VV, KRYLOV VN. Novel approach to composition of, bacteriophage mixtures for antibacterial therapy[J]. Zhurnal Mikrobiologii, Epidemiologii i Immunobiologii, 2016, 5: 3-11.
    [91] ZHANG BY, SUN HZ, ZHAO FY, WANG Q, PAN Q, TONG YG, REN HY. Characterization and genomic analysis of a novel jumbo bacteriophage vB_StaM_SA1 infecting Staphylococcus aureus with two lysins[J]. Frontiers in Microbiology, 2022, 13: 856473.
    [92] GüEMES AGC, GHATBALE P, BLANC AN, MORGAN CJ, GARCIA A, LEONARD J, HUANG LN, KOVALICK G, PROOST M, CHIU M, KUO PT, OH J, KARTHIKEYAN S, KNIGHT R, POGLIANO J, SCHOOLEY RT, PRIDE DT. Jumbo phages are active against extensively drug-resistant eyedrop-associated Pseudomonas aeruginosa infections[J]. Antimicrobial Agents and Chemotherapy, 2023, 67(12): e0065423.
    [93] IMAM M, ALRASHID B, PATEL F, DOWAH ASA, BROWN N, MILLARD A, CLOKIE MRJ, GALYOV EE. VB_PaeM_MIJ3, a novel jumbo phage infecting Pseudomonas aeruginosa, possesses unusual genomic features[J]. Frontiers in Microbiology, 2019, 10: 2772.
    [94] THAMMATINNA K, SINPRASERTPORN A, NAKNAEN A, SAMERNATE T, NUANPIROM J, CHANWONG P, SOMBOONWIWAT K, POGLIANO J, SATHAPONDECHA P, THAWONSUWAN J, NONEJUIE P, CHAIKEERATISAK V. Nucleus-forming vibriophage cocktail reduces shrimp mortality in the presence of pathogenic bacteria[J]. Scientific Reports, 2023, 13(1): 17844.
    [95] JACQUEMOT L, BETTAREL Y, MONJOL J, CORRE E, HALARY S, DESNUES C, BOUVIER T, FERRIER-PAGèS C, BAUDOUX AC. Therapeutic potential of a new jumbo phage that infects Vibrio coralliilyticus, a widespread coral pathogen[J]. Frontiers in Microbiology, 2018, 9: 2501.
    [96] SMITH WPJ, WUCHER BR, NADELL CD, FOSTER KR. Bacterial defences: mechanisms, evolution and antimicrobial resistance[J]. Nature Reviews Microbiology, 2023, 21(8): 519-534.
    [97] KORTRIGHT KE, CHAN BK, KOFF JL, TURNER PE. Phage therapy: a renewed approach to combat antibiotic-resistant bacteria[J]. Cell Host & Microbe, 2019, 25(2): 219-232.
    [98] GUAN JW, BONDY-DENOMY J. Intracellular organization by jumbo bacteriophages[J]. Journal of Bacteriology, 2020, 203(2): e00362-20.
    引证文献
引用本文

何博,姜昕宇,廖江林,卢曙光,乐率. 巨型噬菌体的研究进展[J]. 微生物学报, 2025, 65(3): 1017-1032

复制
分享
文章指标
  • 点击次数:10
  • 下载次数: 21
  • HTML阅读次数: 16
  • 引用次数: 0
历史
  • 收稿日期:2024-10-01
  • 在线发布日期: 2025-03-10
文章二维码