一株分离自运城盐湖土壤沉积物的链霉菌(Streptomyces sp.) YH02全基因组测序和比较基因组特征
作者:
作者单位:

运城学院 生命科学系,山西 运城

作者简介:

李珍华:研究构思和设计,论文撰写和修改;王佳欣:数据收集和处理;张琳婕:协助实验操作;孙宇佳:数据收集和处理;田蓉:协助实验操作;杨瑾:提供技术支持;刘缙:研究构思和设计,参与论文讨论。

基金项目:

山西省基础研究计划(自由探索类) (20210302124526, 202203021212176);山西省高等学校科技创新项目(2021L472);运城学院博士科研启动项目(YQ-2020027)


Whole genome sequencing and comparative genomic analysis of Streptomyces sp. YH02 isolated from the soil sediment in Yuncheng Salt Lake
Author:
Affiliation:

Life Sciences Department, Yuncheng University, Yuncheng, Shanxi, China

Fund Project:

This work was supported by the Basic Research Program of Shanxi Province (Free Exploration) (20210302124526, 202203021212176), the Science and Technology Innovation Project of Higher Education Institutions of Shanxi Province (2021L472), and the Doctoral Scientific Research Program of Yuncheng University (YQ-2020027).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [9]
  • | | |
  • 文章评论
    摘要:

    目的 链霉菌(Streptomyces sp.) YH02是从山西运城盐湖土壤沉积物中分离的一株革兰氏阳性放线菌。解析菌株YH02的全基因组序列信息,探究其在种属进化关系中的位置,深入挖掘其次级代谢产物基因资源。方法 利用Illumina和PacBio平台相结合的测序技术对菌株YH02进行全基因组测序,并进行基因预测、功能注释、次级代谢产物合成基因簇预测、比较基因组学分析以及形态和生理生化测定。结果 菌株YH02基因组为一条线性染色体,全长8 285 116 bp,G+C含量为71.77%,编码7 237个开放阅读框;在GO、COG、KEGG、CAZy数据库中分别注释到2 829、5 478、4 805、279个基因;蛋白亚细胞定位分析预测到多种分泌系统相关蛋白和1 030个转运蛋白;同时预测到菌株YH02中存在32个次级代谢产物合成基因簇,涉及萜烯类、非核糖体肽类、聚酮类、核糖体合成和翻译后修饰肽类等多种天然产物的合成。比较基因组学分析揭示了15 739个泛基因组直系同源基因簇和4 267个核心基因组直系同源基因簇。基于16S rRNA基因序列的系统发育树分析显示,菌株YH02与委内瑞拉链霉菌(Streptomyces venezuelae) ATCC 10712、沙阿霉素链霉菌(Streptomyces zaomyceticus) NBC 00278亲缘关系较近,但平均核苷酸一致性(average nucleotide identity, ANI)分析小于95.00%,数字DNA-DNA杂交(digital DNA-DNA hybridization, dDDH)值小于70.00%。形态学和生理生化特性分析表明,菌株YH02在ISP 2培养基上的气生菌丝体呈现浅粉色,其对pH值、氯化钠耐受量和生长温度的耐受性与近缘菌株存在差异,且在淀粉水解能力上表现出较弱的活性,同时具有明胶液化、硝酸盐还原阳性、牛奶凝固缓慢的特性。结论 基于基因组学和生理生化特性的分析结果,菌株YH02被确认为链霉菌属潜在新种。本研究不仅丰富了微生物物种资源库,而且为探索具有独特作用机制的天然产物提供了理论基础和潜在的遗传资源。

    Abstract:

    Objective To elucidate the phylogenetic position and mine the gene resources for synthesis of secondary metabolites from Streptomyces sp. YH02, a Gram-positive actinomycete strain isolated from the soil sediment of Yuncheng Salt Lake in Shanxi.Methods Illumina and PacBio platforms were used for whole genome sequencing of YH02, which was followed by gene prediction, functional annotation, prediction of secondary metabolite synthetic gene clusters (BGCs), comparative genomic analysis, and morphological, physiological, and biochemical characterization.Results The YH02 genome was a linear chromosome spanning 8 285 116 bp, with the G+C content of 71.77% and 7 237 open reading frames. Gene annotations in the GO, COG, KEGG, and CAZy identified 2 829, 5 478, 4 805, and 279 genes, respectively. The subcellular localization analysis predicted various secretion system-related proteins and 1 030 transporters. Additionally, 32 secondary metabolite BGCs were predicted in strain YH02, involving the synthesis of various natural products such as terpenoids, non-ribosomal peptides, polyketides, and ribosomally synthesized and post-translationally modified peptides. The comparative genomic analysis revealed 15 739 pan-genome orthologous gene clusters and 4 267 core genome orthologous gene clusters. The phylogenetic analysis based on the 16S rRNA gene sequence revealed a proximate phylogenetic affiliation between strain YH02 and Streptomyces venezuelae ATCC 10712 as well as Streptomyces zaomyceticus NBC 00278. However, the average nucleotide identity (ANI) value was below the threshold of 95.00%, and the digital DNA-DNA hybridization (dDDH) value was less than 70.00%. YH02 exhibited light pink aerial mycelia on the ISP 2 medium. It showed significant differences in tolerance to pH, sodium chloride, and growth temperature compared with its closely related strains. Additionally, this strain demonstrated weak starch hydrolysis activity, positive gelatin liquefaction, positive nitrate reduction, and slow milk coagulation.Conclusion Based on the findings from genomic, physiological, and biochemical analyses, strain YH02 is confirmed as a potential new species of Streptomyces. This study not only enriches the microbial resource pool but also provides a theoretical basis and potential genetic resources for mining the natural products with unique mechanisms of action.

    参考文献
    [1] DAI QY, MA MZ, WANG N, ZHOU YF, ZHANG ZZ. Antiproliferative metabolites against glioma cells from the marine-associated actinomycete Streptomyces sp. ZZ735[J]. Fitoterapia, 2024, 178: 106176.
    [2] KAEWKLA O, PERKINS M, THAMCHAIPENET A, SAIJUNTHA W, SUKPANOA S, SURIYACHADKUN C, CHAMROENSAKSRI N, CHUMROENPHAT T, FRANCO CMM. Description of Streptomyces naphthomycinicus sp. nov., an endophytic actinobacterium producing naphthomycin A and its genome insight for discovering bioactive compounds[J]. Frontiers in Microbiology, 2024, 15: 1353511.
    [3] KANCHANASIN P, SRIPREECHASAK P, SURIYACHADKUN C, SUPONG K, PITTAYAKHAJONWUT P, SOMPHONG A, TANASUPAWAT S, PHONGSOBITANUN W. Streptomyces macrolidinus sp. nov., a novel soil actinobacterium with potential anticancer and antimalarial activity[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(1): 005682.
    [4] Van WEZEL GP, MCDOWALL KJ. The regulation of the secondary metabolism of Streptomyces: new links and experimental advances[J]. Natural Product Reports, 2011, 28(7): 1311-1333.
    [5] ZHAO M, WANG MR, WANG SL, XIONG LB, GAO B, LIU M, TAO XY, WANG FQ, WEI DZ. A self-sustained system spanning the primary and secondary metabolism stages to boost the productivity of Streptomyces[J]. ACS Synthetic Biology, 2022, 11(1): 353-365.
    [6] QUINN GA, BANAT AM, ABDELHAMEED AM, BANAT IM. Streptomyces from traditional medicine: sources of new innovations in antibiotic discovery[J]. Journal of Medical Microbiology, 2020, 69(8): 1040-1048.
    [7] KIM S, HILLMAN PF, LEE JY, LEE J, LEE J, CHA SS, OH DC, NAM SJ, FENICAL W. Actinopolymorphols E and F, pyrazine alkaloids from a marine sediment-derived bacterium Streptomyces sp.[J]. The Journal of Antibiotics, 2022, 75(11): 619-625.
    [8] SENI?AR M, LEGENTIL L, FERRIèRES V, ELISEEVA SV, PETOUD S, TAKEGAWA K, LAFITE P, DANIELLOU R. Galactofuranosidase from JHA 19 Streptomyces sp.: subcloning and biochemical characterization[J]. Carbohydrate Research, 2019, 480: 35-41.
    [9] YI JS, KIM JM, KANG MK, KIM JH, CHO HS, BAN YH, SONG MC, SON KH, YOON YJ. Whole-genome sequencing and analysis of Streptomyces strains producing multiple antinematode drugs[J]. BMC Genomics, 2022, 23(1): 610.
    [10] SHARAF A, MERCATI F, ELMAGHRABY I, ELBAZ RM, MAREI EM. Functional and comparative genome analysis of novel virulent actinophages belonging to Streptomyces flavovirens[J]. BMC Microbiology, 2017, 17(1): 51.
    [11] QUACH NT, VU THN, BUI TL, PHAM AT, NGUYEN TTA, LE TTX, TA TTT, DUDHAGARA P, PHI QT. Genome-guided investigation provides new insights into secondary metabolites of Streptomyces parvulus SX6 from Aegiceras corniculatum[J]. Polish Journal of Microbiology, 2022, 71(3): 381-394.
    [12] SHAN YM, GUO D, GU QS, LI YD, LI YQ, CHEN YH, GUAN WJ. Genome mining and homologous comparison strategy for digging exporters contributing self-resistance in natamycin-producing Streptomyces strains[J]. Applied Microbiology and Biotechnology, 2020, 104(2): 817-831.
    [13] PIEL J, HERTWECK C, SHIPLEY PR, HUNT DM, NEWMAN MS, MOORE BS. Cloning, sequencing and analysis of the enterocin biosynthesis gene cluster from the marine isolate ‘Streptomyces maritimus’: evidence for the derailment of an aromatic polyketide synthase[J]. Chemistry & Biology, 2000, 7(12): 943-955.
    [14] BAO HY, LI HJ, ZHANG YY, BECHTHOLD A, YU XP, MA Z. Transposon-based identification of genes involved in the rimocidin biosynthesis in Streptomyces rimosus M527[J]. World Journal of Microbiology & Biotechnology, 2023, 39(12): 359.
    [15] CHENG K, RONG XY, HUANG Y. Widespread interspecies homologous recombination reveals reticulate evolution within the genus Streptomyces[J]. Molecular Phylogenetics and Evolution, 2016, 102: 246-254.
    [16] 李楠, 孙大智, 王紫薇, 曹晶晶, 汪志琴, 赵盼, 仲乃琴. 甘蔗鞭黑粉菌拮抗菌鉴定及特性研究[J]. 微生物学报, 2024, 64(10): 3685-3701.LI N, SUN DZ, WANG ZW, CAO JJ, WANG ZQ, ZHAO P, ZHONG NQ. Identification and characterization of sugarcane Sporisorium scitamineum antagonists[J]. Acta Microbiologica Sinica, 2024, 64(10): 3685-3701 (in Chinese).
    [17] SHIRLING EB, GOTTLIEB D. Methods for characterization of Streptomyces species[J]. International Journal of Systematic and Evolutionary Microbiology, 1966, 16(3): 313-340.
    [18] BERLIN K, KOREN S, CHIN CS, DRAKE JP, LANDOLIN JM, PHILLIPPY AM. Assembling large genomes with single-molecule sequencing and locality-sensitive hashing[J]. Nature Biotechnology, 2015, 33(6): 623-630.
    [19] 周奕帆, 李陈贵, 许云, 吴文嫱, 夏薇, 黄小龙, 黄东益, 周双清. 紫黑链霉菌进化枝菌株Streptomyces solisilvae HNM0141T的全基因组分析[J]. 热带作物学报, 2022, 43(3): 455-462.ZHOU YF, LI CG, XU Y, WU WQ, XIA W, HUANG XL, HUANG DY, ZHOU SQ. Analysis of complete genome sequence of Streptomyces solisilvae HNM0141T of the Streptomyces violaceusniger clade[J]. Chinese Journal of Tropical Crops, 2022, 43(3): 455-462 (in Chinese).
    [20] 罗逊, 丁碧荷, 王印, 罗燕, 姚学萍, 任梅渗, 杨泽晓. 一株兔源A型多杀性巴氏杆菌的分离鉴定和全基因组测序及分析[J]. 微生物学通报, 2024, 51(2): 582-598.LUO X, DING BH, WANG Y, LUO Y, YAO XP, REN MS, YANG ZX. Isolation, identification, and whole genome sequencing of a rabbit-derived type A Pasteurella multocida strain[J]. Microbiology China, 2024, 51(2): 582-598 (in Chinese).
    [21] 阮文伟, 付建红, 崔凤真, 铁瑞岚, 徐国燕, 阿依卡买尔·艾克拜尔. 环圈链霉菌(Streptomyces anulatus) 89-2-2全基因组测序及序列分析[J]. 微生物学通报, 2024, 51(8): 3085-3102.RUAN WW, FU JH, CUI FZ, TIE RL, XU GY, Ayekabayr E. Whole-genome sequencing and sequence analysis of Streptomyces anulatus 89-2-2[J]. Microbiology China, 2024, 51(8): 3085-3102 (in Chinese).
    [22] YOON SH, HA SM, KWON S, LIM J, KIM Y, SEO H, CHUN J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies[J]. International Journal of Systematic and Evolutionary Microbiology, 2017, 67(5): 1613-1617.
    [23] KIMURA M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences[J]. Journal of Molecular Evolution, 1980, 16: 111-120.
    [24] LI L, STOECKERT CJ, ROOS DS. OrthoMCL: identification of ortholog groups for eukaryotic genomes[J]. Genome Research, 2003, 13(9): 2178-2189.
    [25] LI W, GODZIK A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13): 1658-1659.
    [26] LEE I, KIM Y OUK, PARK SC, CHUN J. OrthoANI: an improved algorithm and software for calculating average nucleotide identity[J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66(2): 1100-1103.
    [27] MEIER-KOLTHOFF JP, AUCH AF, KLENK HP, G?KER M. Genome sequence-based species delimitation with confidence intervals and improved distance functions[J]. BMC Bioinformatics, 2013, 14: 60.
    [28] ARAI T, TAMOTSU F, MASA H, AKIHIRO M, YUZURU M. Culture media for actinomycetes[M]. Tokyo: The Society for Actinomycetes Japan, 1975: 1-20.
    [29] WILLIAMS ST, CROSS T. Chapter XI actinomycetes[J]. Methods in Microbiology, 1971, 4: 295-334.
    [30] PRINS RA, VRIJ W, GOTTSCHAL JC, HANSEN TA. Adaptation of microorganisms to extreme environments[J]. FEMS Microbiology Reviews, 1990, 6(2/3): 103-104.
    [31] GREEN ER, MECSAS J. Bacterial secretion systems: an overview[J]. Microbiology Spectrum, 2016, 4(1): VMBF-0012-2015.
    [32] COSTA TRD, HARB L, KHARA P, ZENG L, HU B, CHRISTIE PJ. Type IV secretion systems: advances in structure, function, and activation[J]. Molecular Microbiology, 2021, 115(3): 436-452.
    [33] ATMAKURI K, CASCALES E, CHRISTIE PJ. Energetic components VirD4, VirB11 and VirB4 mediate early DNA transfer reactions required for bacterial type IV secretion[J]. Molecular Microbiology, 2004, 54(5): 1199-1211.
    [34] FREUDL R. Signal peptides for recombinant protein secretion in bacterial expression systems[J]. Microbial Cell Factories, 2018, 17(1): 52.
    [35] THOMPSON CC, CHIMETTO L, EDWARDS RA, SWINGS J, STACKEBRANDT E, THOMPSON FL. Microbial genomic taxonomy[J]. BMC Genomics, 2013, 14: 913.
    [36] EHRLICH J, GOTTLIEB D, BURKHOLDER PR, ANDERSON LE, PRIDHAM TG. Streptomyces venezuelae, n. sp., the source of chloromycetin[J]. Journal of Bacteriology, 1948, 56(4): 467-477.
    [37] HINUMA Y. Zaomycin, a new antibiotic from a Streptomyces sp.[J]. Journal of Antibiotics, 1954, 7(4): 134-136.
    [38] WAKSMAN SA, CURTIS RE. The Actinomyces of the soil[J]. Soil Science, 1916, 1: 99-134.
    [39] WEN Y, ZHANG GS, BAHADUR A, XU YT, LIU Y, TIAN M, DING W, CHEN T, ZHANG W, LIU GX. Genomic investigation of desert Streptomyces huasconensis D23 reveals its environmental adaptability and antimicrobial activity[J]. Microorganisms, 2022, 10(12): 2408.
    [40] KAMJAM M, SIVALINGAM P, DENG Z, HONG K. Deep sea actinomycetes and their secondary metabolites[J]. Frontiers in Microbiology, 2017, 8: 760.
    [41] MAST Y, STEGMANN E. Actinomycetes: the antibiotics producers[J]. Antibiotics, 2019, 8(3): 105.
    [42] GóMEZ C, HORNA DH, OLANO C, MéNDEZ C, SALAS JA. Participation of putative glycoside hydrolases SlgC1 and SlgC2 in the biosynthesis of streptolydigin in Streptomyces lydicus[J]. Microbial Biotechnology, 2012, 5(5): 663-667.
    [43] 高小晓, 孟虹, 李蓉, 李宪臻. 糖苷水解酶7家族蛋白在纤维素降解中作用的研究进展[J]. 微生物学杂志, 2020, 40(6): 113-117.GAO XX, MENG H, LI R, LI XZ. Advances in cellulose degradation by glycoside hydrolase family 7 proteins[J]. Journal of Microbiology, 2020, 40(6): 113-117 (in Chinese).
    [44] 曹孟婵, 张部昌. 大环内酯类抗生素糖基合成及生物学功能[J]. 中国抗生素杂志, 2007, 32(3): 140-145.CAO MC, ZHANG BC. Glycosyl synthesis and biofunction of macrolide antibiotics[J]. Chinese Journal of Antibiotics, 2007, 32(3): 140-145 (in Chinese).
    [45] TAKANO H, TORIUMI N, HIRATA M, AMANO T, OHYA T, SHIMADA R, KUSADA H, AMANO S, MATSUDA K, BEPPU T, UEDA K. An ABC transporter involved in the control of streptomycin production in Streptomyces griseus[J]. FEMS Microbiology Letters, 2016, 363(14): fnw149.
    [46] BLIN K, SHAW S, AUGUSTIJN HE, REITZ ZL, BIERMANN F, ALANJARY M, FETTER A, TERLOUW BR, METCALF WW, HELFRICH EJN, VAN WEZEL GP, MEDEMA MH, WEBER T. antiSMASH 7.0: new and improved predictions for detection, regulation, chemical structures and visualisation[J]. Nucleic Acids Research, 2023, 51(W1): W46-W50.
    [47] DROR B, WANG ZQ, BRADY SF, JURKEVITCH E, CYTRYN E. Elucidating the diversity and potential function of nonribosomal peptide and polyketide biosynthetic gene clusters in the root microbiome[J]. mSystems, 2020, 5(6): e00866-20.
    [48] KOMAKI H, SAKURAI K, HOSOYAMA A, KIMURA A, TRUJILO ME, IGARASHI Y, TAMURA T. Diversity of PKS and NRPS gene clusters between Streptomyces abyssomicinicus sp. nov. and its taxonomic neighbor[J]. The Journal of Antibiotics, 2020, 73(3): 141-151.
    [49] ZHANEL GG, GOLDEN AR, ZELENITSKY S, WIEBE K, LAWRENCE CK, ADAM HJ, IDOWU T, DOMALAON R, SCHWEIZER F, ZHANEL MA, LAGACé-WIENS PRS, WALKTY AJ, NOREDDIN A, LYNCH III JP, KARLOWSKY JA. Cefiderocol: a siderophore cephalosporin with activity against carbapenem-resistant and multidrug-resistant Gram-negative bacilli[J]. Drugs, 2019, 79(3): 271-289.
    [50] KU CM, LIN JY. Anti-inflammatory effects of 27 selected terpenoid compounds tested through modulating Th1/Th2 cytokine secretion profiles using murine primary splenocytes[J]. Food Chemistry, 2013, 141(2): 1104-1113.
    [51] CHENG Z, HE BB, LEI K, GAO Y, SHI Y, ZHONG Z, LIU H, LIU R, ZHANG H, WU S, ZHANG W, TANG X, LI YX. Rule-based omics mining reveals antimicrobial macrocyclic peptides against drug-resistant clinical isolates[J]. Nature Communications, 2024, 15(1): 4901.
    [52] KANCHANASIN P, SRIPREECHASAK P, SURIYACHADKUN C, RUEANGSAWANG K, TANASUPAWAT S, PHONGSOPITANUN W. Streptomyces cylindrosporus sp. nov. and Streptomyces spinosisporus sp. nov.: two new endophytic actinobacteria isolated from the roots of Barleria lupulina Lindl[J]. International Journal of Systematic and Evolutionary Microbiology, 2023, 73(5): 005926.
    [53] WANNAWONG T, MHUANTONG W, MACHAROEN P, NIEMHOM N, SITDHIPOL J, CHAIYAWAN N, UMRUNG S, TANASUPAWAT S, SUWANNARACH N, ASAMI Y, KUNCHAROEN N. Comparative genomics reveals insight into the phylogeny and habitat adaptation of novel Amycolatopsis species, an endophytic actinomycete associated with scab lesions on potato tubers[J]. Frontiers in Plant Science, 2024, 15: 1346574.
    [54] SIDDARAMAPPA S, CHALLACOMBE JF, PETERSEN JM, PILLAI S, HOGG G, KUSKE CR. Common ancestry and novel genetic traits of Francisella novicida-like isolates from North America and Australia as revealed by comparative genomic analyses[J]. Applied and Environmental Microbiology, 2011, 77(15): 5110-5122.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李珍华,王佳欣,张琳婕,孙宇佳,田蓉,杨瑾,刘缙. 一株分离自运城盐湖土壤沉积物的链霉菌(Streptomyces sp.) YH02全基因组测序和比较基因组特征[J]. 微生物学报, 2025, 65(3): 1053-1069

复制
分享
文章指标
  • 点击次数:14
  • 下载次数: 28
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2024-10-27
  • 在线发布日期: 2025-03-10
文章二维码