生物组学在污染环境微生物修复研究中的应用
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家“863 计划”( 2008AA09Z408 );国家自然科学基金(40976069, 40930847) ;深港创新圈项目(08Lh- 04)


Application of “omics” in Bioremediation-A review
Author:
Affiliation:

Fund Project:

Supported by the National Programs for High Technology Research and Development of China ( 2008AA09Z408 ) by the National Natural Science Foundation of China(40976069, 40930847), and by the program of innovation research of Shenzhen and Hong Kong(08Lh-04)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    摘要:随着分子生物学、生物信息学和各种理化检测技术的发展,特别是人类基因组计划成功实施以来,基因组学研究取得了重大突破与进展。而包括转录组学、蛋白组学和代谢组学在内的后基因组学也相继出现,并被广泛应用在环境微生物学的各个研究领域。本文主要概述了当前基因组学、转录组学、蛋白质组学和代谢组学在污染环境生物修复研究中的最新研究进展,分析比较了各组学的优势与不足,同时结合本课题组的主要研究方向探讨了各生物组学在赤潮生消过程和有机污染物降解机理等研究中的应用。

    Abstract:

    Abstract Environmental pollutants are a major concern worldwide. Bioremediation mediated by microorganisms is a highly promising technology that is environmentally friendly, safe and effective. However, successful execution of these bioremediation strategies requires a complete understanding of factors governing the growth, metabolism, dynamics and functions of indigenous microbial communities at contaminated sites. The combination of genomics, transcriptomics, proteomics and metabolomics has provided a crucial insight into microbial communities and their mechanisms in bioremediation of polluted environment. This current review is focused on application of these technologies in bioremediation at contaminated sites. Limitations of each “-omics” analysis are briefly discussed and integration of these “-omics” technologies in study the processes of harmful algal bloom and the microbial degradation metabolism of organic pollutants are presented.

    参考文献
    相似文献
    引证文献
引用本文

吕意华,田蕴,郑天凌. 生物组学在污染环境微生物修复研究中的应用. 微生物学报, 2011, 51(5): 579-585

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-09-27
  • 最后修改日期:2010-12-09
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码