Epstein-Barr病毒的免疫调控与逃逸机制
作者:
基金项目:

国家卫生和计划生育委员会科研基金(WKJ-FJ-28);2015年福建省中青年教师教育科研项目(科技)(JA15127)


Regulation and evasion of host immune responses by EpsteinBarr virus
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    EB病毒(Epstein-Barr Virus, EBV)属于γ疱疹病毒科,是第一个被发现与人类肿瘤相关的DNA病毒。EB病毒通过激活Toll样受体(Toll like receptors, TLRs)信号通路,诱导I型干扰素的大量释放和功能性的自噬机制,从而引起机体的免疫应答。然而,相对于其他疱疹病毒, EB病毒已进化出更为精细且错综复杂的机制来破坏和逃逸宿主的免疫系统,如限制自身蛋白表达、活化宿主的泛素-蛋白酶体系统、干扰或逆转自噬与泛素化修饰等。这些机制会引发EB病毒在宿主体内的持续性感染,导致宿主免疫功能失调,引发EB病毒相关疾病(如鼻咽癌、传染性单核细胞增多症等)。因此,研究EB病毒特异性的免疫调控机制不仅对深入理解EB病毒的潜伏性感染和致癌性至关重要,而且还将为EB病毒诱发的相关疾病的免疫预防与治疗鉴定出新的潜在靶点。此文主要阐述了EB病毒调控宿主免疫应答和逃逸先天免疫应答的分子机制。

    Abstract:

    Epstein-Barr virus(EBV) is the first identified human oncogenic DNA virus in the gamma-herpesvirus family. EBV triggers a cascade events of innate immune responses through Toll-like receptor signaling including the production of type I interferons and the activation of functional autophagy. However, EBV has developed much more elaborate and sophisticated strategies for subverting and escaping the host immune system, such as limiting its own gene expression, activing the host ubiquitin-specific protease system, and interfering ubiquitin modification. EBV impairs the host immune system, leading to lifelong persistent infections, which in turn result in the occurrence of EBV-associated diseases, such as nasopharyngeal carcinoma and infectious mononucleosis. Thus, to better understand the mechanisms regarding the infection latentency and oncogenicity of EBV invasion will be crucial for identifying potential immunotherapeutic targets for EBVrelated diseases, such as infectious mononucleosis and nasopharyngeal carcinoma. In this article, we discuss the research advances regarding the virology and immunology of EBV in the modulation of the host immune response and evasion.

    参考文献
    [1] Su WH, Hildesheim A, Chang YS. Human leukocyte antigens and Epstein-Barr virus-associated nasopharyngeal carcinoma:old associations offer new clues into the role of immunity in infection associated cancers. Frontiers in Oncology, 2013, 3:299.
    [2] Sabeti M, Kermani V, Sabeti S, Simon JH. Significance of human cytomegalovirus and Epstein-Barr virus in inducing cytokine expression in periapical lesions. Journal of Endodontics, 2012, 38(1):47-50.
    [3] Hernádi K, Szalmás A, Mogyorósi R, Czompa L, Veress G, Csoma E, Márton I, Kónya J. Prevalence and activity of Epstein-Barr virus and human cytomegalovirus in symptomatic and asymptomatic apical periodontitis lesions. Journal of Endodontics, 2010, 36(9):1485-1489.
    [4] Murata T, Tsurumi T. Switching of EBV cycles between latent and lytic states. Reviews in Medical Virology, 2014, 24(3):142-153.
    [5] Younesi V, Nikzamir H, Yousefi M, Khoshnoodi J, Arjmand M, Rabbani H, Shokri F. Epstein Barr virus inhibits the stimulatory effect of TLR7/8 and TLR9 agonists but not CD40 ligand in human B lymphocytes. Microbiology and Immunology, 2010, 54(9):534-541.
    [6] Ariza ME, Glaser R, Kaumaya PTP, Jones C, Williams MV. The EBV-encoded dUTPase activates NF-κB through the TLR2 and MyD88-dependent signaling pathway. The Journal of Immunology, 2009, 182(2):851-859.
    [7] Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nature Immunology, 2009, 10(10):1065-1072.
    [8] Samanta M, Iwakiri D, Takada K. Epstein-Barr virus-encoded small RNA induces IL-10 through RIG-I-mediated IRF-3 signaling. Oncogene, 2008, 27(30):4150-4160.
    [9] Iwakiri D, Zhou L, Samanta M, Matsumoto M, Ebihara T, Seya T, Imai S, Fujieda M, Kawa K, Takada K. Epstein-Barr virus(EBV)-encoded small RNAs is released from EBV-infected cells and activates signaling from toll-like receptor 3. The Journal of Experimental Medicine, 2009, 206(10):2091-2099.
    [10] Ruf IK, Lackey KA, Warudkar S, Sample JT. Protection from interferon-induced apoptosis by Epstein-Barr virus small RNAs is not mediated by inhibition of PKR. Journal of Virology,
    [11] 2005, 79(23):14562-14569. Quan TE, Roman RM, Rudenga BJ, Holers VM, Craft JE. Epstein-Barr virus promotes interferon-α production by plasmacytoid dendritic cells. Arthritis & Rheumatism, 2010, 62(6):1693-1701.
    [12] Kimura H, Ito Y, Kawabe S, Gotoh K, Takahashi Y, Kojima S, Naoe T, Esaki S, Kikuta A, Sawada A, Kawa K, Ohshima K, Nakamura S. EBV associated T/NK-cell lymphoproliferative diseases in nonimmunocompromised hosts:prospective analysis of 108 cases. Blood, 2012, 119(3):673-686.
    [13] Heuts F, Rottenberg ME, Salamon D, Rasul E, Adori M, Klein G, Klein E, Nagy N. T cells modulate Epstein-Barr virus latency phenotypes during infection of humanized mice. Journal of Virology, 2014, 88(6):3235-3245.
    [14] Juno JA, Keynan Y, Fowke KR. Invariant NKT cells:regulation and function during viral infection. PLoS Pathogens, 2012, 8(8):e1002838.
    [15] Allan LL, Stax AM, Zheng DJ, Chung BK, Kozak FK, Tan RS, van den Elzen P. CD1d and CD1c expression in human B cells is regulated by activation and retinoic acid receptor signaling. The Journal of Immunology, 2011, 186(9):5261-5272.
    [16] Fiola S, Gosselin D, Takada K, Gosselin J. TLR9 contributes to the recognition of EBV by primary monocytes and plasmacytoid dendritic cells. The Journal of Immunology, 2010, 185(6):3620-3631.
    [17] Unterholzner L, Bowie AG. The interplay between viruses and innate immune signaling:recent insights and therapeutic opportunities. Biochemical Pharmacology, 2008, 75(3):589-602.
    [18] Gruhne B, Sompallae R, Masucci MG. Three Epstein-Barr virus latency proteins independently promote genomic instability by inducing DNA damage, inhibiting DNA repair and inactivating cell cycle checkpoints. Oncogene, 2009, 28(45):3997-4008.
    [19] Ersing I, Bernhardt K, Gewurz BE. NF-κB and IRF7 pathway activation by Epstein-Barr virus latent membrane protein 1. Viruses, 2013, 5(6):1587-1606.
    [20] Geiger TR, Martin JM. The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. Journal of Virology, 2006, 80(23):11638-11650.
    [21] Pratt ZL, Zhang JZ, Sugden B. The latent membrane protein 1(LMP1) oncogene of Epstein-Barr virus can simultaneously induce and inhibit apoptosis in B cells. Journal of Virology, 2012, 86(8):4380-4393.
    [22] Kalla M, Hammerschmidt W. Human B cells on their route to latent infection-early but transient expression of lytic genes of Epstein-Barr virus. European Journal of Cell Biology, 2012, 91(1):65-69.
    [23] Shinozaki-Ushiku A, Kunita A, Isogai M, Hibiya T, Ushiku T, Takada K, Fukayama M. Profiling of virus-encoded microRNAs in Epstein-Barr virus-associated gastric carcinoma and their roles in gastric carcinogenesis. Journal of Virology, 2015, 89(10):5581-5591.
    [24] Kuzembayeva M, Hayes M, Sugden B. Multiple functions are mediated by the miRNAs of Epstein-Barr virus. Current Opinion in Virology, 2014, 7:61-65.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖楠阳,陈骐,蔡少丽. Epstein-Barr病毒的免疫调控与逃逸机制[J]. 微生物学报, 2016, 56(1): 19-25

复制
分享
文章指标
  • 点击次数:1706
  • 下载次数: 4627
  • HTML阅读次数: 1059
  • 引用次数: 0
历史
  • 收稿日期:2015-04-26
  • 最后修改日期:2015-07-13
  • 在线发布日期: 2015-12-30
文章二维码