补充复合益生菌对中国式摔跤运动员肠道菌群结构、短链脂肪酸含量与炎性因子浓度的影响
作者:
基金项目:

山东省重点研发计划(2019GSF108155)


The impact of compound probiotics supplementation on gut microbiota structure, short-chain fatty acids profile, and inflammatory cytokine levels in Chinese wrestlers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [38]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】观察补充复合益生菌对中国式摔跤运动员肠道菌群结构、短链脂肪酸(short chain fatty acids,SCFAs)含量与炎性因子浓度的影响。【方法】招募18名山东省体育学院非体育专业在校大学生为对照组,30名中国式摔跤运动员作为实验组;两组受试者均按计划口服复合益生菌8周。在复合益生菌干预前、后空腹采集静脉血,并收集粪便样本。采用酶联免疫吸附法(enzyme-linked immunosorbent assay,ELISA)测定血浆中的炎性因子浓度;采用16S rRNA基因测序技术分析其肠道菌群结构特征,测定区域为V3−V4区;采用气相色谱-质谱联用(gas chromatography-mass spectrometry,GC-MS)检测粪便中SCFAs的含量。【结果】干预前,中国式摔跤运动员血浆中白细胞介素-1(interleukin 1,IL-1)、白细胞介素-6(interleukin 6,IL-6)和C反应蛋白(C reactive protein,CRP)浓度均显著低于对照组(P<0.001,P<0.01,P<0.01),白细胞介素10(interleukin 10,IL-10)浓度显著高于对照组(P<0.001);8周复合益生菌干预后,中国式摔跤运动员血浆中IL-6和CRP浓度均呈进一步显著降低(P<0.01,P<0.05)。干预前,中国式摔跤运动员肠道菌群中青春双歧杆菌(Bifidobacterium adolescentis)的丰度显著高于对照组(P<0.01);8周复合益生菌干预后,中国式摔跤运动员组柯林斯氏菌属(Collinsella)丰度显著增加(P<0.01),而栖粪杆菌属(Faecalibacterium)丰度显著降低(P<0.01);其肠道菌群α多样性显著降低(P<0.01)。干预前,中国式摔跤运动员粪便中短链脂肪酸含量与对照组之间未见显著差异;8周复合益生菌干预后,对照组粪便样本中乙酸、丁酸的含量均显著增加(P<0.01,P<0.05),中国式摔跤运动员粪便样本中乙酸、丁酸的含量均显著增加(P<0.05)。相关性分析结果提示,中国式摔跤运动员的青春双歧杆菌丰度与血浆中IL-10浓度呈显著正相关(r=0.233,P=0.037);青春双歧杆菌丰度和产气柯林斯氏菌丰度与血浆中IL-6浓度呈显著负相关(r=−0.499,P=0.000;r=−0.366,P=0.001);产气柯林斯氏菌丰度与粪便中丁酸含量呈显著正相关(r=0.243,P=0.032)。【结论】中国式摔跤运动员经8周复合益生菌干预可有效降低血浆促炎因子浓度,提高抗炎因子浓度,提升其肠道菌群中产丁酸菌的丰度,并使其短链脂肪酸生成增加,进而可有效提升其机体抗炎能力。

    Abstract:

    [Objective] To observe the effects of supplementing compound probiotics on the structure of gut microbiota, content of short-chain fatty acids (SCFAs), and levels of inflammatory cytokines in Chinese wrestlers. [Methods] Eighteen non-sports undergraduates from Shandong Sport University were recruited as a control group, while 30 Chinese wrestlers served as the experimental group. Both groups received oral compound probiotics for 8 weeks. Venous blood and stool samples were collected before and after the intervention. Enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory cytokines levels in plasma. The structural characteristics of gut microbiota were analyzed using 16S rRNA gene sequencing of the V3−V4 region, and gas chromatography-mass spectrometry (GC-MS) was employed to determine SCFAs content in stool samples. [Results] Prior to the intervention, the experimental group exhibited lower levels of interleukin-1 (IL-1), interleukin-6 (IL-6), and C reactive protein (CRP) (P<0.001, P<0.01, P<0.01), and higher levels of interleukin-10 (IL-10) compared to the control group (P<0.001). After 8 weeks of probiotic supplementation, plasma levels of IL-6 and CRP in the Chinese wrestlers further declined (P<0.01, P<0.05). Before the intervention, the abundance of Bifidobacterium adolescentis was higher in Chinese wrestlers than that in the control group (P<0.01). Following 8 weeks of supplementation, Chinese wrestlers showed an increased abundance of Collinsella (P<0.01), a decreased abundance of Faecalibacterium (P<0.01), and reduced α-diversity in gut microbiota (P<0.01). Prior to the intervention, there was no significant difference in SCFAs content between the two groups. After 8 weeks of intervention with compound probiotics, the content of acetic acid and butyric acid in the stool samples increased in both the control group (P<0.01, P<0.05) and the experimental group (P<0.05). The correlation analysis results indicated a positive correlation between B. adolescentis abundance and plasma IL-10 level (r=0.233, P=0.037) and negative correlations of B. adolescentis and C. aerofaciens abundance with plasma IL-6 level (r=−0.499, P=0.000; r=−0.366, P=0.001) in Chinese wrestlers. Additionally, there was a positive correlation between C. aerofaciens abundance and the butyric acid content in stool samples of Chinese wrestlers (r=0.243, P=0.032). [Conclusion] The 8 weeks intervention with compound probiotics effectively reduced pro-inflammatory cytokine levels and increased anti-inflammatory cytokine levels in plasma. Furthermore, it enhanced the abundance of butyric acid-producing bacteria in the gut microbiota, promoting the production of SCFAs, and improving anti-inflammatory capacity.

    参考文献
    [1] LARSEN OFA, CLAASSEN E. The mechanistic link between health and gut microbiota diversity[J]. Scientific Reports, 2018, 8(1): 2183.
    [2] FONTANA F, LONGHI G, TARRACCHINI C, MANCABELLI L, LUGLI GA, ALESSANDRI G, TURRONI F, MILANI C, VENTURA M. The human gut microbiome of athletes: metagenomic and metabolic insights[J]. Microbiome, 2023, 11(1): 27.
    [3] MOHR AE, JÄGER R, CARPENTER KC, KERKSICK CM, PURPURA M, TOWNSEND JR, WEST NP, BLACK K, GLEESON M, PYNE DB, WELLS SD, ARENT SM, KREIDER RB, CAMPBELL BI, BANNOCK L, SCHEIMAN J, WISSENT CJ, PANE M, KALMAN DS, PUGH JN, et al. The athletic gut microbiota[J]. Journal of the International Society of Sports Nutrition, 2020, 17(1): 24.
    [4] LI YX, CHENG MY, ZHA YG, YANG K, TONG YG, WANG S, LU QW, NING K. Gut microbiota and inflammation patterns for specialized athletes: a multi-cohort study across different types of sports[J]. mSystems, 2023, 8(4): e0025923.
    [5] TRUSHINA EN, RIGER NA, MUSTAFINA OK, TIMONIN AN, SOLNTSEVA TN, ZILOVA IS, KOBELKOVA IV, NIKITYUK DB. Multi-strain probiotic combined with dietary fiber is an effective factor in the nutritional support of immunity in athletes[J]. Voprosy Pitaniia, 2024, 93(2): 19-30.
    [6] CHEN YM, WEI L, CHIU YS, HSU YJ, TSAI TY, WANG MF, HUANG CC. Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice[J]. Nutrients, 2016, 8(4): 205.
    [7] HUANG WC, HSU YJ, LI HS, KAN NW, CHEN YM, LIN JS, HSU TK, TSAI TY, CHIU YS, HUANG CC. Effect of Lactobacillus plantarum TWK10 on improving endurance performance in humans[J]. The Chinese Journal of Physiology, 2018, 61(3): 163-170.
    [8] LEE MC, TU YT, LEE CC, TSAI SC, HSU HY, TSAI TY, LIU TH, YOUNG SL, LIN JS, HUANG CC. Lactobacillus plantarum TWK10 improves muscle mass and functional performance in frail older adults: a randomized, double-blind clinical trial[J]. Microorganisms, 2021, 9(7): 1466.
    [9] LEE MC, HSU YJ, CHUANG HL, HSIEH PS, HO HH, CHEN WL, CHIU YS, HUANG CC. In vivo ergogenic properties of the Bifidobacterium longum OLP-01 isolated from a weightlifting gold medalist[J]. Nutrients, 2019, 11(9): 2003.
    [10] PUGH JN, SPARKS AS, DORAN DA, FLEMING SC, LANGAN-EVANS C, KIRK B, FEARN R, MORTON JP, CLOSE GL. Four weeks of probiotic supplementation reduces GI symptoms during a marathon race[J]. European Journal of Applied Physiology, 2019, 119(7): 1491-1501.
    [11] GUO YQ, QIAN HN, XIN XY, LIU QL. Effects of different exercise modalities on inflammatory markers in the obese and overweight populations: unraveling the mystery of exercise and inflammation[J]. Frontiers in Physiology, 2024, 15: 1405094.
    [12] SCHELLER J, CHALARIS A, SCHMIDT-ARRAS D, ROSE-JOHN S. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5): 878-88.
    [13] THONGPRAYOON C, KAEWPUT W, HATCH ST, BATHINI T, SHARMA K, WIJARNPREECHA K, UNGPRASERT P, D’COSTA M, MAO MA, CHEUNGPASITPORN W. Effects of probiotics on inflammation and uremic toxins among patients on dialysis: a systematic review and meta-analysis[J]. Digestive Diseases and Sciences, 2019, 64(2): 469-479.
    [14] JAMILIAN M, MANSURY S, BAHMANI F, HEIDAR Z, AMIRANI E, ASEMI Z. The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome[J]. Journal of Ovarian Research, 2018, 11(1): 80.
    [15] MIKULIC N, UYOGA MA, STOFFEL NU, DERRIEN M, NYILIMA S, KOSTOPOULOS I, ROESELERS G, CHENOLL E, MWASI E, PIRONACI G, KARANJA S, BOURDET-SICARD R, ZIMMERMANN MB. Prebiotics increase iron absorption and reduce the adverse effects of iron on the gut microbiome and inflammation: a randomized controlled trial using iron stable isotopes in Kenyan infants[J]. The American Journal of Clinical Nutrition, 2024, 119(2): 456-469.
    [16] KACZMARCZYK M, SZULIŃSKA M, ŁONIEWSKI I, KRĘGIELSKA-NAROŻNA M, SKONIECZNA- ŻYDECKA K, KOSCIOLEK T, BEZSHAPKIN V, BOGDAŃSKI P. Treatment with multi-species probiotics changes the functions, not the composition of gut microbiota in postmenopausal women with obesity: a randomized, double-blind, placebo-controlled study[J]. Frontiers in Cellular and Infection Microbiology, 2022, 12: 815798.
    [17] KILIC YILDIRIM G, DINLEYICI M, VANDENPLAS Y, DINLEYICI EC. Effects of synbiotic supplementation on intestinal microbiota composition in children and adolescents with exogenous obesity: (Probesity-2 trial)[J]. Gut Pathogens, 2023, 15(1): 36.
    [18] BRESSA C, BAILÉN-ANDRINO M, PÉREZ-SANTIAGO J, GONZÁLEZ-SOLTERO R, PÉREZ M, MONTALVO-LOMINCHAR MG, MATÉ-MUÑOZ JL, DOMÍNGUEZ R, MORENO D, LARROSA M. Differences in gut microbiota profile between women with active lifestyle and sedentary women[J]. PLoS One, 2017, 12(2): e0171352.
    [19] PRZEWŁÓCKA K, FOLWARSKI M, KACZMARCZYK M, SKONIECZNA-ŻYDECKA K, PALMA J, BYTOWSKA ZK, KUJACH S, KACZOR JJ. Combined probiotics with vitamin D3 supplementation improved aerobic performance and gut microbiome composition in mixed martial arts athletes[J]. Frontiers in Nutrition, 2023, 10: 1256226.
    [20] GRYAZNOVA M, SMIRNOVA Y, BURAKOVA I, SYROMYATNIKOV M, CHIZHKOV P, POPOV E, POPOV V. Changes in the human gut microbiome caused by the short-term impact of lactic acid bacteria consumption in healthy people[J]. Probiotics and Antimicrobial Proteins, 2024, 16(4): 1240-1250.
    [21] CANCELLO R, TURRONI S, RAMPELLI S, CATTALDO S, CANDELA M, CATTANI L, MAI S, VIETTI R, SCACCHI M, BRIGIDI P, INVITTI C. Effect of short-term dietary intervention and probiotic mix supplementation on the gut microbiota of elderly obese women[J]. Nutrients, 2019, 11(12): 3011.
    [22] BUSTAMANTE JM, DAWSON T, LOEFFLER C, MARFORI Z, MARCHESI JR, MULLISH BH, THOMPSON CC, CRANDALL KA, RAHNAVARD A, ALLEGRETTI JR, CUMMINGS BP. Impact of fecal microbiota transplantation on gut bacterial bile acid metabolism in humans[J]. Nutrients, 2022, 14(24): 5200.
    [23] QIN PP, ZOU YQ, DAI Y, LUO GW, ZHANG XW, XIAO L. Characterization a novel butyric acid-producing bacterium Collinsella aerofaciens subsp. Shenzhenensis subsp. nov.[J]. Microorganisms, 2019, 7(3): 78.
    [24] LI TY, RUI ZH, MAO LT, CHANG YS, SHAO J, CHEN Y, HAN Q, SUI XM, AN N, LI HQ, FENG HT, JIANG T, WANG QR. Eight weeks of Bifidobacterium lactis BL-99 supplementation improves lipid metabolism and sports performance through short-chain fatty acids in cross-country skiers: a preliminary study[J]. Nutrients, 2023, 15(21): 4554.
    [25] ZHANG Q, LI G, ZHAO W, WANG XF, HE JJ, ZHOU LM, ZHANG XX, AN P, LIU YH, ZHANG CY, ZHANG Y, LIU SM, ZHAO L, LIU R, LI YX, JIANG WJ, WANG XY, WANG QY, FANG B, ZHAO YY, et al. Efficacy of Bifidobacterium animalis subsp. lactis BL-99 in the treatment of functional dyspepsia: a randomized placebo-controlled clinical trial[J]. Nature Communications, 2024, 15(1): 227.
    [26] TYAGI AM, YU MC, DARBY TM, VACCARO C, LI JY, OWENS JA, HSU E, ADAMS J, WEITZMANN MN, JONES RM, PACIFICI R. The microbial metabolite butyrate stimulates bone formation via T regulatory cell-mediated regulation of WNT10B expression[J]. Immunity, 2018, 49(6): 1116-1131.e7.
    [27] BARTON W, PENNEY NC, CRONIN O, GARCIA-PEREZ I, MOLLOY MG, HOLMES E, SHANAHAN F, COTTER PD, O’SULLIVAN O. The microbiome of professional athletes differs from that of more sedentary subjects in composition and particularly at the functional metabolic level[J]. Gut, 2018, 67(4): 625-33.
    [28] GALLARDO-BECERRA L, CORNEJO-GRANADOS F, GARCÍA-LÓPEZ R, VALDEZ-LARA A, BIKEL S, CANIZALES-QUINTEROS S, LÓPEZ-CONTRERAS BE, MENDOZA-VARGAS A, NIELSEN H, OCHOA-LEYVA A. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children[J]. Microbial Cell Factories, 2020, 19(1): 61.
    [29] KULKARNI P, DEVKUMAR P, CHATTOPADHYAY I. Could dysbiosis of inflammatory and anti-inflammatory gut bacteria have an implications in the development of type 2 diabetes? A pilot investigation[J]. BMC Research Notes, 2021, 14(1): 52.
    [30] PETERSEN AØ, JOKINEN M, PLICHTA DR, LIEBISCH G, GRONWALD W, DETTMER K, OEFNER PJ, VLAMAKIS H, CHUNG DC, RANKI A, XAVIER RJ. Cytokine-specific autoantibodies shape the gut microbiome in autoimmune polyendocrine syndrome type 1[J]. Journal of Allergy and Clinical Immunology, 2021, 148(3): 876-888.
    [31] FURUSAWA Y, OBATA Y, FUKUDA S, ENDO TA, NAKATO G, TAKAHASHI D, NAKANISHI Y, UETAKE C, KATO K, KATO T, TAKAHASHI M, FUKUDA NN, MURAKAMI S, MIYAUCHI E, HINO S, ATARASHI K, ONAWA S, FUJIMURA Y, LOCKETT T, CLARKE JM, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504(7480): 446-50.
    [32] WANG JJ, ZHANG QM, NI WW, ZHANG X, LI Y, LI AL, DU P, LI C, YU SS. Modulatory effect of Lactobacillus acidophilus KLDS 1.0738 on intestinal short-chain fatty acids metabolism and GPR41/43 expression in β-lactoglobulin-sensitized mice[J]. Microbiology and Immunology, 2019, 63(8): 303-15.
    [33] HART AL, LAMMERS K, BRIGIDI P, VITALI B, RIZZELLO F, GIONCHETTI P, CAMPIERI M, KAMM MA, KNIGHT SC, STAGG AJ. Modulation of human dendritic cell phenotype and function by probiotic bacteria[J]. Gut, 2004, 53(11): 1602-9.
    [34] LI Y, LV L, YE J, FANG D, SHI D, WU W, WANG Q, WU J, YANG L, BIAN X, JIANG X, JIANG H, YAN R, PENG C, LI L. Bifidobacterium adolescentis CGMCC 15058 alleviates liver injury, enhances the intestinal barrier and modifies the gut microbiota in d-galactosamine-treated rats[J]. Applied Microbiology and Biotechnology, 2019, 103(1): 375-93.
    [35] FAN ZX, YANG B, ROSS RP, STANTON C, SHI GX, ZHAO JX, ZHANG H, CHEN W. Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration[J]. Food & Function, 2020, 11(5): 4499-4511.
    [36] ROBERTS JL, LIU GL, DARBY TM, FERNANDES LM, DIAZ-HERNANDEZ ME, JONES RM, DRISSI H. Bifidobacterium adolescentis supplementation attenuates fracture-induced systemic sequelae[J]. Biomedicine & Pharmacotherapy, 2020, 132: 110831.
    [37] 李婷婷, 赵如珍, 徐玉婷. 山东省女子竞走运动员冬训前、后肠道菌群特征与运动表现分析[J]. 山东体育科技, 2023, 45(6): 46-52. LI TT, ZHAO RZ, XU YT. Charateristics of gut microbiota and sports performance of the female race walkers in Shandong Province during winter training[J]. Shandong Sports Science & Technology, 2023, 45(6): 46-52(in Chinese).
    [38] 齐晨静, 周宇星, 沙继斌. 运动训练对肠道菌群的特征性影响与作用机制研究进展[J]. 中国运动医学杂志, 2024, 43(4): 294-302. QI CJ, ZHOU YX, SHA JB. Research progress on the characteristic influence of exercise training on intestinal flora and its mechanism[J]. Chinese Journal of Sports Medicine, 2024, 43(4): 294-302(in Chinese).
    相似文献
    引证文献
引用本文

谢婷婷,张梦瑶,霍腾飞,李婷婷,齐晨静,王利娟,孙红梅,刘海霞,沙继斌. 补充复合益生菌对中国式摔跤运动员肠道菌群结构、短链脂肪酸含量与炎性因子浓度的影响[J]. 微生物学报, 2025, 65(1): 196-210

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-08-06
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码