假肠膜明串珠菌L64mazEFII型毒素-抗毒素系统的识别和鉴定
作者:
作者单位:

江西省科学院 微生物研究所,江西 南昌

作者简介:

李鹏:研究构思和设计、开展实验、处理数据、撰写和修改论文;刘兰:开展实验、处理数据、修改论文;章帅文:开展实验;王通:协助实验操作;黄筱萍:设计实验、修改论文。

基金项目:

江西省科学院重点研发计划(2022YSBG22011, 2021YSBG21014, 2022YSBG21007)


Identification and characterization of mazEF family type II toxin-antitoxin systems of Leuconostoc pseudomesenteroides L64
Author:
Affiliation:

Institute of Microbiology, Jiangxi Academy of Sciences, Nanchang, Jiangxi, China

Fund Project:

This work was supported by the Key Research and Development Program of Jiangxi Academy of Sciences (2022YSBG22011, 2021YSBG21014, 2022YSBG21007).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [36]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 鉴定假肠膜明串珠菌L64基因组中编码的mazEF类II型毒素-抗毒素系统,并初步探讨mazEF系统协助宿主应对环境酸压力的分子机制。方法 在大肠杆菌中诱导表达MazF毒素,或同时表达其对应的抗毒素蛋白,以检测MazF是否抑制宿主的正常生长,并验证对应的抗毒素是否能中和MazF的毒性。基于lacZ报告系统及电泳迁移率变动分析(electrophoretic mobility shift assay, EMSA)等体内外试验确定mazEF系统的自调控机制。通过生物信息学预测及体内外试验确定受MazE调控的下游基因。结果 在假肠膜明串珠菌L64基因组编码的3对潜在mazEF毒素-抗毒素系统中,仅有mazEF1-Leup (OYT_01690-OYT_01685)编码真正的毒素-抗毒素系统。抗毒素MazE1-Leup (OYT_01685)通过与启动子中的回文序列(TAACAaaatgTGTTA)结合,抑制mazEF1-Leup启动子的转录;同时,MazE1-Leup通过与dlt-acpS-alr操纵子启动子中的相同回文序列(TAACAtattgaaatatatgTGTTA)结合,抑制dlt-acpS-alr的转录。结论 OYT_01690-OYT_01685编码一个真正的mazEF类毒素-抗毒素系统,该系统不仅参与自身转录的调控,还抑制dlt-acpS-alr操纵子的转录,从而协助假肠膜明串珠菌L64应对环境中的酸压力。

    Abstract:

    Objective To identify mazEF family type II toxin-antitoxin systems of Leuconostoc pseudomesenteroides L64 and to elucidate the molecular roles of the mazEF systems in the host exposed to environmental acid stress.Methods Putative MazF toxins were induced alone or co-expressed with their cognate antitoxins in Escherichia coli. The toxic effect of MazF on bacterial growth and the antitoxic effects of cognate antitoxins were examined. The lacZ reporter system and electrophoretic mobility shift assay (EMSA) were used to decipher the auto-regulation mechanism of the mazEF system in vivo and in vitro. The putative target genes regulated by MazE were predicted and validated through in vivo and in vitro experiments.Results Among the three putative mazEF systems in L. pseudomesenteroides L64, mazEF1-Leup (OYT_01690-OYT_01685) encoded a functional type II toxin-antitoxin system. MazE1-Leup (OYT_01685) inhibited mazEF1-Leup transcription by binding to the palindromic sequence (TAACAaaatgTGTTA) in the promoter. In addition, MazE1-Leup inhibited transcription of the dlt-acpS-alr operon by binding to the similar palindromic sequence (TAACAtattgaaatatatgTGTTA) in the promoter of dlt-acpS-alr.Conclusion mazEF1-Leup (OYT_01690-OYT_01685) encodes a functional mazEF family type II toxin-antitoxin system. Beyond regulating its own operon, MazE1-Leup regulates the transcription of dlt-acpS-alr and finally assists L. pseudomesenteroides L64 in response to low acid stress.

    参考文献
    [1] OGURA T, HIRAGA S. Mini-F plasmid genes that couple host cell division to plasmid proliferation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1983, 80(15): 4784-4788.
    [2] GERDES K, RASMUSSEN PB, MOLIN S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 1986, 83(10): 3116-3120.
    [3] JUR?NAS D, FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Biology and evolution of bacterial toxin-antitoxin systems[J]. Nature Reviews Microbiology, 2022, 20(6): 335-350.
    [4] LEPLAE R, GEERAERTS D, HALLEZ R, GUGLIELMINI J, DRèZE P, van MELDEREN L. Diversity of bacterial type II toxin-antitoxin systems: a comprehensive search and functional analysis of novel families[J]. Nucleic Acids Research, 2011, 39(13): 5513-5525.
    [5] MAKAROVA KS, WOLF YI, KOONIN EV. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes[J]. Biology Direct, 2009, 4: 19.
    [6] GUAN JH, CHEN YK, GOH YX, WANG M, TAI C, DENG ZX, SONG JN, OU HY. TADB 3.0: an updated database of bacterial toxin-antitoxin loci and associated mobile genetic elements[J]. Nucleic Acids Research, 2024, 52(D1): D784-D790.
    [7] LeROUX M, CULVINER PH, LIU YJ, LITTLEHALE ML, LAUB MT. Stress can induce transcription of toxin-antitoxin systems without activating toxin[J]. Molecular Cell, 2020, 79(2): 280-292.e8.
    [8] DAO-THI MH, van MELDEREN L, de GENST E, AFIF H, BUTS L, WYNS L, LORIS R. Molecular basis of gyrase poisoning by the addiction toxin CcdB[J]. Journal of Molecular Biology, 2005, 348(5): 1091-1102.
    [9] HARMS A, STANGER FV, SCHEU PD, de JONG IG, GOEPFERT A, GLATTER T, GERDES K, SCHIRMER T, DEHIO C. Adenylylation of gyrase and topo IV by FicT toxins disrupts bacterial DNA topology[J]. Cell Reports, 2015, 12(9): 1497-1507.
    [10] JUR?NAS D, van MELDEREN L. The variety in the common theme of translation inhibition by type II toxin-antitoxin systems[J]. Frontiers in Genetics, 2020, 11: 262.
    [11] WINTHER K, TREE JJ, TOLLERVEY D, GERDES K. VapCs of Mycobacterium tuberculosis cleave RNAs essential for translation[J]. Nucleic Acids Research, 2016, 44(20): 9860-9871.
    [12] PEDERSEN K, ZAVIALOV AV, PAVLOV MY, ELF J, GERDES K, EHRENBERG M. The bacterial toxin RelE displays codon-specific cleavage of mRNAs in the ribosomal A site[J]. Cell, 2003, 112(1): 131-140.
    [13] JUR?NAS D, CHATTERJEE S, KONIJNENBERG A, SOBOTT F, DROOGMANS L, GARCIA-PINO A, van MELDEREN L. AtaT blocks translation initiation by N-acetylation of the initiator tRNAfMet[J]. Nature Chemical Biology, 2017, 13(6): 640-646.
    [14] KASPY I, ROTEM E, WEISS N, RONIN I, BALABAN NQ, GLASER G. HipA-mediated antibiotic persistence via phosphorylation of the glutamyl-tRNA-synthetase[J]. Nature Communications, 2013, 4: 3001.
    [15] FREIRE DM, GUTIERREZ C, GARZA-GARCIA A, GRABOWSKA AD, SALA AJ, ARIYACHAOKUN K, PANIKOVA T, BECKHAM KSH, COLOM A, POGENBERG V, CIANCI M, TUUKKANEN A, BOUDEHEN YM, PEIXOTO A, BOTELLA L, SVERGUN DI, SCHNAPPINGER D, SCHNEIDER TR, GENEVAUX P, de CARVALHO LPS, et al. An NAD+ phosphorylase toxin triggers Mycobacterium tuberculosis cell death[J]. Molecular Cell, 2019, 73(6): 1282-1291.e8.
    [16] FRAIKIN N, GOORMAGHTIGH F, van MELDEREN L. Type II toxin-antitoxin systems: evolution and revolutions[J]. Journal of Bacteriology, 2020, 202(7): e00763-19.
    [17] LI GW, BURKHARDT D, GROSS C, WEISSMAN JS. Quantifying absolute protein synthesis rates reveals principles underlying allocation of cellular resources[J]. Cell, 2014, 157(3): 624-635.
    [18] SOO VWC, WOOD TK. Antitoxin MqsA represses curli formation through the master biofilm regulator CsgD[J]. Scientific Reports, 2013, 3: 3186.
    [19] WANG XX, KIM Y, HONG SH, MA Q, BROWN BL, PU MM, TARONE AM, BENEDIK MJ, PETI W, PAGE R, WOOD TK. Antitoxin MqsA helps mediate the bacterial general stress response[J]. Nature Chemical Biology, 2011, 7(6): 359-366.
    [20] SONG YJ, ZHANG SP, LUO GH, SHEN YL, LI CC, ZHU YB, HUANG Q, MOU XY, TANG XY, LIU TG, WU SY, TONG AP, HE YX, BAO R. Type II antitoxin HigA is a key virulence regulator in Pseudomonas aeruginosa[J]. ACS Infectious Diseases, 2021, 7(10): 2930-2940.
    [21] GUO YX, SUN CL, LI YM, TANG KH, NI SW, WANG XX. Antitoxin HigA inhibits virulence gene mvfR expression in Pseudomonas aeruginosa[J]. Environmental Microbiology, 2019, 21(8): 2707-2723.
    [22] LIN CY, AWANO N, MASUDA H, PARK JH, INOUYE M. Transcriptional repressor HipB regulates the multiple promoters in Escherichia coli[J]. Journal of Molecular Microbiology and Biotechnology, 2013, 23(6): 440-447.
    [23] HU Y, BENEDIK MJ, WOOD TK. Antitoxin DinJ influences the general stress response through transcript stabilizer CspE[J]. Environmental Microbiology, 2012, 14(3): 669-679.
    [24] BONINI AA, MAGGI S, MORI G, CARNUCCIO D, DELFINO D, CAVAZZINI D, FERRARI A, LEVANTE A, YAMAGUCHI Y, RIVETTI C, FOLLI C. Functional characterization and transcriptional repression by Lacticaseibacillus paracasei DinJ-YafQ[J]. Applied Microbiology and Biotechnology, 2022, 106(21): 7113-7128.
    [25] FERRARI A, MAGGI S, MONTANINI B, LEVANTE A, LAZZI C, YAMAGUCHI Y, RIVETTI C, FOLLI C. Identification and first characterization of DinJ-YafQ toxin-antitoxin systems in Lactobacillus species of biotechnological interest[J]. Scientific Reports, 2019, 9(1): 7645.
    [26] EVEN S, LINDLEY ND, LOUBIèRE P, COCAIGN-BOUSQUET M. Dynamic response of catabolic pathways to autoacidification in Lactococcus lactis: transcript profiling and stability in relation to metabolic and energetic constraints[J]. Molecular Microbiology, 2002, 45(4): 1143-1152.
    [27] KOPONEN J, LAAKSO K, KOSKENNIEMI K, KANKAINEN M, SAVIJOKI K, NYMAN TA, de Vos WM, TYNKKYNEN S, KALKKINEN N, VARMANEN P. Effect of acid stress on protein expression and phosphorylation in Lactobacillus rhamnosus GG[J]. Journal of Proteomics, 2012, 75(4): 1357-1374.
    [28] SU MS, SCHLICHT S, G?NZLE MG. Contribution of glutamate decarboxylase in Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation[J]. Microbial Cell Factories, 2011, 10(Suppl 1): S8.
    [29] WU CD, ZHANG J, WANG M, DU GC, CHEN J. Lactobacillus casei combats acid stress by maintaining cell membrane functionality[J]. Journal of Industrial Microbiology & Biotechnology, 2012, 39(7): 1031-1039.
    [30] WEIDMANN S, MAITRE M, LAURENT J, COUCHENEY F, RIEU A, GUZZO J. Production of the small heat shock protein Lo18 from Oenococcus oeni in Lactococcus lactis improves its stress tolerance[J]. International Journal of Food Microbiology, 2017, 247: 18-23.
    [31] WU H, ZHANG YL, LI L, LI YN, YUAN L, YUE E, QIAO JJ. Positive regulation of the DLT operon by TCSR7 enhances acid tolerance of Lactococcus lactis F44[J]. Journal of Dairy Science, 2022, 105(10): 7940-7950.
    [32] LI P, TAI C, DENG ZX, GAN JH, OGGIONI MR, OU HY. Identification and characterization of chromosomal relBE toxin-antitoxin locus in Streptomyces cattleya DSM 46488[J]. Scientific Reports, 2016, 6: 32047.
    [33] Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics 2011, 27(7):1017-1018.
    [34] BOYD DA, CVITKOVITCH DG, BLEIWEIS AS, KIRIUKHIN MY, DEBABOV DV, NEUHAUS FC, HAMILTON IR. Defects in d-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity[J]. Journal of Bacteriology, 2000, 182(21): 6055-6065.
    [35] SALAMAGA B, TURNER RD, ELSARMANE F, GALLEY NF, KULAKAUSKAS S, MESNAGE S. A moonlighting role for LysM peptidoglycan binding domains underpins Enterococcus faecalis daughter cell separation[J]. Communications Biology, 2023, 6(1): 428.
    [36] AMES JB, HENDRICKS KB, STRAHL T, HUTTNER IG, HAMASAKI N, THORNER J. Structure and calcium-binding properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae[J]. Biochemistry, 2000, 39(40): 12149-12161.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李鹏,刘兰,章帅文,王通,黄筱萍. 假肠膜明串珠菌L64mazEFII型毒素-抗毒素系统的识别和鉴定[J]. 微生物学报, 2025, 65(3): 1070-1088

复制
分享
文章指标
  • 点击次数:4
  • 下载次数: 10
  • HTML阅读次数: 6
  • 引用次数: 0
历史
  • 收稿日期:2024-11-12
  • 在线发布日期: 2025-03-10
文章二维码