醋酸钙不动杆菌合成吡咯喹啉醌发酵条件优化及干旱胁迫下对辣椒生长的影响
作者:
基金项目:

邹学校院士创新工作站平台建设支撑项目(TL2023YF007);湖南省重点研发计划(2023NK2030);国家重点研发计划(2022YFD1700100)


Acinetobacter calcoaceticus CDWB36: optimization of fermentation conditions for pyrroloquinoline quinone production and effect on growth of pepper under drought stress
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    【目的】研究菌株CDWB36及其代谢产物吡咯喹啉醌(pyrroloquinoline quinone,PQQ)对辣椒抗旱促生的应用效果,为多功能菌剂的开发利用提供优良的菌种资源。【方法】结合形态学和16S rRNA基因对菌株CDWB36进行分类学鉴定;利用HPLC法和光谱法对PQQ进行检测;通过单因素试验探究菌株产PQQ的最佳发酵条件;通过盆栽试验,明确含PQQ的菌剂对干旱胁迫下辣椒生长、生理生化、土壤养分以及根际微生物群落结构的影响。【结果】菌株CDWB36经鉴定为醋酸钙不动杆菌,具备生产PQQ的能力。其最佳发酵条件为酵母粉10 g/L、混合氮源(硫酸铵:谷氨酸:酪氨酸=2:1:1)4 g/L、MgSO4 1.0 g/L、CaCl2 0.40 g/L、接种量0.5%、温度28℃和pH 6.5。优化后,在摇瓶水平上发酵7 d该菌株PQQ产量可达61.48 mg/L,较优化前提升3.3倍。盆栽试验结果表明,PQQ菌剂处理后,辣椒株高、茎粗、地上部和地下部鲜重较CK分别增加35.05%、8.22%、14.41%、51.70%,促生效果优于PQQ溶液。此外,PQQ菌剂显著提高叶片抗氧化酶活性和渗透调节物质含量,并显著增加土壤养分含量。同时,它明显改变了辣椒根际土壤中细菌和真菌的相对丰度,其中芽孢杆菌属、曲霉属和嗜热链球菌属相对丰度分别为CK的1.99倍、1.38倍和8.75倍。【结论】醋酸钙不动杆菌CDWB36具有合成PQQ的能力,适宜的发酵条件能够显著提高PQQ产量;该菌株发酵液对处于干旱胁迫下的辣椒生长具有显著的促进作用,其中PQQ是发挥这一作用的关键物质,在植物抗逆促生领域具有广阔的应用前景。

    Abstract:

    [Objective] To explore the effects of strain CDWB36 and its metabolite pyrroloquinoline quinone (PQQ) on the drought resistance and growth of pepper, so as to provide efficient strain resources for the development and utilization of multifunctional microbial agents. [Methods] A strain CDWB36 was identified based on the morphological characteristics and the 16S rRNA gene-based phylogenetic tree. HPLC and spectroscopy were employed to detect PQQ. The fermentation conditions were optimized by single factor tests with PQQ production as the indicator. The effects of the PQQ-containing microbial agent on the growth, physio-biochemical characteristics, soil nutrients, and rhizosphere microbial community structure of pepper under drought stress were determined by pot experiments. [Results] Strain CDWB36 was identified as Acinetobacter calcoaceticus and it had the ability to produce PQQ. The optimum conditions of strain CDWB36 for producing PQQ were 10 g/L yeast powder, 4 g/L mixed nitrogen sources (ammonium sulfate:glutamic acid:tyrosine=2:1:1), 1.0 g/L MgSO4, 0.40 g/L CaCl2, 0.5% inoculum amount, 28 ℃, and pH 6.5. The PQQ production of the strain in shake flasks after 7 days of fermentation at the optimized conditions reached 61.48 mg/L, which increased by 3.3 times compared with that before optimization. Compared with CK, the PQQ-containing microbial agent increased the plant height, stem diameter, aboveground fresh weight, and belowground fresh weight of pepper by 35.05%, 8.22%, 14.41%, and 51.70%, respectively, demonstrating better plant growth-promoting effect than the PQQ solution. Moreover, the PQQ-containing microbial agent significantly improved the activities of antioxidant enzymes and the content of osmoregulatory substances (soluble sugar, soluble protein, and proline) in leaves, while increasing the soil nutrient content. The PQQ-containing microbial agent significantly changed the relative abundance of bacteria and fungi in the rhizosphere soil of pepper, increasing the relative abundance of Bacillus, Aspergillus, and Streptococcus by 1.99 times, 1.38 times, and 8.75 times, respectively, compared with CK. [Conclusion] A. calcoaceticus CDWB36 has the ability to produce PQQ. Optimizing the fermentation conditions can effectively enhance the PQQ production. The fermentation broth of CDWB36 significantly promotes pepper growth under drought stress, and PQQ is a key substance in the broth for promoting pepper growth. Therefore, the strain has broad application prospects in enhancing the stress resistance and promoting the growth of plants.

    参考文献
    [1] RAWAT P, DAS S, SHANKHDHAR D, SHANKHDHAR SC. Phosphate-solubilizing microorganisms: mechanism and their role in phosphate solubilization and uptake[J]. Journal of Soil Science and Plant Nutrition, 2021, 21(1): 49-68.
    [2] 周益帆, 白寅霜, 岳童, 李庆伟, 黄艳娜, 蒋玮, 何川, 王金斌. 植物根际促生菌促生特性研究进展[J]. 微生物学通报, 2023, 50(2): 644-666. ZHOU YF, BAI YS, YUE T, LI QW, HUANG YN, JIANG W, HE C, WANG JB. Research progress on the growth-promoting characteristics of plant growth-promoting rhizobacteria[J]. Microbiology China, 2023, 50(2): 644-666(in Chinese).
    [3] 姚锦爱, 黄鹏, 侯翔宇, 余德亿. 海洋细菌解淀粉芽胞杆菌BA-3在兰花的定殖及对根际微生态的影响[J]. 中国生物防治学报, 2019, 35(6): 915-921. YAO JA, HUANG P, HOU XY, YU DY. Colonization dynamics marine bacterium Bacillus amyloliquefaciens BA-3 and its impact on the microbial community of Cymbidium rhizosphere[J]. Chinese Journal of Biological Control, 2019, 35(6): 915-921(in Chinese).
    [4] MISRA HS, RAJPUROHIT YS, KHAIRNAR NP. Pyrroloquinoline-quinone and its versatile roles in biological processes[J]. Journal of Biosciences, 2012, 37(2): 313-325.
    [5] 杨蒙雅, 张春月, 伊进行, 王怡明, 卓明洋, 马倩, 谢希贤. 大肠杆菌中吡咯喹啉醌合成途径的构建[J]. 食品与生物技术学报, 2022, 41(8): 75-85. YANG MY, ZHANG CY, YI J/X, WANG YM, ZHUO MY, MA Q, XIE XX. Construction of pyrroloquinoline quinone synthesis pathway in Escherichia coli[J]. Journal of Food Science and Biotechnology, 2022, 41(8): 75-85(in Chinese).
    [6] HUANG CY, FAN ZJ, HAN DD, JOHNSTON LJ, MA X, WANG FL. Pyrroloquinoline quinone regulates the redox status in vitro and in vivo of weaned pigs via the Nrf2/HO-1 pathway[J]. Journal of Animal Science and Biotechnology, 2021, 12(1): 77.
    [7] 刘卫群, 朱云集, 王永华, 赵永芳. 低温胁迫下PQQ对黄瓜幼苗子叶防御系统的影响[J]. 武汉大学学报(理学版), 1998, 44(4): 86-89. LIU WQ, ZHU YJ, WANG YH, ZHAO YF. Effects of PQQ on protective system in cucumber cotyledons under low temperature stress[J]. Journal of Wuhan University (Natural Science Edition), 1998, 44(4): 86-89(in Chinese).
    [8] LI X, ZHANG MX, ZHANG QZ, TAN FJ, GONG Z, XIE YH, TAO Y, CHEN J. Insights into pyrroloquinoline quinone (PQQ) effects on soil nutrients and pathogens from pepper monocropping soil under anaerobic and aerobic conditions[J]. Microbiology Spectrum, 2022, 10(4): e0093322.
    [9] CHOI O, KIM J, KIM JG, JEONG Y, MOON JS, PARK CS, HWANG I. Pyrroloquinoline quinone is a plant growth promotion factor produced by Pseudomonas fluorescens B16[J]. Plant Physiology, 2008, 146(2): 657-668.
    [10] GAO H, WANG YS, YANG JH, QIU M, LEI ZX, ZHANG WM, JIANG WK, XIN FX, JIANG M. Microbial synthesis of pyrroloquinoline quinone[J]. World Journal of Microbiology & Biotechnology, 2023, 40(1): 31.
    [11] REN Y, YANG XW, DING LT, LIU DF, TAO Y, HUANG JZ, KE CR. Adaptive evolutionary strategy coupled with an optimized biosynthesis process for the efficient production of pyrroloquinoline quinone from methanol[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 11.
    [12] BUCHANAN RE, GIBBONS NE. 伯杰细菌鉴定手册[M]. 8版. 北京: 科学出版社, 1984. BUCHANAN RE, GIBBONS NE. Bergey’s Manual of Determinative Bacteriology[M]. 8th ed. Beijing: Science Press, 1984(in Chinese).
    [13] 东秀珠, 蔡妙英. 常见细菌系统鉴定手册[M]. 北京: 科学出版社, 2001. DONG XZ, CAI MY. Handbook of Identification of Common Bacterial Systems[M]. Beijing: Science Press, 2001(in Chinese).
    [14] ZOU L, WANG Q, WU RX, ZHANG YP, WU QS, LI MY, YE KH, DAI W, HUANG J. Biocontrol and plant growth promotion potential of endophytic Bacillus subtilis JY-7-2L on Aconitum carmichaelii Debx[J]. Frontiers in Microbiology, 2023, 13: 1059549.
    [15] 纪晓娜, 吴文博, 任志敏, 陈国军, 李延君. 高效液相色谱法检测蔬菜中甲萘威残留[J]. 分析科学学报, 2022, 38(1): 122-124. JI XN, WU WB, REN ZM, CHEN GJ, LI YJ. Detection of carbaryl residue in vegetables by high performance liquid chromatography[J]. Journal of Analytical Science, 2022, 38(1): 122-124(in Chinese).
    [16] 朱道洋. 发酵法生产吡咯喹啉醌的研究[D]. 无锡: 江南大学硕士学位论文, 2021. ZHU DY. Study on production of pyrroloquinoline quinone by fermentation[D]. Wuxi: Master’s Thesis of Jiangnan University, 2021(in Chinese).
    [17] TALEB MH, MAJIDI MM, PIRNAJMEDIN F, MAIBODY SAMM. Plant functional trait responses to cope with drought in seven cool-season grasses[J]. Scientific Reports, 2023, 13(1): 5285.
    [18] 张志良, 瞿伟菁, 李小方. 植物生理学实验指导[M]. 4版. 北京: 高等教育出版社, 2009. ZHANG ZL, QU WJ, LI XF. Experimental Instruction of Plant Physiology[M]. 4th ed. Beijing: Higher Education Press, 2009(in Chinese).
    [19] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000. LI HS. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000(in Chinese).
    [20] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO SD. Soil and agricultural chemistry analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000(in Chinese).
    [21] 刘明艳, 马嘉晗, 李瑜, 刘文霞, 秦鸿娟, 高配科. 16S rRNA基因高变区V4和V3−V4及测序深度对油藏细菌菌群分析的影响[J]. 微生物学通报, 2020, 47(2): 440-449. LIU MY, MA JH, LI Y, LIU WX, QIN HJ, GAO PK. Influence of 16S rRNA gene V4 and V3−V4 sequencing and sequencing depth on unraveling bacterial communities inhabiting oil reservoirs[J]. Microbiology China, 2020, 47(2): 440-449(in Chinese).
    [22] 孙美美, 田丽, 乔紫薇, 张雪雅, 高泽文. 内蒙古砒砂岩地区沙棘根际和非根际土壤理化性质及真菌群落特征[J]. 微生物学报, 2024, 64(6): 1747-1765. SUN MM, TIAN L, QlAO ZW, ZHANG XY, GAO ZW. Physicochemical properties and fungal community characteristics of rhizosphere and non-rhizosphere soils of Hippophae rhamnoides in Pisha sandstone area of Inner Mongolia[J]. Acta Microbiologica Sinica, 2024, 64(6): 1747-1765(in Chinese).
    [23] 李红月. 高产吡咯喹啉醌扭脱甲基杆菌的定向选育与发酵优化[D]. 无锡: 江南大学硕士学位论文, 2018. LI HY. Directional breeding and fermentation optimization of high-yield pyrroloquinoline quinone-producing Methylobacterium extorquens[D]. Wuxi: Master’s Thesis of Jiangnan University, 2018(in Chinese).
    [24] 钟杉杉, 刘辉, 葛喜珍, 田平芳. 吡咯喹啉醌生产菌的发酵条件优化[J]. 北京化工大学学报(自然科学版), 2013, 40(5): 88-92. ZHONG SS, LIU H, GE XZ, TIAN PF. Optimization of fermentation conditions for pyrroloquinoline quinone expression by Pseudomonas 0813[J]. Journal of Beijing University of Chemical Technology (Natural Science Edition), 2013, 40(5): 88-92(in Chinese).
    [25] 周留柱. 鲍曼不动杆菌生物合成吡咯喹啉醌的研究[D]. 郑州: 郑州轻工业大学硕士学位论文, 2019. ZHOU LZ. Study on biosynthesis of pyrroloquinoline quinone by Acinetobacter baumannii[D]. Zhengzhou: Master’s Thesis of Zhengzhou University of Light Industry, 2019(in Chinese).
    [26] 申云鑫, 施竹凤, 李铭刚, 赵江源, 王楠, 冯路遥, 莫艳芳, 陈齐斌, 杨佩文. 贝莱斯芽孢杆菌SH-1471发酵条件优化及其番茄枯萎病的防治效果[J]. 微生物学报, 2024, 64(1): 220-237. SHEN YX, SHI ZF, LI MG, ZHAO JY, WANG N, FENG LY, MO YF, CHEN QB, YANG PW.
    Optimization of fermentation conditions of Bacillus velezensis SH-1471 and its control effect on tomato Fusarium wilt[J]. Acta Microbiologica Sinica, 2024, 64(1): 220-237(in Chinese).
    [27] 李巳夫, 欧阳茹, 刘洋, 匡炜, 朱杰伟, 刘都才, 欧阳翔, 马国兰, 彭亚军, 张玉烛. 诱抗剂PQQ对纹枯病的田间防效与水稻产量和品质的影响[J]. 杂交水稻, 2023, 38(3): 121-128. LI SF, OUYANG R, LIU Y, KUANG W, ZHU JW, LIU DC, OUYANG X, MA GL, PENG YJ, ZHANG YZ. Effects of resistance inducer PQQ on field control of sheath blight and rice yield and quality[J]. Hybrid Rice, 2023, 38(3): 121-128(in Chinese).
    [28] 何曙光, 李华平, 戴力, 刘洋, 匡炜, 方宝华, 赵杨. PQQ对低温胁迫下早稻幼苗生理特性的影响[J]. 湖南农业科学, 2020(5): 17-20. HE SG, LI HP, DAI L, LIU Y, KUANG W, FANG BH, ZHAO Y. Effects of PQQ on physiological characteristics of early rice seedlings under low temperature stress[J]. Hunan Agricultural Sciences, 2020(5): 17-20(in Chinese).
    [29] 冯海萍, 陈卓, 杨虎. 微生物菌剂对连作芹菜根际土壤真菌群落多样性与结构的影响[J]. 干旱地区农业研究, 2024, 42(2): 53-61, 70. FENG HP, CHEN Z, YANG H. Effects of microbial inoculants on the diversity and structure of fungal community in rhizosphere soil of continuous cropping celery[J]. Agricultural Research in the Arid Areas, 2024, 42(2): 53-61, 70(in Chinese).
    [30] PATANI A, PATEL M, ISLAM S, YADAV VK, PRAJAPATI D, YADAV AN, SAHOO DK, PATEL A. Recent advances in Bacillus-mediated plant growth enhancement: a paradigm shift in redefining crop resilience[J]. World Journal of Microbiology and Biotechnology, 2024, 40(2): 77(in Chinese).
    [31] 董晓雪, 彭国袁, 常卓凡, 于文娟, 旺姆. 西藏土壤芽孢杆菌的分离鉴定及生防促生菌筛选[J]. 江苏农业科学, 2023, 51(23): 114-123. DONG XX, PENG GY, CHANG ZF, YU WJ, WANG M. Isolation and identification of soil Bacillus in Xinjiang and screening of biocontrol and growth-promoting bacteria[J]. Jiangsu Agricultural Sciences, 2023, 51(23): 114-123(in Chinese).
    [32] 杨肖芳, 郭瑞, 姚燕来, 朱为静, 洪磊东, 洪春来, 朱凤香, 王卫平. 微生物菌剂对连作地块草莓生长、土壤养分及微生物群落的影响[J]. 核农学报, 2023, 37(6): 1253-1262. YANG XF, GUO R, YAO YL, ZHU WJ, HONG LD, HONG CL, ZHU FX, WANG WP. Effects of microbial agents on plant growth, soil fertility and microbial communities under continuous cropping strawberry[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(6): 1253-1262(in Chinese).
    [33] 杜华栋, 刘研, 毕银丽, 车旭曦, 拜梦童. 干旱砾漠区不同微地貌单元土壤性状及真菌群落变化特征[J]. 干旱区研究, 2024, 41(3): 421-431. DU HD, LIU Y, BI YL, CHE XX, BAI MT. Characteristics of soil properties and fungal community changes in different micro-geomorphic units in arid gravel desert area[J]. Arid Zone Research, 2024, 41(3): 421-431(in Chinese).
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

何秀兰,彭宇翔,陶禹,周池,朱理伟,李鑫. 醋酸钙不动杆菌合成吡咯喹啉醌发酵条件优化及干旱胁迫下对辣椒生长的影响[J]. 微生物学报, 2025, 65(1): 182-195

复制
分享
文章指标
  • 点击次数:111
  • 下载次数: 203
  • HTML阅读次数: 89
  • 引用次数: 0
历史
  • 收稿日期:2024-07-11
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码