无乳链球菌鱼源株10 kb基因序列对细菌致病力的影响
作者:
基金项目:

江苏省自然科学基金青年科学基金(BK20140703);国家自然科学基金青年科学基金(31502085);农业部淡水渔业与种质资源利用重点实验室开放课题(KF201301);江苏省优势学科项目(PAPD)


Effect of the 10 kb sequence of piscine Streptococcus agalactiae on bacterial virulence
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [33]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    【目的】在前期比较基因组学分析中,我们发现中国无乳链球菌鱼源株GD201008-001基因组中有一段10 kb基因序列,内含11个未知功能的开放阅读框。为了研究该段基因序列与细菌的致病力的关系,本研究将这段基因进行了全段缺失。【方法】运用链球菌-大肠杆菌穿梭质粒pSET4s,构建了10 kb基因缺失株(Δ10 kb),并通过生物学性状的比较,细胞粘附试验,斑马鱼攻毒试验和缺失前后毒力相关基因转录水平的检测,评价该序列对无乳链球菌毒力的影响。【结果】经测序证明缺失株Δ10 kb构建成功,与亲本株GD201008-001相比较,缺失株Δ10 kb在细菌染色形态、对HEp-2细胞的粘附能力无明显差异,但在培养液中的生长速度略慢;缺失株Δ10 kb对斑马鱼的毒力明显增强, LD50有极其显著的差异(P<0.001);编码菌毛骨架蛋白2b的基因(PI-2b)和唾液酸酶基因(neul)在缺失株中的转录水平明显上升。【结论】该序列对无乳链球菌GD201008-001的毒力有显著的影响,可能调控某些毒力基因的转录表达,使细菌的毒力减弱。

    Abstract:

    [Objective] From the previous comparative genomic analysis, we found a specific unknown 10 kb sequence(including 11 Open reading Frames) in Chinese piscine strain GD201008-001 genome. To study the role of 10 kb in the pathogenicity of piscine S. agalactiae, the 10 kb sequence was deleted from the GD201008-001 genome.[Methods] The isogenic mutant Δ10 kb was constructed by using the temperature-sensitive Streptococcus-E. coli shuttle vector pSET4s. We compared the growth characteristics, adherence to HEp-2 cell and bacterial virulence in a zebrafish infection model between wild strain and mutant. Meanwhile the expressions of the known virulence genes from GD201008-001 and Δ10 kb were also quantified by real-time PCR.[Results] The Δ10 kb showed no significant differences in bacterial morphology and adherence to HEp-2 cells compared with the wild-type strain, but the speed of growth was slightly slower than the wild strain. Furthermore the 50% lethal dose of Δ10 kb was decreased up to 10-fold(P<0.001) of the parental strain in a zebrafish infection model, and the expressions of the virulence genes, PI-2b and neul, were significantly increased in the mutant.[Conclusion] These findings demonstrated that the 10 kb sequence of piscine Streptococcus agalactiae exerts a significant effect on bacterial virulence and probably regulates the virulence genes expression of GD201008-001.

    参考文献
    [1] Chen M, Li LP, Wang R, Liang WW, Huang Y, Li J, Lei AY, Huang WY, Gan X. PCR detection and PFGE genotype analyses of streptococcal clinical isolates from tilapia in China. Veterinary Microbiology, 2012, 159(3/4):526-530.
    [2] Liu GJ, Zhang W, Lu CP. Complete genome sequence of Streptococcus agalactiae GD201008-001, isolated in China from tilapia with meningoencephalitis. Journal of Bacteriology, 2012, 194(23):6653.
    [3] Liu GJ, Zhang W, Lu CP. Comparative genomics analysis of Streptococcus agalactiae reveals that isolates from cultured tilapia in China are closely related to the human strain A909. BMC Genomics, 2013, 14:775-785.
    [4] Wang B, Jian JC, Lu YS, Cai SH, Huang YC, Tang JF, Wu ZH Complete genome sequence of Streptococcus agalactiae ZQ0910, a pathogen causing meningoencephalitis in the GIFT strain of Nile tilapia(Oreochromis niloticus). Journal of Bacteriology, 2012, 194(18):5132-5133.
    [5] Rosinski-Chupin I, Sauvage E, Mairey B, Mangenot S, Ma L, Da Cunha V, Rusniok C, Bouchier C, Barbe V, Glaser P. Reductive evolution in Streptococcus agalactiae and the emergence of a host adapted lineage. BMC Genomics, 2013, 14(1):252.
    [6] Moxon ER, Kroll JS. The role of bacterial polysaccharide capsules as virulence factors//Current Topics in Microbiology and Immunology:Bacterial Capsules. Berlin, Heidelberg:Springer, 1990, 150:65-85.
    [7] Li SL, Jedrzejas MJ. Hyaluronan binding and degradation by Streptococcus agalactiae hyaluronate lyase. Journal of Biological Chemistry, 2001, 276(44):41407-41416.
    [8] Marchlewicz BA, Duncan JL. Lysis of erythrocytes by a hemolysin produced by a group B Streptococcus sp. Infection and Immunity, 1981, 34(3):787-794.
    [9] Skalka B, Smola J. Lethal effect of CAMP-factor and UBERISfactor——a new finding about diffusible exosubstances of streptococcus agalactiae and Streptococcus uberis. Zentralblatt für Bakteriologie A, 1981, 249(2):190-194.
    [10] Bohnsack JF, Takahashi S, Hammitt L, Miller DV, Aly AA, Adderson EE. Genetic polymorphisms of group B streptococcus scpB alter functional activity of a cell-associated peptidase that inactivates C5a. Infection and Immunity, 2000, 68(9):5018-5025.
    [11] Spellerberg B, Rozdzinski E, Martin S, Weber-Heynemann J, Schnitzler N, Lütticken R, Podbielski A. Lmb, a protein with similarities to the LraI adhesin family, mediates attachment of Streptococcus agalactiae to human laminin. Infection and Immunity, 1999, 67(2):871-878.
    [12] Rosini R, Rinaudo CD, Soriani M, Lauer P, Mora M, Maione D, Taddei A, Santi I, Ghezzo C, Brettoni C, Buccato S, Margarit I, Grandi G, Telford JL. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Molecular Microbiology, 2006, 61(1):126-141.
    [13] Musser JM, Mattingly SJ, Quentin R, Goudeau A, Selander RK. Identification of a high-virulence clone of type III Streptococcus agalactiae(group B Streptococcus) causing invasive neonatal disease. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86(12):4731-4735.
    [14] Rajagopal L. Understanding the regulation of group B Streptococcal virulence factors. Future Microbiology, 2009, 4(2):201-221.
    [15] Schubert A, Zakikhany K, Pietrocola G, Meinke A, Speziale P, Eikmanns BJ, Reinscheid DJ. The fibrinogen receptor FbsA promotes adherence of Streptococcus agalactiae to human epithelial cells. Infection and Immunity, 2004, 72(11):6197-6205.
    [16] Poyart C, Pellegrini E, Gaillot O, Boumaila C, Baptista M, Trieu-Cuot P. Contribution of Mn-cofactored superoxide dismutase(SodA) to the virulence of Streptococcus agalactiae. Infection and Immunity, 2001, 69(8):5098-5106.
    [17] Ruoff KL. Streptococcus anginosus("Streptococcus milleri"):the unrecognized pathogen. Clinical Microbiology Reviews, 1988, 1(1):102-108.
    [18] Takamatsu D, Osaki M, Sekizaki T. Thermosensitive suicide vectors for gene replacement in Streptococcus suis. Plasmid, 2001, 46(2):140-148.
    [19] Neely MN, Pfeifer JD, Caparon M. Streptococcus-zebrafish model of bacterial pathogenesis. Infection and Immunity, 2002, 70(7):3904-3914.
    [20] Kim BJ, Hancock BM, Del Cid N, Bermudez A, Traver D, Doran KS. Streptococcus agalactiae infection in zebrafish larvae. Microbial Pathogenesis, 2015, 79:57-60.
    [21] N MN, Pfeifer JD, Caparon M. Streptococcus-Zebrafish model of bacterial pathogenesis. Infection and Immunity, 2002, 70(7):3904-3914.
    [22] Amal MN, Zamri-Saad M, Siti-Zahrah A, Zulkafli AR. Transmission of Streptococcus agalactiae from a hatchery into a newly established red hybrid tilapia, Oreochromis niloticus(L.)×Oreochromis mossambicus(Peters), farm. Journal of Fish Diseases, 2013, 36(8):735-739.
    [23] Samen U, Eikmanns BJ, Reinscheid DJ, Borges F. The surface protein Srr-1 of Streptococcus agalactiae binds human keratin 4 and promotes adherence to epithelial HEp-2 cells. Infection and Immunity, 2007, 75(11):5405-5414.
    [24] Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods, 2001, 25(4):402-408.
    [25] Harrison SC. A structural taxonomy of DNA-binding domains. Nature, 1991, 353(6346):715-719.
    [26] McCallum N, Hinds J, Ender M, Berger-Bachi B, Stutzmann Meier P. Transcriptional profiling of XdrA, a new regulator of spa transcription in Staphylococcus aureus. Journal of Bacteriology, 2010, 192(19):5151-5164.
    [27] Evans JJ, Klesius PH, Pasnik DJ, Bohnsack JF. Human Streptococcus agalactiae isolate in Nile tilapia(Oreochromis niloticus). Emerging Infectious Diseases, 2009, 15(5):774-776.
    [28] Pezzicoli A, Santi I, Lauer P, Rosini R, Rinaudo D, Grandi G, Telford JL, Soriani M. Pilus backbone contributes to group B Streptococcus paracellular translocation through epithelial cells. The Journal of Infectious Diseases, 2008, 198(6):890-898.
    [29] Severi E, Hood DW, Thomas GH. Sialic acid utilization by bacterial pathogens. Microbiology, 2007, 153(Pt 9):2817-2822.
    [30] Manco S, Hernon F, Yesilkaya H, Paton JC, Andrew PW, Kadioglu A. Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infection and Immunity, 2006, 74(7):4014-4020.
    [31] Kim S, Oh DB, Kang HA, Kwon O. Features and applications of bacterial sialidases. Applied Microbiology and Biotechnology, 2011, 91(1):1-15.
    [32] Staddon JH, Bryan EM, Manias DA, Dunny GM. Conserved target for group II intron insertion in relaxase genes of conjugative elements of gram-positive bacteria. Journal of Bacteriology, 2004, 186(8):2393-2401.
    [33] Héry-Arnaud G, Bruant G, Lanotte P, Brun S, Rosenau A, van der Mee-Marquet N, Quentin R, Mereghetti L. Acquisition of insertion sequences and the GBSi1 intron by Streptococcus agalactiae isolates correlates with the evolution of the species. Journal of Bacteriology, 2005, 187(17):6248-6252.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘广锦,朱洁莲,石紫薇,丁铭,王茹怡,姚火春,陆承平,徐跑. 无乳链球菌鱼源株10 kb基因序列对细菌致病力的影响[J]. 微生物学报, 2016, 56(1): 110-119

复制
分享
文章指标
  • 点击次数:1048
  • 下载次数: 2649
  • HTML阅读次数: 577
  • 引用次数: 0
历史
  • 收稿日期:2015-04-10
  • 最后修改日期:2015-06-22
  • 在线发布日期: 2015-12-30
文章二维码