抗生素和低聚半乳糖干预对大鼠行为和神经递质的影响
作者:
作者单位:

南京农业大学 动物科技学院,消化道微生物研究室,江苏省消化道营养与动物健康重点实验,动物消化道营养国际联合研究中心,江苏 南京

作者简介:

韩水兵:试验设计、试验数据收集和分析、论文撰写等;刘晓英:试验和数据分析;刘子昱:试验和数据分析;潘龙:论文撰写和审核;慕春龙:试验方案设计、试验数据收集和协助分析以及论文修改;朱伟云:试验指导、论文审核修改等。

基金项目:

国家重点研发计划(2022YFD1300403);国家自然科学基金(31902166)


Effects of antibiotics and galacto-oligosaccharide on behaviors and neurotransmitters in rats
Author:
  • HAN Shuibing

    HAN Shuibing

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Xiaoying

    LIU Xiaoying

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • LIU Ziyu

    LIU Ziyu

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • PAN Long

    PAN Long

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • MU Chunlong

    MU Chunlong

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
  • ZHU Weiyun

    ZHU Weiyun

    Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China
    在期刊界中查找
    在百度中查找
    在本站中查找
Affiliation:

Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and AnimalHealth, National Center for International Research on Animal Gut Nutrition, College of Animal Science andTechnology, Nanjing Agricultural University, Nanjing, Jiangsu, China

Fund Project:

This work was supported by the National Key Research and Development Program of China (2022YFD1300403) and the National Natural Science Foundation of China (31902166).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [48]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    低聚半乳糖(galacto-oligosaccharides, GOS)作为益生元可以调节肠道菌群,改善大脑发育;相反,抗生素可以通过干扰肠道菌群影响神经系统。然而,抗生素和低聚半乳糖如何调节大脑神经递质及动物行为尚不清楚。目的 以断奶SD (Sprague-Dawley, SD)大鼠为试验动物,探究抗生素和低聚半乳糖干预对动物行为和神经递质的影响。方法 选取40只3周龄雄性SD大鼠,分为4组:对照组(CON组)、抗生素组(ABX组)、低聚半乳糖组(GOS组)和抗生素+低聚半乳糖组(AG组)。对照组饮用灭菌水,其余三组饮用含有抗生素、低聚半乳糖或抗生素+低聚半乳糖的灭菌水,其中低聚半乳糖浓度为5 g/L,抗生素由氨苄青霉素、万古霉素、盐酸环丙沙星、亚胺培南、甲硝唑组成,试验为期16 d。结果 与GOS组相比,ABX组大鼠体重显著下降低(P<0.05);ABX、GOS、AG三组肝脏指数显著低于CON组(P<0.05);大鼠行为分析显示,与CON组相比,ABX组趋光性指数(明暗箱试验中明箱时间占比)和理毛次数显著降低(P<0.05),GOS组理毛次数显著低于CON组(P<0.05)。AG组在旷场的静止时间显著高于其他三组(P<0.05),运动距离、时间和运动速度显著低于ABX和GOS两组(P<0.05)。与CON组相比,ABX组海马体去甲肾上腺素的浓度显著增加,左旋多巴浓度显著降低(P<0.05);与CON组相比,含有低聚半乳糖的GOS和AG两组去甲肾上腺素浓度显著增加(P<0.05),而左旋多巴和肾上腺素浓度显著下降(P<0.05)。与CON组相比,ABX和AG组的微生物多样性下降(P<0.05),Escherichia_Shigella是ABX、AG两组的优势菌,GOS组的Chao1指数显著低于对照组(P<0.05),GOS组优势菌主要是厚壁菌门(Firmicutes)和拟杆菌门(Bacteroidota);与ABX组相比,AG组乳杆菌属(Lactobacillus)显著增加(P<0.05)。结论 与对照组相比,抗生素会减少焦虑样行为,同时降低海马神经递质左旋多巴胺、增加去甲肾上腺素,并增加潜在致病菌;低聚半乳糖改善了大鼠生长,对大鼠行为无明显影响,但增加了Lactobacillus丰度,并减少海马左旋多巴胺和肾上腺素;联合使用抗生素和低聚半乳糖降低大鼠运动能力,增加焦虑样行为。

    Abstract:

    Galacto-oligosaccharides (GOS) as prebiotics can regulate gut microbiota to improve brain development, whereas antibiotics can affect the nervous system by interfering with gut microbiota. The mechanisms of antibiotics and GOS in regulating brain neurotransmitters and animal behaviors remain unknown.Objective To investigate the effects of antibiotics and GOS on the behaviors and neurotransmitters in weaned Sprague-Dawley (SD) rats.Methods Forty 3-week-old male SD rats were selected and assigned into four groups: control (CON, sterilized water), antibiotics (ABX), GOS (5 g/L), and antibiotics+GOS (AG). The antibiotics used in the experiment were composed of ampicillin, vancomycin, ciprofloxacin hydrochloride, imipenem, and metronidazole. The experiment lasted for 16 days.Results The body weight of rats in the ABX group was lower than that in the GOS group (P<0.05), and the liver index in the ABX, GOS, and AG groups was lower than that in the CON group (P<0.05). Compared with the CON group, the ABX group showcased decreased phototaxis index (percentage of time in bright during bright-dark box test) and reduced times of self-grooming (P<0.05), and the GOS group had reduced times of self-grooming (P<0.05). The AG group had longer resting time in the open field than the other three groups (P<0.05) and shorter distance, shorter time, and slower movement than ABX and GOS groups (P<0.05). Compared with the CON group, the ABX group showcased elevated level of norepinephrine and lowered level of levodopa in the hippocampus (P<0.05). Compared with the CON group, the GOS and AG groups demonstrated elevated levels of norepinephrine and declined levels of levodopa and epinephrine (P<0.05). Compared with the CON group, the ABX and AG groups presented decreased microbial diversity (P<0.05), where Escherichia_Shigella became dominant. The Chao1 index in the GOS group was lower than that in the CON group (P<0.05). The dominant bacteria in the GOS group were Firmicutes and Bacteroidota. Compared with that in the ABX group, the relative abundance of Lactobacillus increased in the AG group (P<0.05).Conclusion ABX decreased anxiety-like behaviors compared with CON, while reducing levodopa and increasing norepinephrine in the hippocampus and enriching potentially pathogenic bacteria. GOS improved growth without influencing the behaviors of rats, and meanwhile it increased the relative abundance of Lactobacillus and decreased levodopamine and norepinephrine in the hippocampus. The combined use of ABX and GOS decreased the locomotor activity and increased the anxiety-like behaviors of rats.

    参考文献
    [1] van TRIJP MPH, R?SCH C, ANR, KESHTKAR S, LOGTENBERG MJ, HERMES GDA, ZOETENDAL EG, SCHOLS HA, HOOIVELD GJEJ. Fermentation kinetics of selected dietary fibers by human small intestinal microbiota depend on the type of fiber and subject[J]. Molecular Nutrition & Food Research, 2020, 64(20): e2000455.
    [2] AZCARATE-PERIL MA, ALTERMANN E, GOH YJ, TALLON R, SANOZKY-DAWES RB, PFEILER EA, O’FLAHERTY S, BUCK BL, DOBSON A, DUONG T, MILLER MJ, BARRANGOU R, KLAENHAMMER TR. Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism[J]. Applied and Environmental Microbiology, 2008, 74(15): 4610-4625.
    [3] MCVEY NEUFELD KA, O’MAHONY SM, HOBAN AE, WAWORUNTU RV, BERG BM, DINAN TG, CRYAN JF. Neurobehavioural effects of Lactobacillus rhamnosus GG alone and in combination with prebiotics polydextrose and galacto-oligosaccharide in male rats exposed to early-life stress[J]. Nutritional Neuroscience, 2019, 22(6): 425-434.
    [4] ARNOLD JW, ROACH J, FABELA S, MOORFIELD E, DING SL, BLUE E, DAGHER S, MAGNESS S, TAMAYO R, BRUNO-BARCENA JM, AZCARATE-PERIL MA. The pleiotropic effects of prebiotic galacto-oligosaccharides on the aging gut[J]. Microbiome, 2021, 9(1): 31.
    [5] HAO WZ, LI XJ, ZHANG PW, CHEN JX. A review of antibiotics, depression, and the gut microbiome[J]. Psychiatry Research, 2020, 284: 112691.
    [6] G?LC?-BLANARIU GE, ?CHIOPU CG, ?TEF?NESCU G, MIHAI C, DIACONESCU S, AFR?S?NIE VA, LUPU VV, LUPU A,BOLO? A, ?TEF?NESCU C. The intertwining roads between psychological distress and gut microbiota in inflammatory bowel disease[J]. Microorganisms, 2023, 11(9): 2268.
    [7] RAJILI?-STOJANOVI? M, de VOS WM. The first 1 000 cultured species of the human gastrointestinal microbiota[J]. FEMS Microbiology Reviews, 2014, 38(5): 996-1047.
    [8] GILL SR, POP M, DEBOY RT, ECKBURG PB, TURNBAUGH PJ, SAMUEL BS, GORDON JI, RELMAN DA, FRASER-LIGGETT CM, NELSON KE. Metagenomic analysis of the human distal gut microbiome[J]. Science, 2006, 312(5778): 1355-1359.
    [9] QIN JJ, LI RQ, RAES J, ARUMUGAM M, BURGDORF KS, MANICHANH C, NIELSEN T, PONS N, LEVENEZ F, YAMADA T, MENDE DR, LI JH, XU JM, LI SC, LI DF, CAO JJ, WANG B, LIANG HQ, ZHENG HS, XIE YL,et al. A human gut microbial gene catalogue established by metagenomic sequencing[J]. Nature, 2010, 464(7285): 59-65.
    [10] BUROKAS A, ARBOLEYA S, MOLONEY RD, PETERSON VL, MURPHY K, CLARKE G, STANTON C, DINAN TG, CRYAN JF. Targeting the microbiota-gut-brain axis: prebiotics have anxiolytic and antidepressant-like effects and reverse the impact of chronic stress in mice[J]. Biological Psychiatry, 2017, 82(7): 472-487.
    [11] LYNCH CMK, COWAN CSM, BASTIAANSSEN TFS, MOLONEY GM, THEUNE N, van de WOUW M, FLORENSA ZANUY E, VENTURA-SILVA AP, CODAGNONE MG, VILLALOBOS-MANRíQUEZ F, SEGALLA M, KOC F, STANTON C, ROSS P, DINAN TG, CLARKE G, CRYAN JF. Critical windows of early-life microbiota disruption on behaviour, neuroimmune function, and neurodevelopment[J]. Brain, Behavior, and Immunity, 2023, 108: 309-327.
    [12] KANG DW, PARK JG, ILHAN ZE, WALLSTROM G, LABAER J, ADAMS JB, KRAJMALNIK-BROWN R. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children[J]. PLoS One, 2013, 8(7): e68322.
    [13] FORSYTH CB, SHANNON KM, KORDOWER JH, VOIGT RM, SHAIKH M, JAGLIN JA, ESTES JD, DODIYA HB, KESHAVARZIAN A. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease[J]. PLoS One, 2011, 6(12): e28032.
    [14] MU CL, NIKPOOR N, TOMPKINS TA, CHOUDHARY A, WANG M, MARKS WN, RHO JM, SCANTLEBURY MH, SHEARER J. Targeted gut microbiota manipulation attenuates seizures in a model of infantile spasms syndrome[J]. JCI Insight, 2022, 7(12): e158521.
    [15] BERCIK P, COLLINS SM, VERDU EF. Microbes and the gut-brain axis[J]. Neurogastroenterology and Motility, 2012, 24(5): 405-413.
    [16] LIU ZY, LING YD, PENG Y, HAN SB, REN YT, JING YJ, FAN WL, SU Y, MU CL, ZHU WY. Regulation of serotonin production by specific microbes from piglet gut[J]. Journal of Animal Science and Biotechnology, 2023, 14(1): 111.
    [17] XU J, XU HM, PENG Y, ZHAO C, ZHAO HL, HUANG WQ, HUANG HL, HE J, DU YL, ZHOU YJ, ZHOU YL, NIE YQ. The effect of different combinations of antibiotic cocktails on mice and selection of animal models for further microbiota research[J]. Applied Microbiology and Biotechnology, 2021, 105(4): 1669-1681.
    [18] TAO CL, ZHANG Q, ZENG WJ, LIU GL, SHAO HW. The effect of antibiotic cocktails on host immune status is dynamic and does not always correspond to changes in gut microbiota[J]. Applied Microbiology and Biotechnology, 2020, 104(11): 4995-5009.
    [19] HOBAN AE, MOLONEY RD, GOLUBEVA AV, MCVEY NEUFELD KA, O’SULLIVAN O, PATTERSON E, STANTON C, DINAN TG, CLARKE G, CRYAN JF. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat[J]. Neuroscience, 2016, 339: 463-477.
    [20] WONG KR, SGRO M, YAMAKAWA GR, LI C, MCDONALD SJ, SUN MJ, SHULTZ SR, BRADY RD, MYCHASIUK R. Gut microbiome depletion and repetitive mild traumatic brain injury differentially modify bone development in male and female adolescent rats[J]. Bone Reports, 2021, 15: 101123.
    [21] HONG KB, KIM JH, KWON HK, HAN SH, PARK Y, SUH HJ. Evaluation of prebiotic effects of high-purity galacto-oligosaccharides in vitro and in vivo[J]. Food Technology and Biotechnology, 2016, 54(2): 156-163.
    [22] JANTSCHER-KRENN E, MARX C, BODE L. Human milk oligosaccharides are differentially metabolised in neonatal rats[J]. The British Journal of Nutrition, 2013, 110(4): 640-650.
    [23] XU HR, WANG ZR, ZHU L, SUI ZY, BI WC, LIU R, BI KS, LI Q. Targeted neurotransmitters profiling identifies metabolic signatures in rat brain by LC-MS/MS: application in insomnia, depression and Alzheimer’s disease[J]. Molecules, 2018, 23(9): 2375.
    [24] MENG C, FENG SY, HAO ZK, DONG C, LIU H. Antibiotics exposure attenuates chronic unpredictable mild stress-induced anxiety-like and depression-like behavior[J]. Psychoneuroendocrinology, 2022, 136: 105620.
    [25] MacFARLANE NG. Digestion and absorption[J]. Anaesthesia & Intensive Care Medicine, 2018, 19(3): 125-127.
    [26] GE XL, DING C, ZHAO W, XU LZ, TIAN HL, GONG JF, ZHU MS, LI JS, LI N. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility[J]. Journal of Translational Medicine, 2017, 15(1): 13.
    [27] SILVA RSD, MENDON?A IP, PAIVA IHR, SOUZA JRB, PEIXOTO CA. Fructo-oligosaccharides and galacto-oligosaccharides improve hepatic steatosis via gut microbiota-brain axis modulation[J]. International Journal of Food Sciences and Nutrition, 2023, 74(7): 760-780.
    [28] WANG J, TIAN SY, WANG J, ZHU WY. Early galacto-oligosaccharide intervention alters the metabolic profile, improves the antioxidant capacity of mitochondria and activates the AMPK/Nrf2 signaling pathway in suckling piglet liver[J]. Food & Function, 2020, 11(8): 7280-7292.
    [29] CANFORA EE, van der BEEK CM, HERMES GDA, GOOSSENS GH, JOCKEN JWE, HOLST JJ, van EIJK HM, VENEMA K, SMIDT H, ZOETENDAL EG, DEJONG CHC, LENAERTS K, BLAAK EE. Supplementation of diet with galacto-oligosaccharides increases bifidobacteria, but not insulin sensitivity, in obese prediabetic individuals[J]. Gastroenterology, 2017, 153(1): 87-97.e3.
    [30] DESBONNET L, CLARKE G, TRAPLIN A, O’SULLIVAN O, CRISPIE F, MOLONEY RD, COTTER PD, DINAN TG, CRYAN JF. Gut microbiota depletion from early adolescence in mice: implications for brain and behaviour[J]. Brain, Behavior, and Immunity, 2015, 48: 165-173.
    [31] CHAMPAGNE-JORGENSEN K, MIAN MF, KAY S, HANANI H, ZIV O, MCVEY NEUFELD KA, KOREN O, BIENENSTOCK J. Prenatal low-dose penicillin results in long-term sex-specific changes to murine behaviour, immune regulation, and gut microbiota[J]. Brain, Behavior, and Immunity, 2020, 84: 154-163.
    [32] PEREZ-BURGOS A, WANG BX, MAO YK, MISTRY B, MCVEY NEUFELD KA, BIENENSTOCK J, KUNZE W. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid frequency facilitation in vagal afferents[J]. American Journal of Physiology Gastrointestinal and Liver Physiology, 2013, 304(2): G211-G220.
    [33] LEMOINE A, TOUNIAN P, ADEL-PATIENT K, THOMAS M. Pre-, pro-, syn-, and postbiotics in infant formulas: what are the immune benefits for infants?[J]. Nutrients, 2023, 15(5): 1231.
    [34] HARSHAW C, KOJIMA S, WELLMAN CL, DEMAS GE, MORROW AL, TAFT DH, KENKEL WM, LEFFEL JK, ALBERTS JR. Maternal antibiotics disrupt microbiome, behavior, and temperature regulation in unexposed infant mice[J]. Developmental Psychobiology, 2022, 64(6): e22289.
    [35] ROSHCHINA VV. New trends and perspectives in the evolution of neurotransmitters in microbial, plant, and animal cells[J]. Advances in Experimental Medicine and Biology, 2016, 874: 25-77.
    [36] TAJ A, JAMIL N. Bioconversion of tyrosine and tryptophan derived biogenic amines by neuropathogenic bacteria[J]. Biomolecules, 2018, 8(1): 10.
    [37] NANKOVA BB, AGARWAL R, MacFABE DF, La GAMMA EF. Enteric bacterial metabolites propionic and butyric acid modulate gene expression, including CREB-dependent catecholaminergic neurotransmission, in PC12 cells: possible relevance to autism spectrum disorders[J]. PLoS One, 2014, 9(8): e103740.
    [38] MacFABE DF, CAIN NE, BOON F, OSSENKOPP KP, CAIN DP. Effects of the enteric bacterial metabolic product propionic acid on object-directed behavior, social behavior, cognition, and neuroinflammation in adolescent rats: relevance to autism spectrum disorder[J]. Behavioural Brain Research, 2011, 217(1): 47-54.
    [39] GAO K, PI Y, PENG Y, MU CL, ZHU WY. Time-course responses of ileal and fecal microbiota and metabolite profiles to antibiotics in cannulated pigs[J]. Applied Microbiology and Biotechnology, 2018, 102(5): 2289-2299.
    [40] 高仁, 田时祎, 汪晶, 朱伟云. 低聚半乳糖对脂多糖刺激哺乳仔猪盲肠微生物区系、肠道炎症和屏障功能的影响[J]. 动物营养学报, 2022, 34(1): 177-189.GAO R, TIAN SY, WANG J, ZHU WY. Effects of galacto-oligosaccharides on cecal microflora, intestinal inflammation and barrier function of suckling piglets stimulated by lipopolysaccharides[J]. Chinese Journal of Animal Nutrition, 2022, 34(1): 177-189 (in Chinese).
    [41] 田时祎, 王珏, 汪晶, 朱伟云. 早期低聚半乳糖干预对哺乳仔猪回肠形态、功能发育相关基因及回肠菌群的影响[J]. 南京农业大学学报, 2018, 41(5): 917-924.TIAN SY, WANG J, WANG J, ZHU WY. The effect of early intervention with galacto-oligosaccharides on the morphological structure, functional development, and microbial community in ileum of suckling piglets[J]. Journal of Nanjing Agricultural University, 2018, 41(5): 917-924 (in Chinese).
    [42] VICKERS NJ. Animal communication: when I’m calling you, will you answer too?[J]. Current Biology, 2017, 27(14): R713-R715.
    [43] WANG HX, WANG YP. Gut microbiota-brain axis[J]. Chinese Medical Journal, 2016, 129(19): 2373-2380.
    [44] XIE T, JIA XK, CHEN MB. Gut mobility attenuation induced by antibiotics is associated with overactivation of enteric glial cells in mice[J]. Chinese Journal of Cellular and Molecular Immunology, 2019, 35(3): 199-205.
    [45] ERNY D, HRABě de ANGELIS AL, JAITIN D, WIEGHOFER P, STASZEWSKI O, DAVID E, KEREN-SHAUL H, MAHLAKOIV T, JAKOBSHAGEN K, BUCH T, SCHWIERZECK V, UTERM?HLEN O, CHUN E, GARRETT WS, McCOY KD, DIEFENBACH A, STAEHELI P, STECHER B, AMIT I, PRINZ M. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nature Neuroscience, 2015, 18: 965-977.
    [46] RíOS-COVIáN D, RUAS-MADIEDO P, MARGOLLES A, GUEIMONDE M, de LOS REYES-GAVILáN CG, SALAZAR N. Intestinal short chain fatty acids and their link with diet and human health[J]. Frontiers in Microbiology, 2016, 7: 185.
    [47] VULEVIC J, DRAKOULARAKOU A, YAQOOB P, TZORTZIS G, GIBSON GR. Modulation of the fecal microflora profile and immune function by a novel trans-galactooligosaccharide mixture (B-GOS) in healthy elderly volunteers[J]. The American Journal of Clinical Nutrition, 2008, 88(5): 1438-1446.
    [48] SEELBINDER B, CHEN JR, BRUNKE S, VAZQUEZ-URIBE R, SANTHAMAN R, MEYER AC, de OLIVEIRA LINO FS, CHAN KF, LOOS D, IMAMOVIC L, TSANG CC, LAM RPK, SRIDHAR S, KANG K, HUBE B, WOO PCY, SOMMER MOA, PANAGIOTOU G. Antibiotics create a shift from mutualism to competition in human gut communities with a longer-lasting impact on fungi than bacteria[J]. Microbiome, 2020, 8(1): 133.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韩水兵,刘晓英,刘子昱,潘龙,慕春龙,朱伟云. 抗生素和低聚半乳糖干预对大鼠行为和神经递质的影响[J]. 微生物学报, 2025, 65(2): 655-670

复制
分享
文章指标
  • 点击次数:89
  • 下载次数: 138
  • HTML阅读次数: 69
  • 引用次数: 0
历史
  • 收稿日期:2024-03-09
  • 在线发布日期: 2025-02-18
文章二维码