榆林页岩生物模拟产气条件优化和产气机理
作者:
作者单位:

1.中国矿业大学 化工学院,江苏 徐州;2.西安科技大学 地质与环境学院,陕西 西安;3.中国矿业大学,炼焦煤资源绿色开发全国重点实验室,江苏 徐州

作者简介:

王梦真:数据分析、图片绘制、撰写初稿;曹玥:样品采集、实验设计、实验测试、论文修改;何环:论文思想、框架指导、撰写与修改;孙强:数据处理;黄再兴:论文修改。

基金项目:

国家自然科学基金(42172187)


Optimization of simulated biogenic gas production conditions and study of gas production mechanism of shale
Author:
Affiliation:

1.School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, China;2.College of Geology and Environment, Xi’an University of Science and Technology, Xi’an, Shaanxi, China;3.National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, Jiangsu, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (42172187).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [53]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    目的 研究页岩生物产气的影响因素和产气机理。方法 以榆林页岩为研究对象,利用实验室前期富集的产甲烷微生物作为功能菌群,通过正交试验优化页岩的生物产气条件。采用气相色谱(gas chromatography, GC)、X射线衍射(X-ray diffraction, XRD)、傅里叶变换红外光谱(Fourier-transform infrared spectroscopy, FT-IR)、拉曼光谱(Raman spectroscopy, Ram)以及核磁共振波谱(nuclear magnetic resonance spectroscopy, NMR)分析了页岩的生物模拟产气特征,并对产气前后页岩的理化性质变化进行了分析。结果 页岩最优产气条件为:接种量15%、页岩粒度小于0.125 mm、培养温度35 ℃,50 d累计净产甲烷量为81.22 μmol/g页岩。产气前后工业和元素分析结果表明,产甲烷菌通过消耗页岩中的有机组分来产气。XRD分析结果显示,页岩中无机矿物组分也参与了厌氧降解产气过程。FT-IR与拉曼光谱显示,页岩有机物多为长链脂肪烃。产气时,部分化合物的羰基、醚键反应生成含羧基的中间产物。产气后,页岩样品的D、G峰不明显,表明干酪根的石墨化程度与成熟度增加。NMR结果表明,脂肪醇或脂肪胺在产气过程中被微生物利用。结论 榆林页岩中的有机组分可以被微生物利用产生甲烷,同时无机矿物组分也被消耗。产气过程中,有机组分的化学结构发生变化,生成较小的化合物。

    Abstract:

    Objective To study the influencing factors and mechanism of biogenic gas production in shale.Methods The shale in Yulin was chosen as the object of this study, and methanogens specifically enriched by our research team in the preliminary stage were used as functional microbiota. An orthogonal design was adopted to optimize the biogenic gas production conditions. The simulated biogenic gas production characteristics and changes in physical and chemical properties of the shale before and after gas production were comprehensively analyzed by gas chromatography (GC), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), Raman spectroscopy (Ram), and nuclear magnetic resonance spectroscopy (NMR).Results The optimal conditions for gas production from shale were as follows: 15% inoculum, a shale particle size of less than 0.125 mm, and an incubation temperature of 35 ℃, under which a cumulative methane yield of 81.22 μmol/g shale was achieved within 50 days. Industrial and elemental analyses conducted before and after gas production revealed that methanogens consumed the organic components of shale to produce methane. XRD results indicated that the inorganic mineral components in shale also contributed to the anaerobic degradation process associated with gas production. FT-IR and Ram results showed that the organic matter in shale was mostly long-chain aliphatic hydrocarbons. During gas production, the carbonyl and ether bonds in some compounds reacted to form intermediate metabolites containing carboxyl groups. After gas production, the D and G peaks in the shale samples were not obvious, indicating that the graphitization degree and maturity of kerogen in the shale increased. In addition, NMR results confirmed that fatty alcohols or fatty amines were utilized by microorganisms in gas production.Conclusion Microorganisms can utilize the organic components of the shale to produce gas, while also consuming the inorganic mineral components. This leads to chemical structure organic components, leading to formation of smaller compounds after gas production.

    参考文献
    [1] MIDDLETON RS, GUPTA R, HYMAN JD, VISWANATHAN HS. The shale gas revolution: barriers, sustainability, and emerging opportunities[J]. Applied Energy, 2017, 199: 88-95.
    [2] 杨玉峰. 美国页岩气发展对全球天然气市场的影响[J]. 国际石油经济, 2009, 17(12): 35-38, 89-90.YANG YF. The effect of American shale gas development on the global natural gas market[J]. International Petroleum Economics, 2009, 17(12): 35-38, 89-90 (in Chinese).
    [3] LE MT. An assessment of the potential for the development of the shale gas industry in countries outside of North America[J]. Heliyon, 2018, 4(2): e00516.
    [4] 邹才能, 赵群, 董大忠, 杨智, 邱振, 梁峰, 王南, 黄勇, 端安详, 张琴, 胡志明. 页岩气基本特征、主要挑战与未来前景[J]. 天然气地球科学, 2017, 28(12): 1781-1796.ZOU CN, ZHAO Q, DONG DZ, YANG Z, QIU Z, LIANG F, WANG N, HUANG Y, DUAN AX, ZHANG Q, HU ZM. Geological characteristics, main challenges and future prospect of shale gas[J]. Natural Gas Geoscience, 2017, 28(12): 1781-1796 (in Chinese).
    [5] DALY RA, BORTON MA, WILKINS MJ, HOYT DW, KOUNTZ DJ, WOLFE RA, WELCH SA, MARCUS DN, TREXLER RV, MacRAE JD, KRZYCKI JA, COLE DR, MOUSER PJ, WRIGHTON KC. Microbial metabolisms in a 2.5-km-deep ecosystem created by hydraulic fracturing in shales[J]. Nature Microbiology, 2016, 1: 16146.
    [6] 董大忠, 王玉满, 李新景, 邹才能, 管全中, 张晨晨, 黄金亮, 王淑芳, 王红岩, 刘洪林, 拜文华, 梁峰, 吝文, 赵群, 刘德勋, 邱振. 中国页岩气勘探开发新突破及发展前景思考[J]. 天然气工业, 2016, 36(1): 19-32.DONG DZ, WANG YM, LI XJ, ZOU CN, GUAN QZ, ZHANG CC, HUANG JL, WANG SF, WANG HY, LIU HL, BAI WH, LIANG F, LIN W, ZHAO Q, LIU DX, QIU Z. Breakthrough and prospect of shale gas exploration and development in China[J]. Natural Gas Industry, 2016, 36(1): 19-32 (in Chinese).
    [7] 苏现波, 夏大平, 赵伟仲, 伏海蛟, 郭红光, 何环, 鲍园, 李丹, 魏国琴. 煤层气生物工程研究进展[J]. 煤炭科学技术, 2020, 48(6): 1-30.SU XB, XIA DP, ZHAO WZ, FU HJ, GUO HG, HE H, BAO Y, LI D, WEI GQ. Research advances of coalbed gas bioengineering[J]. Coal Science and Technology, 2020, 48(6): 1-30 (in Chinese).
    [8] 郭鑫, 宋燕莉, 赵娜. 浅析影响沁水煤田煤微生物产甲烷条件的因素[J]. 能源与节能, 2017(10): 61-62, 66.GUO X, SONG YL, ZHAO N. Analysis of the factors influencing methane production from coal microorganism in coal field of Qinshui Coalfield[J]. Energy and Energy Conservation, 2017(10): 61-62, 66 (in Chinese).
    [9] 张娜, 尹雪峰, 王子琛, 刘浩, 黄敏婕, 王浩, 梁东旭, 胡佳楠. 微生物增产煤层气作用机理及影响因素研究进展[J]. 过程工程学报, 2024, 24(6): 636-646.ZHANG N, YIN XF, WANG ZC, LIU H, HUANG MJ, WANG H, LIANG DX, HU JN. Research progress on the mechanism and influencing factors of microorganisms to increase coalbed methane production[J]. The Chinese Journal of Process Engineering, 2024, 24(6): 636-646 (in Chinese).
    [10] 武俐, 曹斌, 赵同谦, 罗永涛, 李鹏. 分子筛与黏土对低阶煤生物成气的增效研究[J]. 煤炭转化, 2021, 44(3): 42-49.WU L, CAO B, ZHAO TQ, LUO YT, LI P. Study on synergistic effect of molecular sieve and clay on biogenic gas generated from low-rank coal[J]. Coal Conversion, 2021, 44(3): 42-49 (in Chinese).
    [11] 左承未, 张瀚, 贾振福, 徐栋, 朱卫平. 低渗页岩储层压裂及一体化压裂液研究现状[J]. 化学工程师, 2024, 38(8): 80-84.ZUO CW, ZHANG H, JIA ZF, XU D, ZHU WP. Research status of low permeability shale reservoir fracturing and integrated fracturing fluids[J]. Chemical Engineer, 2024, 38(8): 80-84 (in Chinese).
    [12] 吴永辉, 姜振学, 吴建发, 梁兴, 石学文, 包书景, 吴伟, 徐亮, 唐相路, 韩云浩. 渝西地区高含水页岩气藏特征、形成机理及地质意义[J]. 天然气工业, 2024, 44(8): 58-71.WU YH, JIANG ZX, WU JF, LIANG X, SHI XW, BAO SJ, WU W, XU L, TANG XL, HAN YH. Characteristics, formation mechanism and geological implications of high water-cut shale gas reservoirs in western Chongqing area[J]. Natural Gas Industry, 2024, 44(8): 58-71 (in Chinese).
    [13] LIU XY, WANG L, LI YF, ZHANG BH. The succession of microbial community in CSTR hydrogen production system[J]. Advanced Materials Research, 2010, 113/114/115/116: 1297-1301.
    [14] 单爱琴, 张燕婷, 肖洁, 冯启言, 高波. 废弃矿井微生物群落演替特征实验研究[J]. 环境科学与技术, 2019, 42(4): 31-37.SHAN AQ, ZHANG YT, XIAO J, FENG QY, GAO B. Experimental study of microbial community succession characteristics in abandoned mine groundwater[J]. Environmental Science & Technology, 2019, 42(4): 31-37 (in Chinese).
    [15] 夏汉平, 黄娟, 孔国辉. 油页岩废渣场的生态恢复[J]. 生态学报, 2004, 24(12): 2887-2893.XIA HP, HUANG J, KONG GH. Ecological restoration of oil shale waste dumps[J]. Acta Ecologica Sinica, 2004, 24(12): 2887-2893 (in Chinese).
    [16] 甘会春, 沙亚南, 李海庆, 周国兴. 我国页岩气研究概况及江苏地区潜力分析[J]. 能源与环保, 2017, 39(4): 78-82.GAN HC, SHA YN, LI HQ, ZHOU GX. Research situation of shale gas in our country and analysis of potential of Jiangsu area[J]. China Energy and Environmental Protection, 2017, 39(4): 78-82 (in Chinese).
    [17] 罗胜元, 陈孝红, 刘安, 李海. 中扬子宜昌地区下寒武统水井沱组页岩气地球化学特征及其成因[J]. 石油与天然气地质, 2019, 40(5): 999-1010.LUO SY, CHEN XH, LIU A, LI H. Geochemical features and genesis of shale gas from the Lower Cambrian Shuijingtuo Formation shale in Yichang block, Middle Yangtze region[J]. Oil & Gas Geology, 2019, 40(5): 999-1010 (in Chinese).
    [18] 何环, 黄新颖, 黄再兴, 张倩, 陈子豪, 赵晗, 任恒星, 黄冠华. 高岭土对煤生物产气的影响及微生物群落响应[J]. 煤田地质与勘探, 2022, 50(6): 1-10.HE H, HUANG XY, HUANG ZX, ZHANG Q, CHEN ZH, ZHAO H, REN HX, HUANG GH. Effect of Kaolin on biogenic coalbed methane production and the response of microbial community[J]. Coal Geology & Exploration, 2022, 50(6): 1-10 (in Chinese).
    [19] 李啸宇, 何环, 张倩, 赵晗, 任恒星, 陈林勇, 朱术云, 徐智敏, 黄再兴. 黄铁矿对煤生物产气和微生物群落结构的影响[J]. 微生物学报, 2023, 63(6): 2185-2203.LI XY, HE H, ZHANG Q, ZHAO H, REN HX, CHEN LY, ZHU SY, XU ZM, HUANG ZX. Influence of pyrite on biogenic coal bed methane production and microbial community structure[J]. Acta Microbiologica Sinica, 2023, 63(6): 2185-2203 (in Chinese).
    [20] 国家质量监督检验检疫总局. 煤的工业分析方法: GB/T 212—2001[S]. 北京: 中国标准出版社, 2004.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Proximate analysis of coal: GB/T 212—2001[S]. Beijing: Standards Press of China, 2004 (in Chinese).
    [21] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤中碳和氢的测定方法: GB/T 476—2008[S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of carbon and hydrogen in coal: GB/T 476—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [22] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 煤中氮的测定方法: GB/T 19227—2008[S]. 北京: 中国标准出版社, 2009.General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Determination of nitrogen in coal: GB/T 19227—2008[S]. Beijing: Standards Press of China, 2009 (in Chinese).
    [23] 尤陆花. 新疆低阶煤产甲烷过程微生物多样性及产甲烷条件优化[D]. 乌鲁木齐: 新疆大学, 2014.YOU LH. Microbial diversity and optimization of methane production conditions in low-rank coal in Xinjiang[D]. Urumqi: Xinjiang University, 2014 (in Chinese).
    [24] 赵星程, 王博, 冯炘, 解玉红. 褐煤生物甲烷产气量影响因素的初步探究[J]. 煤炭技术, 2018, 37(10): 106-109.ZHAO XC, WANG B, FENG X, XIE YH. Preliminary study on influencing factors of biomethane gas production from lignite[J]. Coal Technology, 2018, 37(10): 106-109 (in Chinese).
    [25] GUPTA P, GUPTA A. Biogas production from coal via anaerobic fermentation[J]. Fuel, 2014, 118: 238-242.
    [26] GUO HY, LIU XL, BAI Y, CHEN SL. Impact of coal particle size on biogenic methane metabolism and its significance[J]. Journal of Computational and Theoretical Nanoscience, 2016, 13(2): 1297-1301.
    [27] 苏现波, 吴昱, 夏大平, 陈鑫. 温度对低煤阶煤生物甲烷生成的影响[J]. 煤田地质与勘探, 2012, 40(5): 24-26.SU XB, WU Y, XIA DP, CHEN X. Effect of temperature on biological methane generation of low rank coal[J]. Coal Geology & Exploration, 2012, 40(5): 24-26 (in Chinese).
    [28] RATHI R, LAVANIA M, SINGH N, SARMA PM, KISHORE P, HAJRA P, LAL B. Evaluating indigenous diversity and its potential for microbial methane generation from thermogenic coal bed methane reservoir[J]. Fuel, 2019, 250: 362-372.
    [29] PARK SY, LIANG YN. Biogenic methane production from coal: a review on recent research and development on microbially enhanced coalbed methane (MECBM)[J]. Fuel, 2016, 166: 258-267.
    [30] CHEN H, QIN Y, DENG Z, GENG M, LI GZ, SANG GJ, XIA DP. Factors influencing biogenic gas production of low-rank coal beds in the Jiergalangtu Sag, Erlian Basin[J]. Natural Gas Industry B, 2019, 6(1): 1-6.
    [31] WANG Q, GAO FB, SU XB, JIN Y, ZHAO WZ, GUO HY, SU LN, XU LW, SHI XW, DING LZ, YU SY. Graphite-enhanced methanogenesis in coal measure shale anaerobic digestion: implications for increasing gas yield and CO2 utilization[J]. Chemical Engineering Journal, 2025, 503: 158202.
    [32] 苏现波, 徐影, 吴昱, 夏大平, 陈鑫. 盐度、pH对低煤阶煤层生物甲烷生成的影响[J]. 煤炭学报, 2011, 36(8): 1302-1306.SU XB, XU Y, WU Y, XIA DP, CHEN X. Effect of salinity and pH on biogenic methane production of low-rank coal[J]. Journal of China Coal Society, 2011, 36(8): 1302-1306 (in Chinese).
    [33] RAY S, KUPPAM C, PANDIT S, KUMAR P. Biogas upgrading by hydrogenotrophic methanogens: an overview[J]. Waste and Biomass Valorization, 2023, 14(2): 537-552.
    [34] 阮倩雯, 王乾, 苏现波, 赵伟仲, 高富博. 煤系页岩总有机碳含量与成熟度对厌氧发酵产甲烷性能的影响[J]. 煤炭学报, 2024, 49(12): 4883-4896.RUAN QW, WANG Q, SU XB, ZHAO WZ, GAO FB. Investigation on the effects of total organic carbon content and maturity of coal measure shale on biomethane production performance in the anaerobic digestion system[J]. Journal of China Coal Society, 2024, 49(12): 4883-4896 (in Chinese).
    [35] 乔留虎, 夏大平, 唐书恒, 张松航, 张文东. 低煤阶煤产气量的pH和Eh控制[J]. 煤田地质与勘探, 2016, 44(4): 73-76.QIAO LH, XIA DP, TANG SH, ZHANG SH, ZHANG WD. The control of pH and Eh of the gas production of low rank coal[J]. Coal Geology & Exploration, 2016, 44(4): 73-76 (in Chinese).
    [36] 张勋, 陈天虎, 王进, 岳正波. 铁氧化物对有机质厌氧产甲烷过程的影响及其机制[J]. 地球科学, 2018, 43(S1): 136-144.ZHANG X, CHEN TH, WANG J, YUE ZB. Influence of iron oxides on methanogenic process of organic matter and related mechanism[J]. Earth Science, 2018, 43(S1): 136-144 (in Chinese).
    [37] 张倩, 何环, 刘冬雪, 孙强, 黄华洲, 占迪, 黄再兴, 陶秀祥. 大柳塔长焰煤中灰分和无机矿物对生物产气的影响[J]. 微生物学报, 2020, 60(6): 1232-1245.ZHANG Q, HE H, LIU DX, SUN Q, HUANG HZ, ZHAN D, HUANG ZX, TAO XX. Effect of ash and inorganic minerals in Dalita long-flame coal on biogas production[J]. Acta Microbiologica Sinica, 2020, 60(6): 1232-1245 (in Chinese).
    [38] LI YQ, WANG ZX, HE ZY, LUO S, SU DF, JIANG H, ZHOU HJ, XU Q. Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation[J]. Bioresource Technology, 2020, 295: 122296.
    [39] WANG ZZ, WANG S, HU YS, DU B, MENG JZ, WU GX, LIU H, ZHAN XM. Distinguishing responses of acetoclastic and hydrogenotrophic methanogens to ammonia stress in mesophilic mixed cultures[J]. Water Research, 2022, 224: 119029.
    [40] GONG SG, IZON G, PENG YB, CAO YC, LIANG QY, PECKMANN J, CHEN DF, FENG D. Multiple sulfur isotope systematics of pyrite for tracing sulfate-driven anaerobic oxidation of methane[J]. Earth and Planetary Science Letters, 2022, 597: 117827.
    [41] 张生, 李统锦. 石英溶解动力学研究进展[J]. 世界地质, 1996, 15(4): 8-13.
    [42] LIU D, DONG HL, AGRAWAL A, SINGH R, ZHANG J, WANG HM. Inhibitory effect of clay mineral on methanogenesis by Methanosarcina mazei and Methanothermobacter thermautotrophicus[J]. Applied Clay Science, 2016, 126: 25-32.
    [43] 向婉丽, 陆现彩, 陆昀乔, 李娟, 张蕊, 陈笑夜, 刘欢. 含方解石铜矿石微生物氧化作用的实验研究[J]. 矿物岩石地球化学通报, 2014, 33(6): 764-771.XIANG WL, LU XC, LU YQ, LI J, ZHANG R, CHEN XY, LIU H. Experimental study on the microbial oxidation of chalcopyrite in calcite-boaring ore[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2014, 33(6): 764-771 (in Chinese).
    [44] 于春梅, 张楠, 滕海鹏. FTIR和Raman技术在煤结构分析中的应用研究[J]. 光谱学与光谱分析, 2021, 41(7): 2050-2056.YU CM, ZHANG N, TENG HP. Investigation of different structures of coals through FTIR and Raman techniques[J]. Spectroscopy and Spectral Analysis, 2021, 41(7): 2050-2056 (in Chinese).
    [45] THAUER RK, KASTER AK, SEEDORF H, BUCKEL W, HEDDERICH R. Methanogenic Archaea: ecologically relevant differences in energy conservation[J]. Nature Reviews Microbiology, 2008, 6(8): 579-591.
    [46] GUO HG, HAN Q, ZHANG JL, LIANG WG, HUANG ZX, URYNOWICZ M, MI ALI. Available methane from anthracite by combining coal seam microflora and HO pretreatment[J]. International Journal of Energy Research, 2021, 45(2): 1959-1970.
    [47] 张昊鹏, 张丹, 何环, 任义, 陈林勇, 刘健, 黄再兴. H2O2预处理胜利褐煤镜质组的生物产气研究[J]. 微生物学报, 2024, 64(6): 1960-1971.ZHANG HP, ZHANG D, HE H, REN Y, CHEN LY, LIU J, HUANG ZX. Biogas production of vitrinite from Shengli lignite pretreated with H2O2[J]. Acta Microbiologica Sinica, 2024, 64(6): 1960-1971 (in Chinese).
    [48] CHEN R, BAO YX, ZHANG YJ. A review of biogenic coalbed methane experimental studies in China[J]. Microorganisms, 2023, 11(2): 304.
    [49] VICK SHW, GONG S, SESTAK S, VERGARA TJ, PINETOWN KL, LI ZS, GREENFIELD P, TETU SG, MIDGLEY DJ, PAULSEN IT. Who eats what Unravelling microbial conversion of coal to methane[J]. FEMS Microbiology Ecology, 2019, 95(7): fiz093.
    [50] VINSON DS, BLAIR NE, MARTINI AM, LARTER S, OREM WH, McINTOSH JC. Microbial methane from in situ biodegradation of coal and shale: a review and reevaluation of hydrogen and carbon isotope signatures[J]. Chemical Geology, 2017, 453: 128-145.
    [51] WANG Q, YE JB, YANG HY, LIU Q. Chemical composition and structural characteristics of oil shales and their kerogens using Fourier transform infrared (FTIR) spectroscopy and solid-state 13C nuclear magnetic resonance (NMR)[J]. Energy & Fuels, 2016, 30(8): 6271-6280.
    [52] TONG JH, HAN XX, WANG S, JIANG XM. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (solid-state 13C NMR, XPS, FT-IR, and XRD)[J]. Energy & Fuels, 2011, 25(9): 4006-4013.
    [53] COKAR M, FORD B, KALLOS MS, GATES ID. New gas material balance to quantify biogenic gas generation rates from shallow organic-matter-rich shales[J]. Fuel, 2013, 104: 443-451.
    相似文献
    引证文献
引用本文

王梦真,曹玥,何环,孙强,黄再兴. 榆林页岩生物模拟产气条件优化和产气机理[J]. 微生物学报, 2025, 65(6): 2514-2528

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-28
  • 在线发布日期: 2025-06-05
文章二维码