土壤丛枝菌根真菌准离体培养体系的建立
作者:
作者单位:

1.华南农业大学 林学与风景园林学院,广东省森林植物种质创新与利用重点实验室,广东 广州;2.山东省农业科学院,养分资源高效利用全国重点实验室,山东 济南

作者简介:

何俊良:数据分析、数据可视化、论文写作及编辑;和展梅:方案设计、试验操作、数据管理、数据可视化;何辰辰:试验操作、数据管理;黄心铷:方案设计、试验操作、数据管理;谢贤安:方案设计、项目管理、试验指导、论文审查及编辑。

基金项目:

国家自然科学基金(32370108, 32170116);广东省基础与应用基础研究基金(2022A1515012013);养分资源高效利用全国重点实验室开放基金(KF2024-4)


Establishment of an in vitro quasi-asymbiotic culture system for indigenous arbuscular mycorrhizal fungi from soil
Author:
Affiliation:

1.Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China;2.State Key Laboratory of Nutrient Use and Management, Shandong Academy of Agricultural Sciences, Jinan, Shandong, China

Fund Project:

This work was supported by the National Natural Science Foundation of China (32370108, 32170116), the Guangdong Basic and Applied Basic Research Foundation (2022A1515012013), and the Open Research Fund of State Key Laboratory of Nutrient Use and Management (KF2024-4).

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [30]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    目的 丛枝菌根(arbuscular mycorrhizal, AM)真菌是植物根围微生物群的关键组成部分,能与72%的陆生植物形成共生体。然而,AM真菌属于植物专性共生土壤真菌,难以进行富集分离和人工纯培养。本研究旨在建立一种基于添加根系分泌物的非植物共生培养体系,以解决AM真菌难以离体培养的问题。方法 利用 “多层三明治” 夹膜培养体系,对土壤AM真菌孢子进行非植物共生的准离体培养,并采用分子系统学方法对培养的AM真菌进行鉴定。结果 利用 “多层三明治” 夹膜培养体系对土壤AM真菌进行非植物共生的准离体培养,发现紫云英的根系分泌物能有效促进AM真菌的菌丝生长。与培养30 d和45 d相比,在培养60 d时产生大量的次生孢子,数量为(951±45)个。进一步的孢子回接试验表明,该培养产生的次生孢子能侵染紫云英幼苗根系。使用分子鉴定法鉴定出适用于 “多层三明治” 夹膜培养体系的2种AM真菌,分别为摩西斗管囊霉(Funneliformis mosseae)和隐类球囊霉(Paraglomus occultum)。使用模拟紫云英根系分泌物成分配制的营养液对AM真菌孢子进行 “多层三明治” 夹膜离体培养,结果表明添加根系分泌物显著促进AM真菌菌丝生长。结论 在植物培护的 “多层三明治” 夹膜培养体系中,紫云英根系分泌物能持续诱导AM真菌在非共生条件下产生菌丝体和具有侵染宿主植物能力的次生孢子。本研究为进一步解决AM真菌离体培养和分离鉴定等问题提供了新方法。

    Abstract:

    Objective Arbuscular mycorrhizal (AM) fungi are crucial components of the plant rhizosphere microbiota, capable of forming symbiotic relationships with 72% of terrestrial plants. However, AM fungi are plant-specific symbiotic fungi in soil, and they are difficult to be enriched for isolation and achieve artificial pure culture. This study aimed to develop a non-plant symbiotic culture system based on the addition of root exudates to solve the problem of difficult in vitro culture of AM fungi.Methods The “multi-layer sandwich” culture system was used for the in vitro quasi-asymbiotic culture of AM fungal spores from soil. Molecular systematics methods were employed to identify the cultured AM fungi.Results A “multi-layer sandwich” culture system was used for the in vitro quasi-asymbiotic culture of AM fungi from soil. It was found that the root exudates of Astragalus sinicus effectively promoted the hyphal growth of AM fungi. A large number (951±45) of secondary spores were produced after 60 days of culture, exceeding those after 30 days and 45 days of culture. Further spore inoculation tests indicated that the secondary spores produced from this culture colonized the roots of A. sinicus seedlings. Two AM fungal species, Funneliformis mosseae and Paraglomus occultum, were identified by molecular characterization as suitable for the “multi-layer sandwich” culture system. Finally, a nutrient solution composed of simulated root exudate components from A. sinicus was used for the “multi-layer sandwich” culture of AM fungal spores. The results showed that the addition of root exudates significantly promoted the hyphal growth of AM fungi.Conclusion In the plant-assisted “multi-layer sandwich” culture system, the root exudates of A. sinicus can continually induce AM fungi to produce hyphae and secondary spores capable of colonizing host plants under non-symbiotic conditions. This study provides a new method for solving the problem related to the in vitro culture, isolation, and identification of AM fungi.

    参考文献
    [1] CHIALVA M, LANFRANCO L, BONFANTE P. The plant microbiota: composition, functions, and engineering[J]. Current Opinion in Biotechnology, 2022, 73: 135-142.
    [2] GENRE A, LANFRANCO L, PEROTTO S, BONFANTE P. Unique and common traits in mycorrhizal symbioses[J]. Nature Reviews Microbiology, 2020, 18(11): 649-660.
    [3] WENG WF, YAN J, ZHOU ML, YAO X, GAO AN, MA C, CHENG JP, RUAN JJ. Roles of arbuscular mycorrhizal fungi as a biocontrol agent in the control of plant diseases[J]. Microorganisms, 2022, 10(7): 1266.
    [4] PARIHAR M, RAKSHIT A, MEENA VS, GUPTA VK, RANA K, CHOUDHARY M, TIWARI G, MISHRA PK, PATTANAYAK A, BISHT JK, JATAV SS, KHATI P, JATAV HS. The potential of arbuscular mycorrhizal fungi in C cycling: a review[J]. Archives of Microbiology, 2020, 202(7): 1581-1596.
    [5] SHI JC, WANG XL, WANG ET. Mycorrhizal symbiosis in plant growth and stress adaptation: from genes to ecosystems[J]. Annual Review of Plant Biology, 2023, 74: 569-607.
    [6] ZHANG L, ZHOU JC, GEORGE TS, LIMPENS E, FENG G. Arbuscular mycorrhizal fungi conducting the hyphosphere bacterial orchestra[J]. Trends in Plant Science, 2022, 27(4): 402-411.
    [7] BONFANTE P, GENRE A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis[J]. Nature Communications, 2010, 1: 48.
    [8] TISSERANT E, MALBREIL M, KUO AL, KOHLER A, SYMEONIDI A, BALESTRINI R, CHARRON P, DUENSING N, FREY NFD, GIANINAZZI-PEARSON V, GILBERT LB, HANDA Y, HERR JR, HIJRI M, KOUL R, KAWAGUCHI M, KRAJINSKI F, LAMMERS PJ, MASCLAUX FG, MURAT C, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(50): 20117-20122.
    [9] MALAR CM, KRüGER M, KRüGER C, WANG Y, STAJICH JE, KELLER J, CHEN ECH, YILDIRIR G, VILLENEUVE-LAROCHE M, ROUX C, DELAUX PM, CORRADI N. The genome of Geosiphon pyriformis reveals ancestral traits linked to the emergence of the arbuscular mycorrhizal symbiosis[J]. Current Biology, 2021, 31(7): 1570-1577.
    [10] JIANG YN, WANG WX, XIE QJ, LIU N, LIU LX, WANG DP, ZHANG XW, YANG C, CHEN XY, TANG DZ, WANG ET. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi[J]. Science, 2017, 356(6343): 1172-1175.
    [11] LUGINBUEHL LH, MENARD GN, KURUP S, van ERP H, RADHAKRISHNAN GV, BREAKSPEAR A, OLDROYD GED, EASTMOND PJ. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant[J]. Science, 2017, 356(6343): 1175-1178.
    [12] AN JY, ZENG T, JI CY, de GRAAF S, ZHENG ZJ, XIAO TT, DENG XX, XIAO SY, BISSELING T, LIMPENS E, PAN ZY. A Medicago truncatula SWEET transporter implicated in arbuscule maintenance during arbuscular mycorrhizal symbiosis[J]. New Phytologist, 2019, 224(1): 396-408.
    [13] ZHENG LS, ZHAO SP, ZHOU YF, YANG GL, CHEN A, LI XX, WANG JX, TIAN J, LIAO H, WANG XR. The soybean sugar transporter GmSWEET6 participates in sucrose transport towards fungi during arbuscular mycorrhizal symbiosis[J]. Plant, Cell & Environment, 2024, 47(4): 1041-1052.
    [14] HILDEBRANDT U, OUZIAD F, MARNER FJ, BOTHE H. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores[J]. FEMS Microbiology Letters, 2006, 254(2): 258-267.
    [15] KAMEOKA H, TSUTSUI I, SAITO K, KIKUCHI Y, HANDA Y, EZAWA T, HAYASHI H, KAWAGUCHI M, AKIYAMA K. Stimulation of asymbiotic sporulation in arbuscular mycorrhizal fungi by fatty acids[J]. Nature Microbiology, 2019, 4(10): 1654-1660.
    [16] SUGIURA Y, AKIYAMA R, TANAKA S, YANO K, KAMEOKA H, MARUI S, SAITO M, KAWAGUCHI M, AKIYAMA K, SAITO K. Myristate can be used as a carbon and energy source for the asymbiotic growth of arbuscular mycorrhizal fungi[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(41): 25779-25788.
    [17] TANAKA S, HASHIMOTO K, KOBAYASHI Y, YANO K, MAEDA T, KAMEOKA H, EZAWA T, SAITO K, AKIYAMA K, KAWAGUCHI M. Asymbiotic mass production of the arbuscular mycorrhizal fungus Rhizophagus clarus[J]. Communications Biology, 2022, 5(1): 43.
    [18] LA MOE. Amino acids in the rhizosphere: from plants to microbes[J]. American Journal of Botany, 2013, 100(9): 1692-1705.
    [19] SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25-41.
    [20] ZHALNINA K, LOUIE KB, HAO Z, MANSOORI N, Da ROCHA UN, SHI SJ, CHO H, KARAOZ U, LOQUé D, BOWEN BP, FIRESTONE MK, NORTHEN TR, BRODIE EL. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly[J]. Nature Microbiology, 2018, 3: 470-480.
    [21] KUMAR GA, KUMAR S, BHARDWAJ R, SWAPNIL P, MEENA M, SETH CS, YADAV A. Recent advancements in multifaceted roles of flavonoids in plant-rhizomicrobiome interactions[J]. Frontiers in Plant Science, 2024, 14: 1297706.
    [22] 周小勤, 黄心铷, 何俊良, 谢鸿运, 李将永, 陈辉, 唐明, 谢贤安. 高磷土壤中丛枝菌根真菌的分离鉴定[J]. 微生物学通报, 2022, 49(11): 4659-4673.ZHOU XQ, HUANG XR, HE JL, XIE HY, LI JY, CHEN H, TANG M, XIE XA. Isolation and identification of arbuscular mycorrhizal fungi from high phosphate soils[J]. Microbiology China, 2022, 49(11): 4659-4673 (in Chinese).
    [23] 刘润进, 陈应龙. 菌根学[M]. 北京: 科学出版社, 2007.LIU RJ, CHEN YL. Mycorrhizology[M]. Beijing: Science Press, 2007 (in Chinese).
    [24] 谢贤安, 黄心铷, 范晓宁, 唐明, 陈辉. 一种利用豆科植物根系分泌物诱导AM真菌离体产生菌丝体和次生孢子的培养方法: CN202310623580.9[P]. 2024-04-12.XIE XA, HUANG XR, FAN XN, TANG M, CHEN H. A culture method for inducing the production of mycelium and secondary spores from AM fungi in isolation using legume root secretions: CN202310623580.9[P]. 2024-04-12.
    [25] TROUVELOT A, KOUGH J L, GIANINAZZI-PEARSON V. Mesure du taux de mycorhization VA d’un système radiculaire. In Recherche de methods d’estimation ayant une signification fonctionnelle[M]. Paris, France: INRA Press, 1986: 217-221.
    [26] XIE XA, LIN H, PENG XW, XU CR, SUN ZF, JIANG KX, HUANG AT, WU XH, TANG NW, SALVIOLI A, BONFANTE P, ZHAO B. Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont[J]. Molecular Plant, 2016, 9(12): 1583-1608.
    [27] SCHWARZOTT D, SCHü?LER A. A simple and reliable method for SSU rRNA gene DNA extraction, amplification, and cloning from single AM fungal spores[J]. Mycorrhiza, 2001, 10(4): 203-207.
    [28] LEE J, LEE SS, PETER W YOUNG J. Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi[J]. FEMS Microbiology Ecology, 2008, 65(2): 339-349.
    [29] TAMURA K, STECHER G, KUMAR S. MEGA11: molecular evolutionary genetics analysis version 11[J]. Molecular Biology and Evolution, 2021, 38(7): 3022-3027.
    [30] GILMORE AE. Phycomycetous mycorrhizal organisms collected by open-pot culture methods[J]. Hilgardia, 1968, 39(4): 87-105.
    引证文献
引用本文

何俊良,和展梅,何辰辰,黄心铷,谢贤安. 土壤丛枝菌根真菌准离体培养体系的建立[J]. 微生物学报, 2025, 65(4): 1587-1600

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-11-15
  • 在线发布日期: 2025-04-12
文章二维码