三峡水库消落区苍耳根际微生物群落结构解析
作者:
作者单位:

1.重庆交通大学 河海学院,重庆;2.中国科学院重庆绿色智能技术研究院 水库水环境重点实验室,重庆;3.中国科学院大学 重庆学院,重庆

作者简介:

周兰芳:研究方案设计、采样、样品分析、数据处理、作图、论文撰写;吴胜军:研究方案设计、数据处理、论文指导与修改;马茂华:数据分析、论文指导与修改;邹航:初稿的审阅与修订;黄金夏:采样、样品分析、数据处理;杨军:采样、样品分析、数据处理。

基金项目:

三峡后续规划研究项目(5000002021BF40001);国家自然科学基金(42371071);中国科学院先导专项A (XDA23040303)


Microbial community structure in the rhizosphere of Xanthium sibiricum in the water-level-fluctuation zone of the Three Gorges Reservoir
Author:
Affiliation:

1.School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, China;2.Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China;3.Chongqing School, University of Chinese Academy of Sciences, Chongqing, China

Fund Project:

This work was supported by the Scientific Research Project from Chongqing Water Resources Bureau (5000002021BF40001), the National Natural Science Foundation of China (42371071), and the Leading Special Project A of Chinese Academy of Sciences (XDA23040303).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 揭示三峡水库消落区典型优势植物苍耳(Xanthium sibiricum)根际微生物群落结构特征,阐明其与土壤质量的关系。方法 在三峡库区腹心所在地云阳县典型消落区采集不同水淹胁迫强度下的苍耳根际土壤,随后进行高通量测序、微生物多样性分析、群落结构解析和冗余分析。结果 在水淹胁迫强(XaRLL)和低(XaRHL)区域中,变形菌门(Proteobacteria)是苍耳根际细菌群落中共同的最优势细菌门,最优势的真菌门则分别为子囊菌门(Ascomycota)和担子菌门(Basidiomycota)。无论是细菌还是真菌,线性判别分析(linear discriminant analysis effect size, LEfSe)结果显示,XaRLL的关键生物标志物总是多于XaRHL。功能预测分析发现,与有氧呼吸相关的PWY-3781是XaRLL和XaRHL二者共同富集的优势代谢途径。整体而言,苍耳根际微生物群落对土壤的理化性质和酶活的变化反应强烈。结论 本研究为理解水库消落区植物与其根际微生物的关系,以及它们对强烈水淹胁迫逆境的适应性提供了理论基础。

    Abstract:

    Objective To understand the microbial community structure and its relationship with soil quality in the rhizosphere of the dominant plant Xanthium sibiricum in the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir.Methods We collected the rhizosphere soil samples of X. sibiricum exposed to different flooding stress conditions in a typical WLFZ in Yunyang County, the heart of the Three Gorges Reservoir area. High-throughput sequencing was carried out to analyze the microbial diversity and community structure, and the redundancy analysis was then conducted.Results Proteobacteria was the dominant bacterial phylum in the rhizosphere bacteria of X. sibiricum under strong flooding stress (XaRLL) and weak flooding stress (XaRHL), while Ascomycota and Basidiomycota were the dominant fungal phyla in the two types of soil, respectively. Regardless of bacteria or fungi, the linear discriminant analysis effect size (LEfSe) showed that XaRLL always had more key biomarkers than XaRHL. Functional prediction revealed that PWY-3781 associated with aerobic respiration was a dominant metabolic pathway enriched by microorganisms from both XaRLL and XaRHL. Overall, the bacteria and fungi in the rhizosphere of X. sibiricum had strong responses to changes in soil physicochemical properties and enzyme activity.Conclusion The results provide a theoretical basis for understanding the relationship between plants and their rhizosphere microorganisms in the WLFZ, as well as their adaptability to strong flooding stress.

    参考文献
    [1] 孙小祥, 易雪梅, 黄远洋, 陈姗姗, 马茂华, 吴胜军. 三峡库区消落带四种主要植物叶片功能性状分异特征[J]. 三峡生态环境监测, 2021, 6(4): 1-10.SUN XX, YI XM, HUANG YY, CHEN SS, MA MH, WU SJ. Variation features of plant leaf functional traits for four main species in the hydro-fluctuation zone of Three Gorges Reservoir[J]. Ecology and Environmental Monitoring of Three Gorges, 2021, 6(4): 1-10 (in Chinese).
    [2] 张乐满, 兰波, 张东升, 刘英杰, 张丽红, 许文锋, 段晨辉, 敦静怡, 刘正学. 三峡水库涪陵-奉节段消落带优势草本植物生态位与种间联结性研究[J]. 生态学报, 2022, 42(8): 3228-3240.ZHANG LM, LAN B, ZHANG DS, LIU YJ, ZHANG LH, XU WF, DUAN CH, DUN JY, LIU ZX. Niche and interspecific association of dominant herbaceous plants in the water-level-fluctuating zone of Fuling-Fengjie section of the Three Gorges Reservoir[J]. Acta Ecologica Sinica, 2022, 42(8): 3228-3240 (in Chinese).
    [3] 饶洁, 唐强, 冯韫, 韦杰, 贺秀斌. 三峡水库消落带生境特征与植被恢复模式[J]. 水土保持学报, 2024, 38(1): 310-318.RAO J, TANG Q, FENG Y, WEI J, HE XB. Habitat condition and vegetation restoration patterns in the water level fluctuation zone of the Three Gorges Reservoir[J]. Journal of Soil and Water Conservation, 2024, 38(1): 310-318 (in Chinese).
    [4] 禹妍彤, 鲍玉海, 吕佼容, 谢航宇, 张浩哲, 贺秀斌. 三峡水库消落带不同水位高程土壤碳氮磷生态化学计量学特征[J]. 长江流域资源与环境, 2023, 32(12): 2558-2567.YU YT, BAO YH, LV JR, XIE HY, ZHANG HZ, HE XB. Ecological stoichiometric characteristics of soil carbon, nitrogen and phosphorus at different elevations in water level fluctuation zone of Three Gorges Reservoir[J]. Resources and Environment in the Yangtze Basin, 2023, 32(12): 2558-2567 (in Chinese).
    [5] 曾文, 李强, 马毅楠, 马荣, 张晓霞, 李世贵, 魏海雷, 谷医林. 北京草莓种植区土壤微生物群落结构解析[J]. 生物资源, 2024, 46(1): 1-10.ZENG W, LI Q, MA YN, MA R, ZHANG XX, LI SG, WEI HL, GU YL. Analysis of soil microbial community structure in strawberry planting areas in Beijing[J]. Biotic Resources, 2024, 46(1): 1-10 (in Chinese).
    [6] 刘京伟, 李香真, 姚敏杰. 植物根际微生物群落构建的研究进展[J]. 微生物学报, 2021, 61(2): 231-248.LIU JW, LI XZ, YAO MJ. Research progress on assembly of plant rhizosphere microbial community[J]. Acta Microbiologica Sinica, 2021, 61(2): 231-248 (in Chinese).
    [7] ZUO JJ, ZU MT, LIU L, SONG XM, YUAN YD. Composition and diversity of bacterial communities in the rhizosphere of the Chinese medicinal herb Dendrobium[J]. BMC Plant Biology, 2021, 21(1): 127.
    [8] SOHN SI, AHN JH, PANDIAN S, OH YJ, SHIN EK, KANG HJ, CHO WS, CHO YS, SHIN KS. Dynamics of bacterial community structure in the rhizosphere and root nodule of soybean: impacts of growth stages and varieties[J]. International Journal of Molecular Sciences, 2021, 22(11): 5577.
    [9] CASTRILLO G, TEIXEIRA PJPL, PAREDES SH, LAW TF, de LORENZO L, FELTCHER ME, FINKEL OM, BREAKFIELD NW, MIECZKOWSKI P, JONES CD, PAZ-ARES J, DANGL JL. Root microbiota drive direct integration of phosphate stress and immunity[J]. Nature, 2017, 543(7646): 513-518.
    [10] FITZPATRICK CR, COPELAND J, WANG PW, GUTTMAN DS, KOTANEN PM, JOHNSON MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): E1157-E1165.
    [11] XU TS, JIANG WL, QIN DD, LIU TG, ZHANG JM, CHEN WQ, GAO L. Characterization of the microbial communities in wheat tissues and rhizosphere soil caused by dwarf bunt of wheat[J]. Scientific Reports, 2021, 11(1): 5773.
    [12] LI J, LUO ZQ, ZHANG CH, QU XJ, CHEN M, SONG T, YUAN J. Seasonal variation in the rhizosphere and non-rhizosphere microbial community structures and functions of Camellia yuhsienensis hu[J]. Microorganisms, 2020, 8(9): 1385.
    [13] 谭雪, 董智, 张丽苗, 袁中勋, 李昌晓. 三峡库区消落带3种人工种植植物土壤理化性质、酶活性及细菌多样性季节变化特征[J]. 重庆师范大学学报(自然科学版), 2023, 40(4): 59-69.TAN X, DONG Z, ZHANG LM, YUAN ZX, LI CX. Seasonal dynamics of soil physicochemical properties, enzyme activity and bacterial diversity of three re-vegetation species in the riparian zone of the Three Gorges Reservoir area[J]. Journal of Chongqing Normal University (Natural Science), 2023, 40(4): 59-69 (in Chinese).
    [14] XU DL, YU XW, YANG JB, ZHAO XP, BAO YY. High-throughput sequencing reveals the diversity and community structure in rhizosphere soils of three endangered plants in western Ordos, China[J]. Current Microbiology, 2020, 77(10): 2713-2723.
    [15] SHEN QQ, YANG JY, SU DF, LI ZY, XIAO W, WANG YX, CUI XL. Comparative analysis of fungal diversity in rhizospheric soil from wild and reintroduced Magnolia sinica estimated via high-throughput sequencing[J]. Plants, 2020, 9(5): 600.
    [16] 葛应兰, 孙廷. 马铃薯根际与非根际土壤微生物群落结构及多样性特征[J]. 生态环境学报, 2020, 29(1): 141-148.GE YL, SUN T. Soil microbial community structure and diversity of potato in rhizosphere and non-rhizosphere soil[J]. Ecology and Environmental Sciences, 2020, 29(1): 141-148 (in Chinese).
    [17] SONG Q, SONG XS, DENG X, LUO JY, WANG JK, MIN K, SONG RQ. Effects of plant growth promoting Rhizobacteria microbial on the growth, rhizosphere soil properties, and bacterial community of Pinus sylvestris var. mongolica seedlings[J]. Scandinavian Journal of Forest Research, 2021, 36(4): 249-262.
    [18] 中华人民共和国农业部. 土壤检测 第2部分: 土壤pH的测定: NY/T 1121.2—2006[S]. 北京: 中国农业出版社, 2006.Ministry of Agriculture of the People’s Republic of China. Soil testing Part 2: Method for determination of soil pH: NY/T 1121.2—2006[S]. Beijing: China Agriculture Press, 2006 (in Chinese).
    [19] 国家林业局. 森林土壤氮的测定: LY/T 1228—2015[S]. 北京: 中国标准出版社, 2015.State Forestry Administration of the People’s Republic of China. Nitrogen determination methods of forest soils: LY/T 1228—2015[S]. Beijing: Standards Press of China, 2015 (in Chinese).
    [20] 国家林业局. 森林土壤水解性氮的测定: LY/T 1229—1999[S]. 1999.National Forestry Administration. Determination of hydrolyzable nitrogen in forest soil: LY/T 1229—1999[S]. 2019 (in Chinese).
    [21] 中华人民共和国农业部. 土壤检测 第7部分: 土壤有效磷的测定: NY/T 1121.7—2014[S]. 北京: 中国农业出版社, 2006.Ministry of Agriculture of the People’s Republic of China. Soil testing Part 7: Method for determination of available phosphorus in soil: NY/T 1121.7—2014[S]. Beijing: China Agriculture Press, 2006 (in Chinese).
    [22] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000.BAO SD. Soil agrochemical analysis [M]. 3rd ed. Beijing: China Agriculture Press, 2000 (in Chinese).
    [23] 中华人民共和国环境保护部. 土壤 电导率的测定 电极法: HJ 802—2016[S]. 北京: 中国环境科学出版社, 2016.Ministry of Environmental Protection of the People’s Republic of China. Soil quality—Determination of conductivity- Electrode method: HJ 802—2016[S]. Beijing: China Environmental Science Press, 2016 (in Chinese).
    [24] 周兰芳, 吴胜军, 马茂华. 白鹤滩水库消落带优势植物银胶菊根际微生物群落组成、多样性及潜在代谢功能分析[J]. 昆明理工大学学报(自然科学版), 2023, 48(6): 112-122.ZHOU LF, WU SJ, MA MH. Composition, diversity, and potential metabolic function analysis of rhizosphere microbial community of the dominant plant Parthenium hysterophorus L. in the water-level-fluctuation zone of Baihetan Reservoir[J]. Journal of Kunming University of Science and Technology (Natural Science), 2023, 48(6): 112-122 (in Chinese).
    [25] DOUGLAS GM, MAFFEI VJ, ZANEVELD JR, YURGEL SN, BROWN JR, TAYLOR CM, HUTTENHOWER C, LANGILLE MGI. PICRUSt2 for prediction of metagenome functions[J]. Nature Biotechnology, 2020, 38(6): 685-688.
    [26] CASPI R, BILLINGTON R, KESELER IM, KOTHARI A, KRUMMENACKER M, MIDFORD PE, ONG WK, PALEY S, SUBHRAVETI P, KARP PD. The MetaCyc database of metabolic pathways and enzymes: a 2019 update[J]. Nucleic Acids Research, 2020, 48(D1): D445-D453.
    [27] GUPTA RS. The phylogeny of proteobacteria: relationships to other eubacterial Phyla and eukaryotes[J]. FEMS Microbiology Reviews, 2000, 24(4): 367-402.
    [28] LUNDBERG DS, LEBEIS SL, PAREDES SH, YOURSTONE S, GEHRING J, MALFATTI S, TREMBLAY J, ENGELBREKTSON A, KUNIN V, del RIO TG, EDGAR RC, EICKHORST T, LEY RE, HUGENHOLTZ P, TRINGE SG, DANGL JL. Defining the core Arabidopsis thaliana root microbiome[J]. Nature, 2012, 488(7409): 86-90.
    [29] HUANG YH. Comparison of rhizosphere and endophytic microbial communities of Chinese leek through high-throughput 16S rRNA gene Illumina sequencing[J]. Journal of Integrative Agriculture, 2018, 17(2): 359-367.
    [30] SONG Z, ZHANG RH, FU WD, ZHANG T, YAN J, ZHANG GL. High-throughput sequencing reveals bacterial community composition in the rhizosphere of the invasive plant Flaveria bidentis[J]. Weed Research, 2017, 57(3): 204-211.
    [31] LING N, WANG TT, KUZYAKOV Y. Rhizosphere bacteriome structure and functions[J]. Nature Communications, 2022, 13(1): 836.
    [32] MANICI LM, CAPUTO F, de SABATA D, FORNASIER F. The enzyme patterns of Ascomycota and Basidiomycota fungi reveal their different functions in soil[J]. Applied Soil Ecology, 2024, 196: 105323.
    [33] GQOZO MP, BILL M, SIYOUM N, LABUSCHAGNE N, KORSTEN L. Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa[J]. Applied Soil Ecology, 2020, 151: 103543.
    [34] TAN Y, CUI YS, LI HY, KUANG AX, LI XR, WEI YL, JI XL. Rhizospheric soil and root endogenous fungal diversity and composition in response to continuous Panax notoginseng cropping practices[J]. Microbiological Research, 2017, 194: 10-19.
    [35] FRANKE-WHITTLE IH, MANICI LM, INSAM H, STRES B. Rhizosphere bacteria and fungi associated with plant growth in soils of three replanted apple orchards[J]. Plant and Soil, 2015, 395(1): 317-333.
    [36] HUANG K, JIANG QP, LIU LH, ZHANG ST, LIU CL, CHEN HT, DING W, ZHANG YQ. Exploring the key microbial changes in the rhizosphere that affect the occurrence of tobacco root-knot nematodes[J]. AMB Express, 2020, 10(1): 72.
    [37] LEI HY, LIU AK, HOU QW, ZHAO QS, GUO J, WANG ZJ. Diversity patterns of soil microbial communities in the Sophora flavescens rhizosphere in response to continuous monocropping[J]. BMC Microbiology, 2020, 20(1): 272.
    [38] NAN J, CHAO LM, MA XD, XU DL, MO L, ZHANG XD, ZHAO XP, BAO YY. Microbial diversity in the rhizosphere soils of three Stipa species from the eastern Inner Mongolian grasslands[J]. Global Ecology and Conservation, 2020, 22: e00992.
    [39] LIU JP, TANG YJ, BAO JS, WANG HK, PENG FR, TAN PP, CHU GL, LIU S. A stronger rhizosphere impact on the fungal communities compared to the bacterial communities in pecan plantations[J]. Frontiers in Microbiology, 2022, 13: 899801.
    [40] 郭芝芝, 苏振华, 邸琰茗, 郭逍宇. 北运河京津冀段河道浮游微生物群落多样性变化分析[J]. 环境科学, 2022, 43(2): 803-812.GUO ZZ, SU ZH, DI YM, GUO XY. Analysis on diversity of plankton microbial community in the Beijing-Tianjin-Hebei section of the north canal river[J]. Environmental Science, 2022, 43(2): 803-812 (in Chinese).
    [41] CHAO A, CHIU C. Species Richness: Estimation and Comparison[M]. Hoboken: John Wiley & Sons, Ltd., 2016
    [42] FAITH DP, RICHARDS ZT. Climate change impacts on the tree of life: changes in phylogenetic diversity illustrated for Acropora corals[J]. Biology, 2012, 1(3): 906-932.
    [43] 李鹏洋, 安启睿, 王新皓, 孙思宇, 李肖乾, 郑娜. 辽河四平段流域河流沉积物微生物群落多样性和结构分析[J]. 环境科学, 2022, 43(5): 2586-2594.LI PY, AN QR, WANG XH, SUN SY, LI XQ, ZHENG N. Analysis on diversity and structure of microbial community in river sediment of Siping section of Liaohe River[J]. Environmental Science, 2022, 43(5): 2586-2594 (in Chinese).
    [44] ZHOU LF, WU SJ, MA MH. First insights into diversity and potential metabolic pathways of bacterial and fungal communities in the rhizosphere of Argemonemexicana L. (Papaveraceae) from the water-level-fluctuation zone of Wudongde Reservoir of the Upper Yangtze River, China[J]. Biodiversity Data Journal, 2023, 11: e101950.
    [45] LIU Q, CHANG FQ, XIE P, ZHANG Y, DUAN LZ, LI HY, ZHANG XN, ZHANG Y, LI DL, ZHANG HC. Microbiota assembly patterns and diversity of nine plateau lakes in Yunnan, Southwestern China[J]. Chemosphere, 2023, 314: 137700.
    [46] ANTóNIO CBS, OBIEZE C, JACINTO J, MAQUIA ISA, MASSAD T, RAMALHO JC, RIBEIRO NS, MáGUAS C, MARQUES I, RIBEIRO-BARROS AI. Linking bacterial rhizosphere communities of two pioneer species, Brachystegia boehmii and B. spiciformis, to the ecological processes of miombo woodlands[J]. Forests, 2022, 13(11): 1840.
    [47] WAN WJ, TAN JD, WANG Y, QIN Y, HE HM, WU HQ, ZUO WL, HE DL. Responses of the rhizosphere bacterial community in acidic crop soil to pH: changes in diversity, composition, interaction, and function[J]. Science of the Total Environment, 2020, 700: 134418.
    [48] LIU AL, LI YX, WANG QQ, ZHANG XR, XIONG J, LI Y, LEI YH, SUN YF. Analysis of microbial diversity and community structure of rhizosphere soil of Cistanche salsa from different host plants[J]. Frontiers in Microbiology, 2022, 13: 971228.
    [49] CHEN DQ, SUN WH, XIANG S, ZOU SQ. High-throughput sequencing analysis of the composition and diversity of the bacterial community in Cinnamomum camphora soil[J]. Microorganisms, 2021, 10(1): 72.
    [50] LóPEZ-LOZANO NE, ECHEVERRíA MOLINAR A, ORTIZ DURáN EA, HERNáNDEZ ROSALES M, SOUZA V. Bacterial diversity and interaction networks of Agave lechuguilla rhizosphere differ significantly from bulk soil in the oligotrophic basin of cuatro cienegas[J]. Frontiers in Plant Science, 2020, 11: 1028.
    [51] SHI HN, YANG JL, LI Q, PINCHU CE, SONG ZH, YANG HL, LUO Y, LIU CL, FAN W. Diversity and correlation analysis of different root exudates on the regulation of microbial structure and function in soil planted with Panax notoginseng[J]. Frontiers in Microbiology, 2023, 14: 1282689.
    [52] LI YY, DANG HL, LV XH, WANG ZK, PU XZ, ZHUANG L. High-throughput sequencing reveals rhizosphere fungal community composition and diversity at different growth stages of Populus euphratica in the lower reaches of the Tarim River[J]. PeerJ, 2022, 10: e13552.
    [53] LI Y, NIE C, LIU YH, DU W, HE P. Soil microbial community composition closely associates with specific enzyme activities and soil carbon chemistry in a long-term nitrogen fertilized grassland[J]. Science of the Total Environment, 2019, 654: 264-274.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周兰芳,吴胜军,马茂华,邹航,黄金夏,杨军. 三峡水库消落区苍耳根际微生物群落结构解析[J]. 微生物学报, 2025, 65(2): 582-596

复制
分享
文章指标
  • 点击次数:133
  • 下载次数: 205
  • HTML阅读次数: 107
  • 引用次数: 0
历史
  • 收稿日期:2024-09-19
  • 在线发布日期: 2025-02-18
文章二维码