辣椒不同生态位内生微生物群落差异及关联
作者:
基金项目:

现代农业产业技术体系建设专项(CARS-23-G-29);邹学校院士创新工作站平台建设支撑项目(TL2023YF007)


Differences and associations of endophytic microbial communities in different ecological niches of chili pepper
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】探究辣椒不同生态位间内生微生物群落的差异及其潜在关联,以期为辣椒内生微生物资源的挖掘和应用提供理论依据。【方法】采用16S rRNA基因和内转录间隔区(internal transcribed spacer,ITS)基因测序技术,比较分析91份辣椒材料不同生态位(根、茎、叶和果)内生细菌和真菌的群落结构特征,并进行功能注释;此外,针对内生细菌群落进行共现网络分析和溯源分析。【结果】四个生态位点内生微生物群落的操作分类单元(operational taxonomic unit,OTU)高度共享,其中,细菌的共享OTUs占比46.36%,真菌的共享OTUs占比29.66%。不同生态位间,辣椒内生细菌和真菌群落的多样性差异显著,根部的内生细菌和真菌群落与其他3个生态位显著分离(P<0.05);内生细菌群落的Shannon指数在不同生态位间差异显著,而内生真菌则相对稳定。辣椒中的优势内生细菌为变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidota),其中,变形菌门在根部富集,而厚壁菌门和拟杆菌门则在果中占据优势。子囊菌门(Ascomycota)和担子菌门(Basidiomycota)作为主要的内生真菌优势菌群,在4个生态位中的相对丰度差异较小。功能注释结果显示,辣椒含有多种具有次生代谢物生物合成和抗生素生物合成功能的内生细菌;而在真菌群落中,病原真菌的相对丰度最高。此外,辣椒中超过80%的内生细菌来源于与其直接相连的形态学下方生态位,具有复杂的相互作用网络、较强的群落稳定性和模块结构。【结论】相较于内生真菌,辣椒内生细菌的群落组成对生态位的变化更为敏感,而真菌的生态位特异性较弱。辣椒各生态位的内生细菌主要源自其形态学下方生态位,表现出显著的生态位富集作用,且根部在内生细菌群落塑造中起着至关重要的作用。

    Abstract:

    [Objective] To explore the differences and potential associations of endophytic microbial communities in different niches of chili pepper and provide a theoretical basis for the exploration and application of endophytic microbial resources in chili pepper. [Methods] The 16S rRNA and internal transcribed spacer (ITS) genes sequencing were employed to study the community structure characteristics of endophytic bacteria and fungi in different ecological niches (roots, stems, leaves, and fruits) of 91 pepper germplasm accessions, along with functional annotations. Additionally, co-occurrence network analysis and traceability analysis were performed on the endophytic bacterial communities. [Results] The operational taxonomic unit (OTU) of endophytic microbial communities were highly common among the four ecological niches, including 46.36% common bacterial OTUs and 29.66% common fungal OTUs. The diversity of endophytic bacterial and fungal communities in chili pepper exhibited variations across different ecological niches, with the endophytic communities in roots being distinctly separated from those in the other three niches (P<0.05). The Shannon index of endophytic bacteria varied significantly among niches, whereas that of endophytic fungi remained relatively stable. The dominant endophytic bacteria in chili pepper were Proteobacteria, Firmicutes, and Bacteroidota, with Proteobacteria being enriched in the roots and Firmicutes and Bacteroidetes being predominant in the fruits. Ascomycota and Basidiomycota, the dominant endophytic fungal phyla, exhibited minimal differences in relative abundance across the four ecological niches. Functional annotation results indicated that chili pepper harbored various endophytic bacteria capable of synthesizing secondary metabolites and antibiotics. Within the fungal community, pathogenic fungi were found to have the highest relative abundance. Additionally, more than 80.0% of the endophytic bacteria in chili pepper originated from their directly associated morphologically lower niches, exhibiting complex interaction networks, strong community stability, and a modular structure. [Conclusion] Compared with the endophytic fungal community, the endophytic bacterial community in chili pepper is sensitive to changes in ecological niches, while the niche specificity of the fungi is comparatively weak. The endophytic bacteria associated with each niche of chili pepper primarily originate from the niche located beneath, exhibiting significant niche enrichment, where the roots serving as a crucial source in shaping the endophytic bacterial community.

    参考文献
    [1] 王立浩, 张宝玺, 张正海, 曹亚从, 于海龙, 冯锡刚. “十三五”我国辣椒育种研究进展、产业现状及展望[J]. 中国蔬菜, 2021(2): 21-29. WANG LH, ZHANG BX, ZHANG ZH, CAO YC, YU HL, FENG XG. Status in breeding and production of Capsicum spp. in China during ‘the thirteenth five-year plan’ period and future prospect[J]. China Vegetables, 2021(2): 21-29(in Chinese).
    [2] 乔立娟, 赵帮宏, 宗义湘, 寇春雨, 董雨涵. 我国辣椒产业发展现状、趋势及对策[J]. 中国蔬菜, 2023(11): 9-15. QIAO LJ, ZHAO BH, ZONG YX, KOU CY, DONG YH. Development current situation, tendency, and countermeasure for China’s pepper industry[J]. China Vegetables, 2023(11): 9-15(in Chinese).
    [3] 孔德婷, 齐笑含, 刘兴蕾, 李丽萍, 胡凤益, 黄立钰, 秦世雯. 不同多年生稻品种内生细菌群落多样性比较分析[J]. 生物技术通报, 2024, 40(5): 225-236. KONG DT, QI XH, LIU XL, LI LP, HU FY, HUANG LY, QIN SW. Comparison and analysis of endophytic bacteria communities in different perennial rice varieties[J]. Biotechnology Bulletin, 2024, 40(5): 225-236(in Chinese).
    [4] CORDOVEZ V, DINI-ANDREOTE F, CARRIÓN VJ, RAAIJMAKERS JM. Ecology and evolution of plant microbiomes[J]. Annual Review of Microbiology, 2019, 73: 69-88.
    [5] WHITE JF, KINGSLEY KL, ZHANG QW, VERMA R, OBI N, DVINSKIKH S, ELMORE MT, VERMA SK, GOND SK, KOWALSKI KP. Review: endophytic microbes and their potential applications in crop management[J]. Pest Management Science, 2019, 75(10): 2558-2565.
    [6] WANG HT, ZHANG FJ, ZHANG YL, WANG MN, ZHANG YQ, ZHANG J. Enrichment of novel entomopathogenic Pseudomonas species enhances willow resistance to leaf beetles[J]. Microbiome, 2024, 12(1): 169.
    [7] CHE JL, WU YQ, YANG H, WU WL, LYU LF, WANG XM, LI WL. Beneficial ecological networks dominate the dynamic root endosphere microbiome during long-term symbiosis with host plants[J]. Plant and Soil, 2024, 501(1): 289-305.
    [8] ZHOU JY, STRINGLIS IA, WEN J, LIU YF, XU S, WANG R. Interplay between Amaryllidaceae alkaloids, the bacteriome and phytopathogens in Lycoris radiata[J]. New Phytologist, 2024, 241(5): 2258-2274.
    [9] FRACCHIA F, GUINET F, ENGLE NL, TSCHAPLINSKI TJ, VENEAULT-FOURREY C, DEVEAU A. Microbial colonisation rewires the composition and content of poplar root exudates, root and shoot metabolomes[J]. Microbiome, 2024, 12(1): 173.
    [10] DUBEY A, MALLA MA, KUMAR A, DAYANANDAN S, KHAN ML. Plants endophytes: unveiling hidden agenda for bioprospecting toward sustainable agriculture[J]. Critical Reviews in Biotechnology, 2020, 40(8): 1210-1231.
    [11] 王颜波, 张伟溪, 丁昌俊, 苏晓华. 不同生态环境下银中杨内生菌群落结构及生态位变异[J]. 林业科学, 2020, 56(2): 48-60. WANG YB, ZHANG WX, DING CJ, SU XH. Community structure and niche differentiation of endophytic microbiome in Populus alba×P. berolinensis under different ecological environment[J]. Scientia Silvae Sinicae, 2020, 56(2): 48-60(in Chinese).
    [12] XIONG C, SINGH BK, ZHU YG, HU HW, LI PP, HAN YL, HAN LL, ZHANG QB, WANG JT, LIU SY, WU CF, GE AH, ZHANG LM, HE JZ. Microbial species pool-mediated diazotrophic community assembly in crop microbiomes during plant development[J]. mSystems, 2024, 9(4): e0105523.
    [13] ZHANG Y, DING CT, JIANG TY, LIU YH, WU Y, ZHOU HW, ZHANG LS, CHEN Y. Community structure and niche differentiation of endosphere bacterial microbiome in Camellia oleifera[J]. Microbiology Spectrum, 2023, 11(6): e0133523.
    [14] 李莹, 刘兰英, 姜宇杰, 何肖云, 邱胤辉, 任丽花, 傅建炜. 辣椒连作对土壤细菌群落的影响[J]. 微生物学报, 2023, 63(1): 297-318. LI Y, LIU LY, JIANG YJ, HE XY, QIU YH, REN LH, FU JW. Effect of continuous cropping of hot pepper on soil bacterial community[J]. Acta Microbiologica Sinica, 2023, 63(1): 297-318.
    [15] 李莹, 刘兰英, 何肖云, 邱胤辉, 任丽花, 黄锐敏, 傅建炜. 连作年限对辣椒根际土壤真菌群落结构的影响[J]. 福建农林大学学报(自然科学版), 2023, 52(3): 400-407. LI Y, LIU LY, HE XY, QIU YH, REN LH, HUANG RM, FU JW. Effect of continuous cropping on fungal community structure in rhizosphere soil of pepper[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(3): 400-407(in Chinese).
    [16] 韩永琴, 陈新建, 罗路云, 金德才, 刘勇, 张卓, 张德咏. 生防菌剂多黏类芽胞杆菌对辣椒根际土壤细菌群落的影响[J]. 植物保护, 2020, 46(2): 135-142. HAN YQ, CHEN XJ, LUO LY, JIN DC, LIU Y, ZHANG Z, ZHANG DY. Effects of the biocontrol agent Bacillus polymyxa on the bacterial community in the rhizosphere of pepper[J]. Plant Protection, 2020, 46(2): 135-142(in Chinese).
    [17] BECKERS B, de BEECK MO, WEYENS N, BOERJAN W, VANGRONSVELD J. Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees[J]. Microbiome, 2017, 5(1): 25.
    [18] MATSUMOTO H, FAN XY, WANG Y, KUSSTATSCHER P, DUAN J, WU SL, CHEN SL, QIAO K, WANG YL, MA B, ZHU GN, HASHIDOKO Y, BERG G, CERNAVA T, WANG MC. Bacterial seed endophyte shapes disease resistance in rice[J]. Nature Plants, 2021, 7(1): 60-72.
    [19] FITZPATRICK CR, COPELAND J, WANG PW, GUTTMAN DS, KOTANEN PM, JOHNSON MTJ. Assembly and ecological function of the root microbiome across angiosperm plant species[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1157-1165.
    [20] 黄雅丹, 付灿, 李强. 喀斯特石漠化治理区钙果种植年限对根内细菌群落的影响[J]. 微生物学报, 2024, 64(6): 2057-2070. HUANG YD, FU C, LI Q. Planting years affect endophytic bacterial community of Cerasus humilis (Bge.) Sok. from karst rocky desertification control areas[J]. Acta Microbiologica Sinica, 2024, 64(6): 2057-2070(in Chinese).
    [21] 任明霞, 李静, 艾加敏, 柳晓东, 姜影影, 邓振山. 白刺花根瘤中分离细菌的物种多样性及其促生效应[J]. 微生物学报, 2024, 64(8): 2940-2954. REN MX, LI J, AI JM, LIU XD, JIANG YY, DENG ZS. Species diversity and plant growth-promoting effects of bacteria isolated from the root nodules of Sophora davidii[J]. Acta Microbiologica Sinica, 2024, 64(8): 2940-2954(in Chinese).
    [22] EMERSON BC, GILLESPIE RG. Phylogenetic analysis of community assembly and structure over space and time[J]. Trends in Ecology & Evolution, 2008, 23(11): 619-630.
    [23] 葛蕾, 王璐瑶, 郭官清, 宋丽莉, 王翠, 汪小福, 毛婵娟, 李鹏. BtBar基因转化对水稻不同组织生态位微生物群落组成及潜在功能影响[J]. 微生物学报, 2024, 64(5): 1607-1625. GE L, WANG LY, GUO GQ, SONG LL, WANG C, WANG XF, MAO CJ, LI P. Effects of Bt and Bar transformation on microbial community composition and potential functions in different tissues of rice plants[J]. Acta Microbiologica Sinica, 2024, 64(5): 1607-1625(in Chinese).
    [24] ALY AH, DEBBAB A, PROKSCH P. Fungal endophytes: unique plant inhabitants with great promises[J]. Applied Microbiology and Biotechnology, 2011, 90(6): 1829-1845.
    [25] 王明柳, 曹乾斌, 陆梅, 左倩倩, 赵爽, 陈闵昆, 王平. 热带森林恢复过程中氨氧化细菌群落的季节变化[J]. 应用生态学报, 2024, 35(5): 1242-1250. WANG ML, CAO QB, LU M, ZUO QQ, ZHAO S, CHEN MK, WANG P. Seasonal changes of ammonia-oxidizing bacterial communities during tropical forest restoration[J]. Chinese Journal of Applied Ecology, 2024, 35(5): 1242-1250(in Chinese).
    [26] HAMONTS K, TRIVEDI P, GARG A, JANITZ C, GRINYER J, HOLFORD P, BOTHA FC, ANDERSON IC, SINGH BK. Field study reveals core plant microbiota and relative importance of their drivers[J]. Environmental Microbiology, 2018, 20(1): 124-140.
    [27] RODRIGUES KF, SAMUELS GJ. Fungal endophytes of Spondias mombin leaves in Brazil[J]. Journal of Basic Microbiology, 1999, 39(2): 131-135.
    [28] NWACHUKWU BC, AYANGBENRO AS, BABALOLA OO. Elucidating the rhizosphere associated bacteria for environmental sustainability[J]. Agriculture, 2021, 11(1): 75.
    [29] de SOUZA RS, OKURA VK, ARMANHI JSL, JORRÍN B, LOZANO N, da SILVA MJ, GONZÁLEZ-GUERRERO M, de ARAÚJO LM, VERZA NC, BAGHERI HC, IMPERIAL J, ARRUDA P. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome[J]. Scientific Reports, 2016, 6: 28774.
    [30] COLEMAN-DERR D, DESGARENNES D, FONSECA-GARCIA C, GROSS S, CLINGENPEEL S, WOYKE T, NORTH G, VISEL A, PARTIDA-MARTINEZ LP, TRINGE SG. Plant compartment and biogeography affect microbiome composition in cultivated and native Agave species[J]. New Phytologist, 2016, 209(2): 798-811.
    [31] FONSECA-GARCÍA C, COLEMAN-DERR D, GARRIDO E, VISEL A, TRINGE SG, PARTIDA- MARTÍNEZ LP. The cacti microbiome: interplay between habitat-filtering and host-specificity[J]. Frontiers in Microbiology, 2016, 7: 150.
    [32] TRIVEDI P, LEACH JE, TRINGE SG, SA TM, SINGH BK. Plant-microbiome interactions: from community assembly to plant health[J]. Nature Reviews Microbiology, 2020, 18(11): 607-621.
    [33] YU JB, BAI M, WANG CY, WU H, LIANG XX. Regulation of secondary metabolites accumulation in medicinal plants by rhizospheric and endophytic microorganisms[J]. Medicinal Plant Biology, 2024, 3(1): e011.
    [34] XU J, ZHANG YZ, ZHANG PF, TRIVEDI P, RIERA N, WANG YY, LIU X, FAN GY, TANG JL, COLETTA-FILHO HD, CUBERO J, DENG XL, ANCONA V, LU ZJ, ZHONG BL, ROPER MC, CAPOTE N, CATARA V, PIETERSEN G, VERNIÈRE C, et al. The structure and function of the global citrus rhizosphere microbiome[J]. Nature Communications, 2018, 9: 4894.
    [35] LEVY A, SALAS GONZALEZ I, MITTELVIEFHAUS M, CLINGENPEEL S, HERRERA PAREDES S, MIAO JM, WANG KR, DEVESCOVI G, STILLMAN K, MONTEIRO F, RANGEL ALVAREZ B, LUNDBERG DS, LU TY, LEBEIS S, JIN Z, McDONALD M, KLEIN AP, FELTCHER ME, RIO TG, GRANT SR, et al. Genomic features of bacterial adaptation to plants[J]. Nature Genetics, 2018, 50: 138-150.
    [36] 党柯柯, 侯金凤, 刘洪, 董元华, 李建刚. 生姜根系不同生态位细菌群落多样性特征、组成及结构差异[J]. 生态学报, 2023, 43(4): 1691-1702. DANG KK, HOU JF, LIU H, DONG YH, LI JG. Characteristics of bacterial community diversity, composition and structure in different niches of ginger root[J]. Acta Ecologica Sinica, 2023, 43(4): 1691-1702(in Chinese).
    [37] BAI R, WANG JT, DENG Y, HE JZ, FENG K, ZHANG LM. Microbial community and functional structure significantly varied among distinct types of paddy soils but responded differently along gradients of soil depth layers[J]. Frontiers in Microbiology, 2017, 8: 945.
    [38] TAN L, ZENG WA, XIAO YS, LI PF, GU SS, WU SL, ZHAI ZG, FENG K, DENG Y, HU QL. Fungi-bacteria associations in wilt diseased rhizosphere and endosphere by interdomain ecological network analysis[J]. Frontiers in Microbiology, 2021, 12: 722626.
    [39] ZHANG Z, GE SB, FAN LC, GUO S, HU Q, AHAMMED GJ, YAN P, ZHANG LP, LI ZZ, ZHANG JY, FU JY, HAN WY, LI X. Diversity in rhizospheric microbial communities in tea varieties at different locations and tapping potential beneficial microorganisms[J]. Frontiers in Microbiology, 2022, 13: 1027444.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

姚苏航,周诗晶,周池,张竹青,陈文超,董志雪,李雪峰,陶禹,邹学校,李鑫. 辣椒不同生态位内生微生物群落差异及关联[J]. 微生物学报, 2025, 65(1): 169-181

复制
分享
文章指标
  • 点击次数:100
  • 下载次数: 167
  • HTML阅读次数: 79
  • 引用次数: 0
历史
  • 收稿日期:2024-08-21
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码