排水洗盐对滨海盐碱地土壤性质和微生物群落多样性的影响
作者:
作者单位:

1.江苏省海洋地质调查院,自然资源部滨海盐碱地生态改良与可持续利用工程技术创新中心,江苏 南京;2.中国矿业大学 化工学院,煤炭加工与清洁利用教育部重点实验室,江苏 徐州;3.江苏徐淮地区徐州农业科学研究所,江苏 徐州

作者简介:

程瑜:样品采集,实验安排、调查,初稿撰写;白婷:数据分析,图片绘制,初稿撰写;胡建:数据管理、调查;杨晋炜:数据处理;刘强:数据收集;葛云:数据处理;肖昕:论文修改;周志林:论文修改;何环:论文思想、框架指导,撰写与修改。

基金项目:

国家重点研发计划(2023YFF1306003);2023年度江苏省矿地融合试点项目(苏财资环[2023]29号)


Drainage for decreasing salt affects the soil properties and microbial community diversity in coastal saline-alkali land
Author:
Affiliation:

1.Coastal Saline-alkali Land Ecological Rehabilitation and Sustainable Utilization Technology Innovation Center, Ministry of Natural Resources, Marine Geological Survey of Jiangsu Province, Nanjing, Jiangsu, China;2.Key Laboratory of Coal Processing and Clean Utilization, Ministry of Education, School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China;3.Xuzhou Academy of Agricultural Sciences, Xuzhou, Jiangsu, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2023YFF1306003) and the Pilot Project of Mine-land Integration in Jiangsu Province in 2023 (Sucai Zihuan [2023] No.29).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [56]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 研究排水对滨海盐碱地土壤性质和微生物群落特征的影响。方法 以江苏南通滨海盐碱地排水洗盐前后的土壤为研究对象,通过一系列土壤物化性质表征和高通量测序方法,对土壤酸碱度、氮磷钾营养元素、生物酶活性以及土壤微生物群落结构进行分析,并采用生物信息学分析方法,剖析微生物群落结构特征与土壤物化性质的关联性以及可能的厌氧代谢过程。结果 排水洗盐明显降低了土壤的pH和电导率(electrical conductivity, EC),但也一定程度上造成了土壤中营养成分的流失。洗盐后土壤中蔗糖酶、过氧化物酶活性以及真菌的物种丰富度和物种多样性有所升高,但细菌和古菌的物种丰富度和物种多样性降低。相关分析表明微生物群落结构与土壤电导率和钾元素含量呈显著正相关性,与土壤过氧化氢酶活性和土壤蔗糖酶活性呈显著负相关性。冗余分析和功能预测发现,真菌和古菌与电导率(EC)显著相关,而古菌可能通过对盐度的适应改变其群落结构。结论 排水洗盐降低了土壤中的盐度和pH,对土壤性质和微生物群落结构造成了影响。

    Abstract:

    Objective To study the effects of drainage on the soil properties and microbial community characteristics in coastal saline-alkali land.Methods Soil samples were collected before and after drainage for decreasing salt from the coastal saline-alkali land in Nantong, Jiangsu. The soil pH, nutrient elements (nitrogen, phosphorus, and potassium), enzyme activity, and microbial community structure were analyzed by soil physical and chemical property characterization and high-throughput sequencing. Bioinformatic analysis was conducted to study the correlations between microbial community structure characteristics and soil physical and chemical properties and the possible anaerobic metabolic process.Results Drainage for decreasing salt significantly reduced the soil pH and electrical conductivity (EC), while causing the losses of nutrients in the soil to a certain extent. After drainage, the activities of sucrase and peroxidase and the richness and diversity of fungi in the soil increased to a certain extent, while the richness and diversity of bacteria and archaea decreased. Principal component analysis showed that microbial community structure had significantly positive correlations with soil EC and potassium content, while it had significantly negative correlations with catalase and sucrase activities in the soil. Redundancy analysis and functional prediction showed that fungi and archaea were significantly correlated with EC, while archaea may change the community structure by adapting to salinity.Conclusion Drainage for decreasing salt reduced the salinity and pH in the soil, which affected the soil properties and microbial community structure.

    参考文献
    [1] 杜滢鑫, 谢宝明, 蔡洪生, 唐璐, 郭长虹. 大庆盐碱地九种植物根际土壤微生物群落结构及功能多样性[J]. 生态学报, 2016, 36(3): 740-747.DU YX, XIE BM, CAI HS, TANG L, GUO CH. Structural and functional diversity of rhizosphere microbial community of nine plant species in the Daqing saline-alkali soil region[J]. Acta Ecologica Sinica, 2016, 36(3): 740-747 (in Chinese).
    [2] COBAN O, de DEYN GB, van der PLOEG M. Soil microbiota as game-changers in restoration of degraded lands[J]. Science, 2022, 375(6584): abe0725.
    [3] CHOUDHARY M, JAT HS, MUKHOPADHYAY R, KAKRALIYA M, POONIA T, PHOGAT A, DIXIT B, KUMAR R, ARORA S, YADAV RK, KRISHNAMURTHY SL, SHARMA PC. Functional diversity and behavioral changes of microbial communities under salt affected soils[J]. Applied Soil Ecology, 2023, 190: 105017.
    [4] 陈瑞蕊, 张建伟, 董洋, 林先贵, 冯有智. 盐度对滨海土壤细菌多样性和群落构建过程的影响[J]. 应用生态学报, 2021, 32(5): 1816-1824.CHEN RR, ZHANG JW, DONG Y, LIN XG, FENG YZ. Effects of salinity on soil bacterial diversity and assembly processes in coastal soils[J]. Chinese Journal of Applied Ecology, 2021, 32(5): 1816-1824 (in Chinese).
    [5] ASKRI B, KHODMI S, BOUHLILA R. Impact of subsurface drainage system on waterlogged and saline soils in a Saharan palm grove[J]. Catena, 2022, 212: 106070.
    [6] 林耀奔, 杨建辉, 叶艳妹. 盐碱地不同土地利用方式下土壤细菌群落结构多样性差异分析[J]. 环境科学学报, 2019, 39(4): 1266-1273.LIN YB, YANG JH, YE YM. Analysis on diversity of soil bacterial community under different land use patterns in saline-alkali land[J]. Acta Scientiae Circumstantiae, 2019, 39(4): 1266-1273 (in Chinese).
    [7] 赵英, 王丽, 赵惠丽, 陈小兵. 滨海盐碱地改良研究现状及展望[J]. 中国农学通报, 2022, 38(3): 67-74.ZHAO Y, WANG L, ZHAO HL, CHEN XB. Research status and prospects of saline-alkali land amelioration in the coastal region of China[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 67-74 (in Chinese).
    [8] LI J. Research status of different improvement measures for saline-alkali land[J]. E3S Web of Conferences, 2022, 338: 01038.
    [9] 孙卿. 盐碱土壤改良措施与效益分析[J]. 农业与技术, 2022, 42(15): 78-81.SUN Q. Improvement measures and benefit analysis of saline-alkali soil[J]. Agriculture and Technology, 2022, 42(15): 78-81 (in Chinese).
    [10] CHEN WW, LIU Z. Research progress on improvement of saline alkali soil[J]. Frontiers in Science and Engineering, 2023, 3(3): 36-42.
    [11] 谭海霞, 彭红丽, 葛振宇, 王连龙, 徐延平, 李丽艳. 盐碱土壤修复菌剂对耐盐蒲公英根际土壤微生物群落多样性的影响[J]. 农业生物技术学报, 2023, 31(1): 156-164.TAN HX, PENG HL, GE ZY, WANG LL, XU YP, LI LY. Effects of salt-alkali soil remediation agents on microbial community diversity in salt-tolerant dandelion (Taraxacum mongolicum) rhizosphere soil[J]. Journal of Agricultural Biotechnology, 2023, 31(1): 156-164 (in Chinese).
    [12] 张京磊, 王国良, 吴波, 贾春林, 张进红, 周圆, 马冰. 滨海盐碱地苜蓿-小黑麦轮作对土壤细菌和真菌群落多样性与网络结构的影响[J]. 生态环境学报, 2024, 33(7): 1048-1062.ZHANG JL, WANG GL, WU B, JIA CL, ZHANG JH, ZHOU Y, MA B. The effects of alfalfa-Triticale rotation on soil bacterial and fungal community diversity and co-occurrence network in coastal saline-alkaline soil[J]. Ecology and Environmental Sciences, 2024, 33(7): 1048-1062 (in Chinese).
    [13] 李硕, 吴振超, 康杰, 葛菁萍. 土壤微生物群落组装策略在改良盐碱化土壤中的应用研究[J]. 黑龙江大学自然科学学报, 2024, 41(5): 505-512.LI S, WU ZC, KANG J, GE JP. Application of soil microbial community assembly strategy in improving saline-alkali soil [J]. Journal of Natural Science of Heilongjiang University, 2024, 41(5): 505-512 (in Chinese).
    [14] LIU RN, LIANG BJ, ZHAO HL, ZHAO Y. Impacts of various amendments on the microbial communities and soil organic carbon of coastal saline-alkali soil in the Yellow River Delta[J]. Frontiers in Microbiology, 2023, 14: 1239855.
    [15] HUANG ZC, BIAN FY, WANG ZG, ZHU JR, ZHANG XP, WANG J, GAI X, ZHONG ZK. Microorganisms facilitated the saline-alkali soil remediation by biochar: soil properties, microbial communities, and plant responses[J]. Land Degradation & Development, 2024, 35(11): 3567-3578.
    [16] 章二子, 陈竞楠, 黄艳, 田颖, 金秋, 侯毛毛. 不同暗管间距与生物有机肥施用对盐碱地N2O排放的影响研究[J]. 节水灌溉, 2025(2): 15-20, 27.ZHANG EZ, CHEN JN, HUANG Y, TIAN Y, JIN Q, HOU MM. Effects of different subsurface pipe spacing and bio-organic fertilizer application on N2O emissions from saline-alkali land[J]. Water-Saving Irrigation, 2025(2): 15-20, 27 (in Chinese).
    [17] 田雨雨, 李东伟, 曲子良, 荆锐, 赵青青, 周新国. 生物炭协同暗管排水对滨海盐碱土壤微生物群落的影响[J]. 灌溉排水学报, 2024, 43(4): 82-89.TIAN YY, LI DW, QU ZL, JING R, ZHAO QQ, ZHOU XG. Effect of biochar amendment and subsurface drainage on microbial communities in saline coastal soils[J]. Journal of Irrigation and Drainage, 2024, 43(4): 82-89 (in Chinese).
    [18] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000, 30-297.BAO SD. Soil and Agricultural Chemistry Analysis[M]. 3rd edition. Beijing: China Agriculture Press, 2000, 30-297 (in Chinese).
    [19] 国家林业局. 森林土壤钾的测定: LY/T 1234—2015[S]. 北京: 中国标准出版社, 2016.State Forestry Administration of the People’s Republic of China. Potassium determination methods of forest soils: LY/T 1234—2015[S]. Beijing: Standards Press of China, 2016 (in Chinese).
    [20] ZHANG WT, MO QY, HUANG ZX, SABAR MA, MEDUNI? G, IVO?EVI? T, HE H, URYNOWICZ M, LIU FJ, GUO HG, HAIDER R, MI ALI, JAMAL A. Contaminants from a former Croatian coal sludge dictate the structure of microbiota in the estuarine (Ra?a Bay) sediment and soil[J]. Frontiers in Microbiology, 2023, 14: 1126612.
    [21] YANG DH, TANG L, CUI Y, CHEN JX, LIU L, GUO CH. Saline-alkali stress reduces soil bacterial community diversity and soil enzyme activities[J]. Ecotoxicology, 2022, 31(9): 1356-1368.
    [22] 解雪峰, 徐梓晴, 田再洋, 卜心国, 徐飞, 梁晶, 濮励杰. 不同改良物质添加对滨海盐碱地土壤重金属及酶活性的影响[J]. 环境科学, 2023, 44(10): 5649-5656.XIE XF, XU ZQ, TIAN ZY, BU XG, XU F, LIANG J, PU LJ. Effects of supplementation of different amendments on soil heavy metals and enzyme activities in coastal saline land[J]. Environmental Science, 2023, 44(10): 5649-5656 (in Chinese).
    [23] SHI SH, TIAN L, NASIR F, BAHADUR A, BATOOL A, LUO SS, YANG F, WANG ZC, TIAN CJ. Response of microbial communities and enzyme activities to amendments in saline-alkaline soils[J]. Applied Soil Ecology, 2019, 135: 16-24.
    [24] 康贻军, 胡健, 杨小兰, 沈敏, 薛菲. 盐碱地土壤微生物对不同改良方法的响应[J]. 微生物学杂志, 2008, 28(5): 102-105.KANG YJ, HU J, YANG XL, SHEN M, XUE F. Responses of saline-alkali soil microorganisms to different ameliorative methods[J]. Journal of Microbiology, 2008, 28(5): 102-105 (in Chinese).
    [25] 刘冰冰, 唐蜀昆, 明红, 何松涛, 聂国兴, 关统伟, 张利莉, 李文均. 新疆罗布泊地区可培养嗜盐古菌多样性及其功能酶筛选[J]. 微生物学报, 2011, 51(9): 1222-1231.LIU BB, TANG SK, MING H, HE ST, NIE GX, GUAN TW, ZHANG LL, LI WJ. Biodiversity and functional enzymes of cultured halophilic archaeon in Lop Nur region[J]. Acta Microbiologica Sinica, 2011, 51(9): 1222-1231 (in Chinese).
    [26] 戴良香, 徐扬, 张冠初, 史晓龙, 秦斐斐, 丁红, 张智猛. 花生根际土壤细菌群落多样性对盐胁迫的响应[J]. 作物学报, 2021, 47(8): 1581-1592.DAI LX, XU Y, ZHANG GC, SHI XL, QIN FF, DING H, ZHANG ZM. Response of rhizosphere bacterial community diversity to salt stress in peanut[J]. Acta Agronomica Sinica, 2021, 47(8): 1581-1592 (in Chinese).
    [27] 郑志玉, 郭晓雯, 闵伟. 不同灌溉水盐度下土壤真菌群落对生物炭施用的响应[J]. 环境科学, 2024, 45(1): 520-529.ZHENG ZY, GUO XW, MIN W. Response of soil fungal community to biochar application under different irrigation water salinity[J]. Environmental Science, 2024, 45(1): 520-529 (in Chinese).
    [28] ZHANG L, TANG C, YANG JS, YAO RJ, WANG XP, XIE WP, GE AH. Salinity-dependent potential soil fungal decomposers under straw amendment[J]. Science of the Total Environment, 2023, 891: 164569.
    [29] 颜培, 杜远达, 姜爱霞, 郭笃发. 黄河三角洲土壤真菌群落结构及互作网络对盐度的响应[J]. 分子植物育种, 2021, 19(11): 3818-3828.YAN P, DU YD, JIANG AX, GUO DF. Response of soil fungal community structures and interaction networks to salinity in the Yellow River Delta[J]. Molecular Plant Breeding, 2021, 19(11): 3818-3828 (in Chinese).
    [30] 周振玲. 耐盐性不同水稻品种对盐胁迫响应的机制与调控[D]. 扬州: 扬州大学博士学位论文, 2023.ZHOU ZL. Mechanism and regulation of response of rice varieties with different salt tolerance to salt stress[D]. Yangzhou: Doctoral Dissertation of Yangzhou University, 2023 (in Chinese).
    [31] 石春芳. 沼渣对盐碱化土壤微生物群落结构与功能的影响[D]. 呼和浩特: 内蒙古大学博士学位论文, 2018.SHI CF. Effect of biogas residue on microbial community structure and function in saline-alkali soil[D]. Hohhot: Doctoral Dissertation of Inner Mongolia University, 2018 (in Chinese).
    [32] JI LD, XU X, ZHANG FJ, SI HL, LI L, MAO GL. The preliminary research on shifts in maize rhizosphere soil microbial communities and symbiotic networks under different fertilizer sources[J]. Agronomy, 2023, 13(8): 2111.
    [33] 张静, 王清, 李晓茹, 孙铁, 戚倩颖. 利用硫氧化细菌改良盐碱土[J]. 吉林大学学报(地球科学版), 2009, 39(1): 147-151.ZHANG J, WANG Q, LI XR, SUN T, QI QY. Research on improving the saline-sodic soil by sulfur-oxidizing bacteria[J]. Journal of Jilin University (Earth Science Edition), 2009, 39(1): 147-151 (in Chinese).
    [34] COOPER ZS, RAPP JZ, SHOEMAKER AMD, ANDERSON RE, ZHONG ZP, DEMING JW. Evolutionary divergence of Marinobacter strains in cryopeg brines as revealed by pangenomics[J]. Frontiers in Microbiology, 2022, 13: 879116.
    [35] PARK YL, CHOI TR, HAN YH, SONG HS, PARK JY, BHATIA SK, GURAV R, CHOI KY, KIM YG, YANG YH. Effects of osmolytes on salt resistance of Halomonas socia CKY01 and identification of osmolytes-related genes by genome sequencing[J]. Journal of Biotechnology, 2020, 322: 21-28.
    [36] JANVIER M, GRIMONT PA. The genus Methylophaga, a new line of descent within phylogenetic branch gamma of Proteobacteria[J]. Research in Microbiology, 1995, 146(7): 543-550.
    [37] 舒志万, 王智博, 陶宇杰, 王嵘, 沈国平, 邢江娃, 朱德锐. 盐单胞菌假定蛋白基因的功能预测与克隆表达及耐盐相关性[J/OL]. 生物学杂志, 2023, 40(6): 12-18.SHU ZW, WANG ZB, TAO YJ, WANG R, SHEN GP, XING JW, ZHU DR. Functional prediction, cloning and expression of hypothetical protein gene of Halomonas and its correlation with salt tolerance[J/OL]. China Industrial Economics, 2023, 40(6): 12-18 (in Chinese).
    [38] ZUO GY. Kinetics and microbial ecology of two salt-tolerant perchlorate-reducing enrichment cultures[D]. United States –Texas: University of Houston, 2008.
    [39] QIN W, MARTENS-HABBENA W, KOBELT J, STAHL D. Candidatus Nitrosopumilus[M]. 2016: 1-9.
    [40] 陈闻, 吴海平, 王晶, 张玲. 舟山海岛地区土壤盐分与电导率的关系[J]. 浙江农业科学, 2016, 57(9): 1555-1557.CHEN W, WU HP, WANG J, ZHANG L. Relationship between soil salinity and electrical conductivity in Zhoushan island area[J]. Journal of Zhejiang Agricultural Sciences, 2016, 57(9): 1555-1557 (in Chinese).
    [41] 朱虹颖, 靳振江, 张晓文, 秦广法, 陈伟坚, 熊建华. 岩溶区与非岩溶区稻田土壤磷含量与碱性磷酸酶活性比较[J]. 农业资源与环境学报, 2024, 41(5): 1083-1090.ZHU HY, JIN ZJ, ZHANG XW, QIN GF, CHEN WJ, XIONG JH. Comparison of soil phosphorus content and alkaline phosphatase activity in paddy fields in Karst and non-karst areas[J]. Journal of Agricultural Resources and Environment, 2024, 41(5): 1083-1090 (in Chinese).
    [42] 郭晓雯, 刘佳炜, 郑志玉, 闵伟. 全生育期咸水滴灌对土壤盐分累积和棉花生长的影响[J]. 干旱区研究, 2022, 39(6): 1952-1965.GUO XW, LIU JW, ZHENG ZY, MIN W. Effects of saline water drip irrigation on soil salt accumulation and cotton growth during the whole growth period[J]. Arid Zone Research, 2022, 39(6): 1952-1965 (in Chinese).
    [43] PHILIPPOT L, CHENU C, KAPPLER A, RILLIG MC, FIERER N. The interplay between microbial communities and soil properties[J]. Nature Reviews Microbiology, 2024, 22(4): 226-239.
    [44] GUO SY, GARETH JONES EB, CHIANG MWL, PANG KL. Salinity and temperature affect growth rate of Alphamyces chaetifer and Gorgonomyces haynaldii (Chytridiomycota) isolated from coastal habitats of Taiwan, China[J]. Botanica Marina, 2023, 66(4): 345-352.
    [45] GARETH JONES EB, RAMAKRISHNA S, VIKINESWARY S, DAS D, BAHKALI AH, GUO SY, PANG KL. How do fungi survive in the sea and respond to climate change?[J]. Journal of Fungi, 2022, 8(3): 291.
    [46] BROTMAN Y, LANDAU U, CUADROS-INOSTROZA á, TOHGE T, FERNIE AR, CHET I, VITERBO A, WILLMITZER L. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance[J]. PLoS Pathogens, 2013, 9(3): e1003221.
    [47] MASTOURI F, BJ?RKMAN T, HARMAN GE. Seed treatment with Trichoderma harzianum alleviates biotic, abiotic, and physiological stresses in germinating seeds and seedlings[J]. Phytopathology, 2010, 100(11): 1213-1221.
    [48] CONTRERAS-CORNEJO HA, MACíAS-RODRíGUEZ L, ALFARO-CUEVAS R, LóPEZ-BUCIO J. Trichoderma spp. improve growth of Arabidopsis seedlings under salt stress through enhanced root development, osmolite production, and Na? elimination through root exudates[J]. Molecular Plant-Microbe Interactions, 2014, 27(6): 503-514.
    [49] BAKER BA, GUTIéRREZ-PRECIADO A, del RíO áR, McCARTHY CGP, LóPEZ-GARCíA P, HUERTA-CEPAS J, SUSKO E, ROGER AJ, EME L, MOREIRA D. Expanded phylogeny of extremely halophilic archaea shows multiple independent adaptations to hypersaline environments[J]. Nature Microbiology, 2024, 9(4): 964-975.
    [50] ECHEVESTE MEDRANO MJ, LEU AO, PABST M, LIN YM, McILROY SJ, TYSON GW, van EDE J, SáNCHEZ-ANDREA I, JETTEN MSM, JANSEN R, WELTE CU. Osmoregulation in freshwater anaerobic methane-oxidizing archaea under salt stress[J]. The ISME Journal, 2024, 18(1): wrae137.
    [51] 刘冰冰, 王双雨, 申亚淇, 赵栩, 程爽, 王来友, 郭书贤, 李文均. 乌勇布拉克盐湖嗜盐古菌絮凝效果筛选及活性检测[J]. 微生物学报, 2022, 62(11): 4095-4107.LIU BB, WANG SY, SHEN YQ, ZHAO X, CHENG S, WANG LY, GUO SX, LI WJ. Flocculation effect and activity of halophilic archaea isolated from Uyong Brac salt lake[J]. Acta Microbiologica Sinica, 2022, 62(11): 4095-4107 (in Chinese).
    [52] 曹升, 潘菲, 林根根, 张燕林, 周垂帆, 刘博. 不同林龄杉木林土壤细菌群落结构与土壤酶活性变化研究[J]. 生态学报, 2021, 41(5): 1846-1856.CAO S, PAN F, LIN GG, ZHANG YL, ZHOU CF, LIU B. Changes of soil bacterial structure and soil enzyme activity in Chinese fir forest of different ages[J]. Acta Ecologica Sinica, 2021, 41(5): 1846-1856 (in Chinese).
    [53] MARTIN DD, CIULLA RA, ROBERTS MF. Osmoadaptation in archaea[J]. Applied and Environmental Microbiology, 1999, 65(5): 1815-1825.
    [54] SHPORER M, CIVAN MM. Pulsed nuclear magnetic resonance study of 39K within halobacteria[J]. The Journal of Membrane Biology, 1977, 33(3/4): 385-400.
    [55] JENSEN MW, MATLOCK SA, REINHEIMER CH, LAWLOR CJ, REINHEIMER TA, GORRELL A. Potassium stress growth characteristics and energetics in the haloarchaeon Haloarcula marismortui[J]. Extremophiles, 2015, 19(2): 315-325.
    [56] LI Y, WANG J, LI EY, YANG XD, YANG JJ. Shifts in microbial community structure and co-occurrence network along a wide soil salinity gradient[J]. Microorganisms, 2024, 12(7): 1268.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

程瑜,白婷,胡建,杨晋炜,刘强,葛云,肖昕,周志林,何环. 排水洗盐对滨海盐碱地土壤性质和微生物群落多样性的影响[J]. 微生物学报, 2025, 65(6): 2479-2498

复制
分享
文章指标
  • 点击次数:21
  • 下载次数: 120
  • HTML阅读次数: 73
  • 引用次数: 0
历史
  • 收稿日期:2024-12-19
  • 在线发布日期: 2025-06-05
文章二维码