陕西省不同种植区长梗绞股蓝土壤理化性质和根部土壤细菌群落结构分析
作者:
作者单位:

1.中国医学科学院北京协和医学院药用植物研究所,道地药材品质保障与资源持续利用全国重点实验室,北京;2.山东第二医科大学 药学院,山东 潍坊

作者简介:

冷春燕:样品处理、论文撰写;尹一飞:协助样品处理和实验操作;侯梦妍:数据收集和处理;于晶:数据收集和处理;李绕静:文章修改;邢咏梅:数据核查并参与论文讨论;陈娟:研究构思和实验设计并修改讨论论文;郭宝林:实验材料采集、研究构思并参与论文讨论。

基金项目:

陕西省2024年重点研发计划(2024SF-GJHX-10);中国医学科学院医学与健康科技创新工程(重大协同创新项目) (2021-I2M-1-032);山东省泰山学者青年专家项目(Tsqn202211233)


Soil physicochemical properties and root soil bacterial composition of Gynostemma longipes in different planting regions of Shaanxi Province
Author:
Affiliation:

1.State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China;2.School of Pharmacy, Shandong Second Medical University, Weifang, Shandong, China

Fund Project:

This work was supported by the Key Research and Development Project of Shaanxi Province in 2024 (2024SF-GJHX-10), the CAMS Innovation Fund for Medical Sciences (CIFMS) (2021-I2M-1-032), and the Special Fund for Taishan Scholar Project (Tsqn202211233).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    目的 比较不同种植地长梗绞股蓝根际和非根际土壤细菌多样性和群落组成差异,结合环境因子关联分析,揭示影响长梗绞股蓝土壤细菌群落的关键因子,为长梗绞股蓝的栽培引种提供参考,也为进一步探究不同产区长梗绞股蓝根际微生物与化学成分含量的关系奠定基础。方法 基于高通量测序技术和土壤理化性质分析,比较不同种植地长梗绞股蓝土壤细菌群落多样性和组成差异,并揭示影响细菌群落的关键环境因子。结果 共获得97 085个细菌扩增子序列变体(amplicon sequence variants, ASVs),长梗绞股蓝土壤细菌群落结构在不同种植地间具有显著差异(R=0.562,P=0.001),在根际和非根际土壤中无显著差异。变形菌门(Proteobacteria,27.40%-36.67%)和酸杆菌门(Acidobacteriota,15.60%-22.19%)为长梗绞股蓝土壤细菌中的优势菌门。土壤pH、有效磷(available phosphorus, AP)、速效钾(available potassium, AK)、有机质(soil organic matter, SOM)和碱解氮(alkali-hydrolyzable nitrogen, AN)是影响长梗绞股蓝土壤细菌群落结构的关键土壤环境因子。结论 基于本研究的样本分析,不同产地长梗绞股蓝细菌群落多样性和组成差异显著且与土壤理化性质密切相关。本研究为长梗绞股蓝的引种栽培提供了一定的参考,也为进一步探究绞股蓝土壤微生物与次生代谢产物积累的关系奠定了基础。

    Abstract:

    Objective To compare the bacterial diversity and community composition between the rhizosphere and non-rhizosphere soil of Gynostemma longipes in different planting regions and reveal the key environmental factors by correlating the bacterial community composition with soil physicochemical properties. The findings are expected to provide a reference for the cultivation and introduction of this plant and lay a basis for exploring the relationship between rhizosphere microorganisms and the chemical component content of G. longipes in different planting regions.Methods High-throughput sequencing and soil physicochemical property measurement were employed to compare the bacterial diversity and community composition of G. longipes in different planting regions and reveal the key environmental factors influencing the bacterial community.Results A total of 97 085 bacterial amplicon sequence variants (ASVs) were obtained. The bacterial community composition in G. longipes soil showed significant differences among different planting regions (R=0.562, P=0.001) but no significant differences between rhizosphere and non-rhizosphere soil. Proteobacteria (27.40%?36.67%) and Acidobacteriota (15.60%?22.19%) were the dominant bacterial phyla. Soil pH, available phosphorus, available potassium, soil organic matter, and alkali-hydrolyzable nitrogen were identified as key environmental factors influencing the bacterial community composition in G. longipes soil.Conclusion Based on the sample analysis in this study, the bacterial community diversity and composition of G. longipes varied significantly aross different locations and were closely associated with soil physicochemical properties. This study provides a reference for the cultivation and introduction of G. longipes and gives insights into the relationship between soil microorganisms and secondary metabolite accumulation of G. longipes.

    参考文献
    [1] 中国科学院中国植物志编辑委员会. 中国植物志-第三十八卷[M]. 北京: 科学出版社, 1986: 273.Editorial Committee of Flora of China, Chinese Academy of Sciences. Flora of China (Volume 38)[M]. Beijing: Science Press, 1986: 273 (in Chinese).
    [2] YE S, FENG L, ZHANG SY, LU YC, XIANG GS, NIAN B, WANG Q, ZHANG SY, SONG WL, YANG L, LIU XY, FENG BW, ZHANG GH, HAO B, YANG SC. Integrated metabolomic and transcriptomic analysis and identification of dammarenediol-II synthase involved in saponin biosynthesis in Gynostemma longipes[J]. Frontiers in Plant Science, 2022, 13: 852377.
    [3] 李齐, 庞旭, 卢彭信, 张洁, 张军, 师东晓, 马百平. 长梗绞股蓝中的四个新达玛烷型三萜皂苷[J]. 药学学报, 2021, 56(6): 1670-1676.LI Q, PANG X, LU PX, ZHANG J, ZHANG J, SHI DX, MA BP. Four new dammarane-type triterpenoid saponins from Gynostemma longipes C.Y.Wu[J]. Acta Pharmaceutica Sinica, 2021, 56(6): 1670-1676 (in Chinese).
    [4] 文定梅, 李豆豆, 汪加魏, 孙荣喜, 郭宝林, 吴南生. 不同基质对长梗绞股蓝扦插生长特性的影响[J]. 北方园艺, 2023(22): 100-107.WEN DM, LI DD, WANG JW, SUN RX, GUO BL, WU NS. Effects of different substrates on the growth characteristics of long stemmed Gynostemma longipes cutting[J]. Northern Horticulture, 2023(22): 100-107 (in Chinese).
    [5] 庞敏. 药用植物绞股蓝种质资源研究[D]. 西安: 陕西师范大学硕士学位论文, 2006.PANG M. Study on germplasm resources of medicinal plant Gynostemma pentaphyllum[D]. Xi’an: Master’s Thesis of Shaanxi Normal University, 2006 (in Chinese).
    [6] 张蒙蒙, 郑伟, 张洁, 高琳, 刘雪峰, 罗定强, 郭宝林, 马百平. 药用绞股蓝主产区药材的定性分析[J]. 中国中药杂志, 2021, 46(4): 951-965.ZHANG MM, ZHENG W, ZHANG J, GAO L, LIU XF, LUO DQ, GUO BL, MA BP. Qualitative analysis of Gynostemma longipes for medicinal usage[J]. China Journal of Chinese Materia Medica, 2021, 46(4): 951-965 (in Chinese).
    [7] 黄璐琦, 张瑞贤. “道地药材”的生物学探讨[J]. 中国药学杂志, 1997, 32(9): 53-56.HUANG LQ, ZHANG RX. Discussion on biology of “authentic medicinal materials” [J]. Chinese Pharmaceutical Journal, 1997, 32(9): 53-56 (in Chinese).
    [8] 焦红红, 黄璐琦, 袁媛. “人参的优形”及其遗传与环境互作机制研究进展[J]. 中国中药杂志, 2023, 48(12): 3125-3131.JIAO HH, HUANG LQ, YUAN Y. Excellent appearance of Dao-di Ginseng Radix et Rhizoma and interaction mechanism between genetic and environmental factors: a review[J]. China Journal of Chinese Materia Medica, 2023, 48(12): 3125-3131 (in Chinese).
    [9] LV JY, YANG SY, ZHOU W, LIU ZW, TAN JF, WEI M. Microbial regulation of plant secondary metabolites: Impact, mechanisms and prospects[J]. Microbiological Research, 2024, 283: 127688.
    [10] SU JM, WANG YY, BAI M, PENG TH, LI HS, XU HJ, GUO GF, BAI HY, RONG N, SAHU SK, HE HJ, LIANG XX, JIN CZ, LIU W, STRUBE ML, GRAM L, LI YT, WANG ET, LIU H, WU H. Soil conditions and the plant microbiome boost the accumulation of monoterpenes in the fruit of Citrus reticulata ‘Chachi’[J]. Microbiome, 2023, 11(1): 61.
    [11] 曹麟, 王宇龙, 卜俊文, 宋天骄, 刘玉涛, 韦小敏, 林雁冰. 微生物菌剂对绞股蓝药效成分及根际细菌群落的影响[J]. 微生物学报, 2024, 64(7): 2323-2336.CAO L, WANG YL, BU JW, SONG TJ, LIU YT, WEI XM, LIN YB. Effects of microbial agents on the active constituents and rhizosphere bacterial community of Gynostemma pentaphyllum[J]. Acta Microbiologica Sinica, 2024, 64(7): 2323-2336 (in Chinese).
    [12] 李瑜, 覃剑锋, 刘运华, 孙莹莹, 唐晓东. 一种绞股蓝根结线虫的研究初报[J]. 中国农学通报, 2022, 38(22): 110-114.LI Y, QIN JF, LIU YH, SUN YY, TANG XD. A preliminary study on root knot nematode of Gynostemma pentaphyllum[J]. Chinese Agricultural Science Bulletin, 2022, 38(22): 110-114 (in Chinese).
    [13] 孔亚丽, 秦华, 朱春权, 田文昊, 朱晓芳, 虞轶俊, 张均华. 土壤微生物影响土壤健康的作用机制研究进展[J]. 土壤学报, 2024, 61(2): 331-347.KONG YL, QIN H, ZHU CQ, TIAN WH, ZHU XF, YU YJ, ZHANG JH. Research progress on the mechanism by which soil microorganisms affect soil health[J]. Acta Pedologica Sinica, 2024, 61(2): 331-347 (in Chinese).
    [14] 贺纪正, 张丽梅. 土壤氮素转化的关键微生物过程及机制[J]. 微生物学通报, 2013, 40(1): 98-108.HE JZ, ZHANG LM. Key processes and microbial mechanisms of soil nitrogen transformation[J]. Microbiology China, 2013, 40(1): 98-108 (in Chinese).
    [15] WANG GW, JIN ZX, GEORGE TS, FENG G, ZHANG L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover[J]. The New Phytologist, 2023, 238(6): 2578-2593.
    [16] 中华人民共和国农业部. 土壤pH的测定: NY/T 1377—2007[S]. 北京: 中国标准出版社, 2007.Ministry of Agriculture of the People’s Republic of China. Determination of soil pH: NY/T 1377—2007[S]. Beijing: Standards Press of China, 2007 (in Chinese).
    [17] 国家林业局. 森林土壤磷的测定: LY/T 1232—2015[S]. 北京: 中国标准出版社, 2015.State Forestry Administration of the People’s Republic of China. Determination of phosphorus in forest soils: LY/T 1232—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [18] 国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2015.State Forestry Administration of the People’s Republic of China. Determination of potassium in forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [19] 中华人民共和国生态环境部. 土壤 干物质和水分的测定 重量法: HJ 613—2011[S]. 北京: 中国标准出版社, 2011.Ministry of Ecology and Environment of the People’s Republic of China. Determination of soil dry matter and moisture—Gravimetric method: HJ 613—2011[S]. Beijing: Standards Press of China, 2011 (in Chinese).
    [20] 中华人民共和国农业部. 土壤检测 第6部分: 土壤有机质的测定: NY/T 1121.6—2006[S]. 北京: 中国标准出版社, 2006.Ministry of Agriculture of the People’s Republic of China. Soil testing—Part 6: Determination of soil organic matter: NY/T 1121.6—2006[S]. Beijing: Standards Press of China, 2006 (in Chinese).
    [21] 国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015.State Forestry Administration of the People’s Republic of China. Determination of nitrogen in forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [22] 马学兰, 周连玉, 孙文娟, 王龙瑞, 刘钰, 马云. 青海不同区域农田作物土壤细菌多样性及群落结构分析[J]. 微生物学报, 2024, 64(4): 1142-1161.MA XL, ZHOU LY, SUN WJ, WANG LR, LIU Y, MA Y. Comparison of soil bacterial diversity and community structure in different regions of Qinghai Province[J]. Acta Microbiologica Sinica, 2024, 64(4): 1142-1161 (in Chinese).
    [23] LIU J, WAZIR Z GUL, HOU GQ, WANG GZ, RONG FX, XU YZ, LIU K, LI MY, LIU AJ, LIU HL. The dependent correlation between soil multifunctionality and bacterial community across different farmland soils[J]. Frontiers in Microbiology, 2023, 14: 1144823.
    [24] 路岳衡, 耿贵工, 王路昊, 乔枫. 青藏高原不同分布区独一味根际土壤理化性质和微生物群落特征[J/OL]. 草业科学, 2024: 1-20. (2024-09-06). https://kns.cnki.net/KCMS/detail/detail.aspx filename=CYKX20240905003&dbname=CJFD&dbcode=CJFQ.LU YH, GENG GG, WANG LH, QIAO F. Physicochemical properties and microbial community characteristics of rhizosphere soil in different distribution areas of Lamiophlomis rotate on the Qinghai-Xizang Plateau[J/OL]. Pratacultural Science, 2024: 1-20. (2024-09-06). https://kns.cnki.net/KCMS/detail/detail.aspx filename=CYKX20240905003&dbname=CJFD&dbcode=CJFQ(in Chinese).
    [25] 何柳, 曹敏敏, 鲁建兵, 郑翔, 刘胜龙, 姜姜. 浙江凤阳山不同海拔常绿阔叶林土壤微生物特征[J]. 浙江农林大学学报, 2022, 39(6): 1267-1277.HE L, CAO MM, LU JB, ZHENG X, LIU SL, JIANG J. Soil microbial characteristics of evergreen broad-leaved forest at different altitudes in Fengyang Mountain, Zhejiang Province[J]. Journal of Zhejiang A&F University, 2022, 39(6): 1267-1277 (in Chinese).
    [26] KANG YJ, WU HT, ZHANG YF, WU Q, GUAN Q, LU KL, LIN YL. Differential distribution patterns and assembly processes of soil microbial communities under contrasting vegetation types at distinctive altitudes in the Changbai Mountain[J]. Frontiers in Microbiology, 2023, 14: 1152818.
    [27] WANG F, WEI YL, YAN TZ, WANG CC, CHAO YH, JIA MY, AN LZ, SHENG HM. Sphingomonas sp. Hbc-6 alters physiological metabolism and recruits beneficial rhizosphere bacteria to improve plant growth and drought tolerance[J]. Frontiers in Plant Science, 2022, 13: 1002772.
    [28] WANG F, JIA MY, LI K, CUI YF, AN LZ, SHENG HM. Sphingomonas sp. Hbc-6 alters Arabidopsis metabolites to improve plant growth and drought resistance by manipulating the microbiome[J]. Microbiological Research, 2024, 287: 127852.
    [29] CHOI TE, LIU QM, YANG JE, SUN SY, KIM SY, YI TH, IM WT. Sphingomonas ginsenosidimutans sp. nov., with ginsenoside converting activity[J]. Journal of Microbiology, 2010, 48(6): 760-766.
    [30] 马泽刚, 黄春花, 钟辉云, 吴秀丽, 周礼仕, 刘卓. HPLC法测定8个不同产地绞股蓝中4种人参皂苷类成分的含量[J]. 食品研究与开发, 2018, 39(13): 126-130.MA ZG, HUANG CH, ZHONG HY, WU XL, ZHOU LS, LIU Z. Quantification of four ginsenoside in Gynostemma pentaphyllum (thunb) makino from eight different producing areas by HPLC[J]. Food Research and Development, 2018, 39(13): 126-130 (in Chinese).
    [31] 臧淦荣, 向文, 王莉, 周宁. 绞股蓝中黄酮类成分HPLC指纹图谱研究[J]. 浙江中医杂志, 2022, 57(12): 920-923.
    [32] 葛锦蓉, 张子仪, 张兴明, 覃桂, 李荣胜, 汪波. 绞股蓝资源分布、化学成分、检测方法及药理作用研究进展[J]. 中草药, 2025, 56(3): 1050-1063.GE JR, ZHANG ZY, ZHANG XM, QIN G, LI RS, WANG B. Research progress on resource distribution, chemical composition, detection methods and pharmacological effects of Gynostemma pentaphyllum[J]. Chinese Traditional and Herbal Drugs, 2025, 56(3): 1050-1063 (in Chinese).
    [33] 欧阳友香, 王斌, 张勇洪, 罗湘胤, 马兆成, 封海东. 不同栽培模式、加工方法对绞股蓝生产与总皂苷含量的影响研究[J]. 天津农业科学, 2023, 29(11): 19-23.OUYANG YX, WANG B, ZHANG YH, LUO XY, MA ZC, FENG HD. Effects of different cultivation modes and processing methods on the production and total saponins content of Gynostemma pentaphyllum (thunb) makino[J]. Tianjin Agricultural Sciences, 2023, 29(11): 19-23 (in Chinese).
    [34] ZHOU DY, HOU MY, LENG CY, LI RJ, XING YM, CHEN J. Deciphering the root microbiome and its relationship with active compound accumulation in medicinal Dendrobium officinale (Orchidaceae) from different regions[J]. Industrial Crops and Products, 2025, 226: 120692.
    [35] BAI X, HU XJ, LIU JJ, YU ZH, JIN J, LIU XB, WANG GH. Canonical ammonia oxidizers and comammox clade A play active roles in nitrification in a black soil at different pH and ammonium concentrations[J]. Biology and Fertility of Soils, 2024, 60(4): 471-481.
    [36] HU HW, HE JZ. Comammox: a newly discovered nitrification process in the terrestrial nitrogen cycle[J]. Journal of Soils and Sediments, 2017, 17(12): 2709-2717.
    [37] 张小琴, 尹昌, 李政, 唐旭, 李艳, 吴春艳. 长期施肥对水稻土典型氨氧化菌和全程氨氧化菌种群活性和丰度的影响[J]. 中国农业科学, 2024, 57(14): 2803-2814.ZHANG XQ, YIN C, LI Z, TANG X, LI Y, WU CY. Influences of long-term appling different fertilizers on the activities and abundances of canocial ammonia oxidizers and comammox in paddy soil[J]. Scientia Agricultura Sinica, 2024, 57(14): 2803-2814 (in Chinese).
    [38] WANG C, YU QY, JI NN, ZHENG Y, TAYLOR JW, GUO LD, GAO C. Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient[J]. Nature Communications, 2023, 14(1): 7437.
    [39] 李焕茹, 朱莹, 田纪辉, 魏锴, 陈振华, 陈利军. 碳氮添加对草地土壤有机碳氮磷含量及相关酶活性的影响[J]. 应用生态学报, 2018, 29(8): 2470-2476.LI HR, ZHU Y, TIAN JH, WEI K, CHEN ZH, CHEN LJ. Effects of carbon and nitrogen additions on soil organic C, N, P contents and their catalyzed enzyme activities in a grassland[J]. Chinese Journal of Applied Ecology, 2018, 29(8): 2470-2476 (in Chinese).
    [40] 姚佳妮, 代金霞, 刘爽, 张钧杰, 胡明珠. 宁夏荒漠草原典型灌丛根际土壤细菌群落结构与功能[J]. 生态学报, 2024, 44(20): 9285-9299.YAO JN, DAI JX, LIU S, ZHANG JJ, HU MZ. Analysis of bacterial community structure and function in rhizosphere soil of typical shrub in desert steppe of Ningxia[J]. Acta Ecologica Sinica, 2024, 44(20): 9285-9299 (in Chinese).
    [41] 程伟. 土壤有效磷含量对土壤微生物量及代谢活性的影响[D]. 长春: 吉林农业大学硕士学位论文, 2013.CHENG W. Effects of soil available phosphorus content on soil microbial biomass and metabolic activity[D]. Changchun: Master’s Thesis of Jilin Agricultural University, 2013 (in Chinese).
    [42] WU WC, WANG F, XIA AQ, ZHANG ZJ, WANG ZS, WANG K, DONG JF, LI T, WU YB, CHE RX, LI LF, NIU SL, HAO YB, WANG YF, CUI XY. Meta-analysis of the impacts of phosphorus addition on soil microbes[J]. Agriculture, Ecosystems & Environment, 2022, 340: 108180.
    [43] HUANG JS, HU B, QI KB, CHEN WJ, PANG XY, BAO WK, TIAN GL. Effects of phosphorus addition on soil microbial biomass and community composition in a subalpine spruce plantation[J]. European Journal of Soil Biology, 2016, 72: 35-41.
    [44] LI M, POMMIER T, YIN Y, WANG JN, GU SH, JOUSSET A, KEUSKAMP J, WANG HG, WEI Z, XU YC, SHEN QR, KOWALCHUK GA. Indirect reduction of Ralstonia solanacearum via pathogen helper inhibition[J]. The ISME Journal, 2022, 16(3): 868-875.
    [45] JANSSON JK, McCLURE R, EGBERT RG. Soil microbiome engineering for sustainability in a changing environment[J]. Nature Biotechnology, 2023, 41(12): 1716-1728.
    [46] 焦嘉卉, 符晓, 张硕, 刘伟, 周姣姣, 吴旭艳, 林晓榕, 田雨露, 唐光辉, 李培琴. 不同林龄花椒根际土壤理化性质与微生物群落结构的分析[J]. 西北林学院学报, 2023, 38(4): 156-165.JIAO JH, FU X, ZHANG S, LIU W, ZHOU JJ, WU XY, LIN XR, TIAN YL, TANG GH, LI PQ. Physiochemical properties and microorganism community structure of Zanthoxylum bungeanum rhizosphere soil at different ages[J]. Journal of Northwest Forestry University, 2023, 38(4): 156-165 (in Chinese).
    [47] 肖茜文, 胡盎, 吴浩, 王建军. 高海拔地区农田和森林土壤稀有细菌群落结构差异及影响因素[J/OL]. 土壤学报, 2024. https://kns.cnki.net/KCMS/detail/detail.aspx filename=TRXB20240923001&dbname=CJFD&dbcode=CJFQ.XIAO XW, HU A, WU H, WANG JJ. Differences in rare bacterial community compositions at high elevation regions and their influencing factors in farmland and forest soils[J/OL]. Acta Pedologica Sinica, 2024. https://kns.cnki.net/KCMS/detail/detail.aspx filename=TRXB20240923001&dbname=CJFD& dbcode=CJFQ(in Chinese).
    [48] YAN K, DONG YF, GONG YB, ZHU QL, WANG YP. Climatic and edaphic factors affecting soil bacterial community biodiversity in different forests of China[J]. Catena, 2021, 207: 105675.
    相似文献
    引证文献
引用本文

冷春燕,尹一飞,侯梦妍,于晶,李绕静,邢咏梅,陈娟,郭宝林. 陕西省不同种植区长梗绞股蓝土壤理化性质和根部土壤细菌群落结构分析[J]. 微生物学报, 2025, 65(6): 2463-2478

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-10
  • 在线发布日期: 2025-06-05
文章二维码