双叉犀金龟(Trypoxylus dichotomus)幼虫肠道微生物多样性及纤维素降解菌筛选
作者:
基金项目:

四川省农业科学院“2035原始创新”计划(YSCX2035-005);四川省自然科学基金(2022NSFSC0164);四川省农业科学院自主创新项目(2022ZZCX028)


Exploration of microbial diversity and identification of cellulose-degrading bacteria in the gut of Trypoxylus dichotomus larvae
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [54]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】揭示双叉犀金龟(Trypoxylus dichotomus)幼虫肠道微生物群落的结构组成和功能特征,挖掘纤维素降解细菌资源。【方法】通过宏基因组测序,对肠道细菌的结构组成和功能进行分析。以羧甲基纤维素(sodium carboxymethyl cellulose,CMC)为唯一碳源从幼虫肠道分离筛选纤维素降解细菌,进一步采用形态学观察和分子生物学方法对菌株进行鉴定。【结果】肠道微生物以细菌为主,占比为81.3%,门水平分布上,厚壁菌门(Firmicutes,45.8%)和拟杆菌门(Bacteroidota,20.3%)为优势菌门,丰度排名前三的菌属为梭菌属(Clostridium,3.90%)、拟杆菌属(Bacteroides,3.52%)、营发酵单胞菌属(Dysgonomonas,2.41%)。宏基因组功能水平分析显示,肠道微生物基因主要与碳水化合物、氨基酸和能量代谢相关,在KEGG数据库注释中,碳水化合物代谢相关基因占据主导地位。CAZy注释结果表明,48 856个(7.43%)基因成功注释到344个碳水化合物代谢酶家族,糖苷水解酶(glycoside hydrolase,GH)(48.67%)是肠道细菌中占最大优势的酶家族,相对丰度前十的功能酶类有6个属于GH家族。此外,从肠道中分离获得3株纤维素降解细菌TRC-3(Bacillus subtilis)、TRC-5(Bacillus subtilis)和TRC-6(Bacillus safensis),其中TRC-3的滤纸酶、内切葡聚糖酶、外切葡聚糖酶和β-葡萄糖苷酶活性更强。【结论】双叉犀金龟幼虫肠道微生物群落具有较高的多样性和复杂性,拥有大量编码碳水化合物活性酶的基因,存在丰富的纤维素降解细菌资源。

    Abstract:

    [Objective] To elucidate the structural and functional characteristics of the gut microbiota of Trypoxylus dichotomus larvae and isolate cellulose-degrading bacteria. [Methods] Metagenomic sequencing was employed to analyze the structure and functions of the gut microbiota. Cellulose-degrading bacteria were isolated and screened from the larval gut with carboxymethyl cellulose (CMC) as the sole carbon source. The strains were identified based on morphological characteristics and molecular evidence. [Results] The gut microbiota was dominated by bacteria, which accounted for 81.3%. At the phylum level, Firmicutes (45.8%) and Bacteroidota (20.3%) were the dominant phyla. The top three abundant genera were Clostridium (3.90%), Bacteroidia (3.52%), and Dysgonomonas (2.41%). The functional analysis of metagenome data revealed that the genes of the gut microbiota were mainly associated with carbohydrate, amino acid, and energy metabolism. The annotation in the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed that the genes related to carbohydrate metabolism were predominant. The annotation in the carbohydrate-active enzyme database (CAZy) indicated that 48 856 (7.43%) genes were successfully annotated to 344 carbohydrate metabolism enzyme families, with glycoside hydrolase (GH, 48.67%) being the most dominant enzyme family in the gut bacteria. Among the top ten functionally abundant enzymes, six belonged to the GH family. Additionally, three strains of cellulose-degrading bacteria, TRC-3 (Bacillus subtilis), TRC-5 (B. subtilis), and TRC-6 (B. safensis), were isolated from the gut. TRC-3 exhibited stronger activities of filter paper enzyme, endoglucanase, exoglucanase, and β-glucosidase. [Conclusion] The gut microbiota of Trypoxylus dichotomus larvae exhibits high diversity and complexity, carrying a large number of genes encoding carbohydrate-active enzymes and harboring rich cellulose-degrading bacteria.

    参考文献
    [1] EO J, NA YE, KIM MH. Influence of rhinoceros beetle (Trypoxylus dichotomus septentrionalis) larvae and temperature on the soil bacterial community composition under laboratory conditions[J]. Soil Biology and Biochemistry, 2017, 108: 27-35.
    [2] von LINNÉ C. Car. a Linné Mantissa P lntarum: Generum Editionis VI. et Specierum Editionis II[M]. Holmiæ: Impensis Direct. Laurentii Salvii, 1767.
    [3] 顾国华, 刘立春, 杨顾新, 王涛, 陈建军, 陈惠祥, 陈马钧, 王万里, 陈蔚, 陈惠年, 陈德山, 孟继元, 谢孝辰. 药用独角仙的形态与生物学特性观察[J]. 昆虫知识, 1995(3): 154-156. GU GH, LIU LC, YANG GX, WANG T, CHEN JJ, CHEN HX, CHEN MJ, WANG WL, CHEN W, CHEN HN, CHEN DS, MENG JY, XIE XC. Observation on morphological and biological characteristics of medicinal one-horned fairy[J]. Chinese Bulletin of Entomology, 1995(3): 154-156(in Chinese).
    [4] CAVE RD, RATCLIFFE BC. Scarab beetles (Coleoptera: Scarabaeoidea)[M]//CAPINERA JL. Encyclopedia of Entomology. 2nd ed. Netherlands: Springer Dordrecht, 2008: 3273-3286.
    [5] 包金亮, 王盼, 张苏炯, 陈子林. 一种林-菌-虫循环生态种养方法: CN109964723A.X[P]. 2019-07-05. BAO JL, WANG P, ZHANG SJ, CHEN ZL. A type of forest-fungus-insect circular ecological breeding method: CN109964723A.X[P]. 2019-07-05(in Chinese).
    [6] KLEMM D, HEUBLEIN B, FINK HP, BOHN A. Cellulose: fascinating biopolymer and sustainable raw material[J]. Angewandte Chemie International Edition, 2005, 44(22): 3358-3393.
    [7] SUN QN, FOSTON M, MENG XZ, SAWADA D, PINGALI SV, O’NEILL HM, LI HJ, WYMAN CE, LANGAN P, RAGAUSKAS AJ, KUMAR R. Effect of lignin content on changes occurring in poplar cellulose ultrastructure during dilute acid pretreatment[J]. Biotechnology for Biofuels, 2014, 7(1): 150.
    [8] 刘琦, DIEN VTM, 王新茹, 王华玲, 曾健勇, 李会平. 基于昆虫肠道纤维素降解菌领域的文献计量分析[J]. 微生物学通报, 2024, 51(11): 4754−4767. LIU Q, DIEN VTM, WANG XR, WANG HL, ZENG JY, LI HP. Based on quantitative analysis of literature in the field of cellulose degrading bacteria in insect gut[J]. Microbiology China, 2024, 51(11): 4754−4767(in Chinese).
    [9] ALI HRK, HEMEDA NF, ABDELALIEM YF. Symbiotic cellulolytic bacteria from the gut of the subterranean termite Psammotermes hypostoma Desneux and their role in cellulose digestion[J]. AMB Express, 2019, 9(1): 111.
    [10] WARNECKE F, LUGINBÜHL P, IVANOVA N, GHASSEMIAN M, RICHARDSON TH, STEGE JT, CAYOUETTE M, McHARDY AC, DJORDJEVIC G, ABOUSHADI N, SOREK R, TRINGE SG, PODAR M, MARTIN HG, KUNIN V, DALEVI D, MADEJSKA J, KIRTON E, PLATT D, SZETO E, et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite[J]. Nature, 2007, 450(7169): 560-565.
    [11] BRUNE A. Symbiotic digestion of lignocellulose in termite guts[J]. Nature Reviews Microbiology, 2014, 12(3): 168-180.
    [12] LI HJ, YELLE DJ, LI C, YANG MY, KE J, ZHANG RJ, LIU Y, ZHU N, LIANG SY, MO XC, RALPH J, CURRIE CR, MO JC. Lignocellulose pretreatment in a fungus-cultivating termite[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(18): 4709-4714.
    [13] POURRAMEZAN Z, GHEZELBASH GR, ROMANI B, ZIAEI S, HEDAYATKHAH A. Screening and identification of newly isolated cellulose-degrading bacteria from the gut of xylophagous termite Microcerotermes diversus (Silvestri)[J]. Mikrobiologiia, 2012, 81(6): 796-802.
    [14] LING Y, LI WJ, LI FF, XUE XB, GAO YY, WANG L, LIANG K, LI XJ. Microbial gut diversity in four grasshopper species and its correlation with cellulose digestibility[J]. Frontiers in Microbiology, 2022, 13: 1002532.
    [15] BAUER E, LAMPERT N, MIKAELYAN A, KÖHLER T, MAEKAWA K, BRUNE A. Physicochemical conditions, metabolites and community structure of the bacterial microbiota in the gut of wood-feeding cockroaches (Blaberidae: Panesthiinae)[J]. FEMS Microbiology Ecology, 2015, 91(2): 1-14.
    [16] HANDIQUE G, PHUKAN A, BHATTACHARYYA B, BARUAH AALH, RAHMAN SW, BARUAH R. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae)[J]. Archives of Insect Biochemistry and Physiology, 2017, 94(2): 21370.
    [17] NAKASHIMA K, WATANABE H, SAITOH H, TOKUDA G, AZUMA JI. Dual cellulose-digesting system of the wood-feeding termite, Coptotermes formosanus Shiraki[J]. Insect Biochemistry and Molecular Biology, 2002, 32(7): 777-784.
    [18] SCHARF ME, TARTAR A. Termite digestomes as sources for novel lignocellulases[J]. Biofuels, Bioproducts and Biorefining, 2008, 2(6): 540-552.
    [19] TAKEISHI H, ANZAI H, URAI M, AIZAWA T, WADA N, IWABUCHI N, SUNAIRI M, NAKAJIMA M. Xylanolytic and alkaliphilic Dietzia sp. isolated from larvae of the Japanese horned beetle, Trypoxylus dichotomus[J]. Actinomycetologica, 2006, 20(2): 49-54.
    [20] WANG QY, LIU LW, ZHANG SJ, WU H, HUANG JH. A chromosome-level genome assembly and intestinal transcriptome of Trypoxylus dichotomus (Coleoptera: Scarabaeidae) to understand its lignocellulose digestion ability[J]. GigaScience, 2022, 11: giac059.
    [21] AIZAWA T, URAI M, IWABUCHI N, NAKAJIMA M, SUNAIRI M. Bacillus trypoxylicola sp. nov., xylanase-producing alkaliphilic bacteria isolated from the guts of Japanese horned beetle larvae (Trypoxylus dichotomus septentrionalis)[J]. International Journal of Systematic and Evolutionary Microbiology, 2010, 60(Pt 1): 61-66.
    [22] ZHAO CX, LIU JN, LI BQ, REN D, CHEN X, YU J, ZHANG Q. Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc-air batteries[J]. Advanced Functional Materials, 2020, 30(36): 2003619.
    [23] KARLSSON FH, FÅK F, NOOKAEW I, TREMAROLI V, FAGERBERG B, PETRANOVIC D, BÄCKHED F, NIELSEN J. Symptomatic atherosclerosis is associated with an altered gut metagenome[J]. Nature Communications, 2012, 3: 1245.
    [24] KARLSSON FH, TREMAROLI V, NOOKAEW I, BERGSTRÖM G, BEHRE CJ, FAGERBERG B, NIELSEN J, BÄCKHED F. Gut metagenome in European women with normal, impaired and diabetic glucose control[J]. Nature, 2013, 498(7452): 99-103.
    [25] ZHU WH, LOMSADZE A, BORODOVSKY M. Ab initio gene identification in metagenomic sequences[J]. Nucleic Acids Research, 2010, 38(12): e132.
    [26] LI WZ, GODZIK A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences[J]. Bioinformatics, 2006, 22(13): 1658-1659.
    [27] ZELLER G, TAP J, VOIGT AY, SUNAGAWA S, KULTIMA JR, COSTEA PI, AMIOT A, BÖHM J, BRUNETTI F, HABERMANN N, HERCOG R, KOCH M, LUCIANI A, MENDE DR, SCHNEIDER MA, SCHROTZ-KING P, TOURNIGAND C, van NHIEU JT, YAMADA T, ZIMMERMANN J, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer[J]. Molecular Systems Biology, 2014, 10(11): 766.
    [28] BUCHFINK B, XIE C, HUSON DH. Fast and sensitive protein alignment using DIAMOND[J]. Nature Methods, 2015, 12(1): 59-60.
    [29] HUSON DH, MITRA S, RUSCHEWEYH HJ, WEBER N, SCHUSTER SC. Integrative analysis of environmental sequences using MEGAN4[J]. Genome Research, 2011, 21(9): 1552-1560.
    [30] MILLER GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry, 1959, 31(3): 426-428.
    [31] KATO S, HARUTA S, CUI ZJ, ISHII M, YOKOTA A, IGARASHI Y. Clostridium straminisolvens sp. nov., a moderately thermophilic, aerotolerant and cellulolytic bacterium isolated from a cellulose-degrading bacterial community[J]. International Journal of Systematic and Evolutionary Microbiology, 2004, 54(Pt 6): 2043-2047.
    [32] WEISS B, SOUZA ACO, CONSTANCIO MTL, ALVARENGA DO, PYLRO VS, ALVES LMC, VARANI AM. Unraveling a lignocellulose-decomposing bacterial consortium from soil associated with dry sugarcane straw by genomic-centered metagenomics[J]. Microorganisms, 2021, 9(5): 995.
    [33] YANG YJ, ZHANG N, JI SQ, LAN X, ZHANG KD, SHEN YL, LI FL, NI JF. Dysgonomonas macrotermitis sp. nov., isolated from the hindgut of a fungus-growing termite[J]. International Journal of Systematic and Evolutionary Microbiology, 2014, 64(Pt_9): 2956-2961.
    [34] PRAMONO AK, SAKAMOTO M, IINO T, HONGOH Y, OHKUMA M. Dysgonomonas termitidis sp. nov., isolated from the gut of the subterranean termite Reticulitermes speratus[J]. International Journal of Systematic and Evolutionary Microbiology, 2015, 65(Pt 2): 681-685.
    [35] KANEHISA M, GOTO S, HATTORI M, AOKI-KINOSHITA KF, ITOH M, KAWASHIMA S, KATAYAMA T, ARAKI M, HIRAKAWA M. From genomics to chemical genomics: new developments in KEGG[J]. Nucleic Acids Research, 2006, 34(Database issue): D354-D357.
    [36] KANEHISA M, FURUMICHI M, TANABE M, SATO Y, MORISHIMA K. KEGG: new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic Acids Research, 2017, 45(D1): D353-d361.
    [37] HUERTA-CEPAS J, SZKLARCZYK D, FORSLUND K, COOK H, HELLER D, WALTER MC, RATTEI T, MENDE DR, SUNAGAWA S, KUHN M, JENSEN LJ, von MERING C, BORK P. eggNOG 4.5: a hierarchical orthology framework with improved functional annotations for eukaryotic, prokaryotic and viral sequences[J]. Nucleic Acids Research, 2016, 44(D1): D286-D293.
    [38] CANTAREL BL, COUTINHO PM, RANCUREL C, BERNARD T, LOMBARD V, HENRISSAT B. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics[J]. Nucleic Acids Research, 2009, 37(Database issue): D233-D238.
    [39] BERNARD L, MOUGEL C, MARON PA, NOWAK V, LÉVÊQUE J, HENAULT C, HAICHAR FZ, BERGE O, MAROL C, BALESDENT J, GIBIAT F, LEMANCEAU P, RANJARD L. Dynamics and identification of soil microbial populations actively assimilating carbon from 13C-labelled wheat residue as estimated by DNA- and RNA-SIP techniques[J]. Environmental Microbiology, 2007, 9(3): 752-764.
    [40] TARAYRE C, BAUWENS J, MATTÉOTTI C, BRASSEUR C, MILLET C, MASSART S, DESTAIN J, VANDENBOL M, de PAUW E, HAUBRUGE E, FRANCIS F, THONART P, PORTETELLE D, DELVIGNE F. Multiple analyses of microbial communities applied to the gut of the wood-feeding termite Reticulitermes flavipes fed on artificial diets[J]. Symbiosis, 2015, 65(3): 143-155.
    [41] SU LJ, LIU YQ, LIU H, WANG Y, LI Y, LIN HM, WANG FQ, SONG AD. Linking lignocellulosic dietary patterns with gut microbial enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis[J]. Genetics and Molecular Research, 2015, 14(4): 13954-13967.
    [42] FANG JX, ZHANG SF, LIU F, ZHANG X, ZHANG FB, GUO XB, ZHANG Z, ZHANG QH, KONG XB. Differences in gut bacterial communities of Ips typographus (Coleoptera: Curculionidae) induced by enantiomer-specific α-pinene[J]. Environmental Entomology, 2020, 49(5): 1198-1205.
    [43] WANG K, GAO PW, GENG LL, LIU CQ, ZHANG J, SHU CL. Lignocellulose degradation in Protaetia brevitarsis larvae digestive tract: refining on a tightly designed microbial fermentation production line[J]. Microbiome, 2022, 10(1): 90.
    [44] HUANG SW, ZHANG HY. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae)[J]. PLoS One, 2013, 8(2): e57169.
    [45] SU RR, PAN BQ, LUO YX, ZHENG XL, LU W, WANG XY. Characterization of bacterial diversity and screening of cellulose-degrading bacteria in the gut system of Glenea cantor (Fabricius) larvae[J]. Frontiers in Bioengineering and Biotechnology, 2024, 12: 1340168.
    [46] LU F, KANG XY, LORENZ G, ESPINO L, JIANG MX, WAY MO. Culture-independent analysis of bacterial communities in the gut of rice water weevil (Coleoptera: Curculionidae)[J]. Annals of the Entomological Society of America, 2014, 107(3): 592-600.
    [47] FLINT HJ, SCOTT KP, DUNCAN SH, LOUIS P, FORANO E. Microbial degradation of complex carbohydrates in the gut[J]. Gut Microbes, 2012, 3(4): 289-306.
    [48] SHA YZ, HU J, SHI BG, DINGKAO RQ, WANG JQ, LI SB, ZHANG W, LUO YZ, LIU X. Characteristics and functions of the rumen microbial community of cattle-yak at different ages[J]. BioMed Research International, 2020, 2020: 3482692.
    [49] SVARTSTRÖM O, ALNEBERG J, TERRAPON N, LOMBARD V, de BRUIJN I, MALMSTEN J, DALIN AM, EL MULLER E, SHAH P, WILMES P, HENRISSAT B, ASPEBORG H, ANDERSSON AF. Ninety-nine de novo assembled genomes from the moose (Alces alces) rumen microbiome provide new insights into microbial plant biomass degradation[J]. The ISME Journal, 2017, 11(11): 2538-2551.
    [50] LI ZY, WAGHMARE PR, DIJKHUIZEN L, MENG XF, LIU WF. Research advances on the consolidated bioprocessing of lignocellulosic biomass[J]. Engineering Microbiology, 2024, 4(2): 100139.
    [51] 孙新新, 未建华, 李净净, 倪金凤. 黄翅大白蚁后肠优势菌大白蚁营发酵菌的全基因组序列分析[J]. 微生物学报, 2018, 58(6): 995-1003. SUN XX, WEI JH, LI JJ, NI JF. Whole-genome analysis of the dominant bacterium Dysgonomonas macrotermitis in the hindgut of Macrotermes barneyi[J]. Acta Microbiologica Sinica, 2018, 58(6): 995-1003(in Chinese).
    [52] ZAINUDIN MHM, SINGAM JT, SAZILI AQ, SHIRAI Y, HASSAN MA. Indigenous cellulolytic aerobic and facultative anaerobic bacterial community enhanced the composting of rice straw and chicken manure with biochar addition[J]. Scientific Reports, 2022, 12(1): 5930.
    [53] MA LL, WANG X, ZHOU JW, LÜ X. Degradation of switchgrass by Bacillus subtilis 1AJ3 and expression of a beta-glycoside hydrolase[J]. Frontiers in Microbiology, 2022, 13: 922371.
    [54] LIU GW, ZHANG K, GONG HX, YANG KY, WANG XY, ZHOU GC, CUI WY, CHEN YL, YANG YX. Whole genome sequencing and the lignocellulose degradation potential of Bacillus subtilis RLI2019 isolated from the intestine of termites[J]. Biotechnology for Biofuels and Bioproducts, 2023, 16(1): 130.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

邹鑫,彭梅芳,阚新锐,黄文丽. 双叉犀金龟(Trypoxylus dichotomus)幼虫肠道微生物多样性及纤维素降解菌筛选[J]. 微生物学报, 2025, 65(1): 225-238

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-07-29
  • 在线发布日期: 2025-01-04
  • 出版日期: 2025-01-04
文章二维码