副溶血弧菌O抗原基因簇中庚糖基转移酶Ⅱ基因缺失株的构建及其功能
作者:
基金项目:

国家自然科学基金(31201372)


Gene deletion and functional analysis of the heptyl glycosyltransferaseⅡ (waaF) gene in Vibrio parahemolyticus O-antigen cluster
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献
  • | | |
  • 文章评论
    摘要:

    [目的] 构建副溶血弧菌庚糖基转移酶Ⅱ基因(waaF)的缺失株,探究waaF基因在副溶血弧菌O抗原合成中的作用。[方法] 本研究以副溶血弧菌临床分离株为研究对象,利用甲壳素介导的转化技术构建临床分离株的waaF基因缺失株;分别对野生株、缺失株的生长曲线、菌体形态和血清型进行了测定;利用大肠杆菌S17λpir菌株与副溶血弧菌结合转移的方法,分别构建O3、O5和O10来源的waaF基因的回补株,通过血清型测定,验证同源waaF基因的功能。[结果] 成功构建了waaF基因缺失株,基因缺失株生长正常,其生长曲线、菌体形态同野生菌株基本一致,基因缺失株同O抗血清不发生凝集反应,O抗原特性消失。回补实验显示,O3和O5来源waaF基因的回补株能恢复原有O抗原特性,O10来源waaF基因的回补株则不能恢复基因缺失株的O抗原特性。[结论] waaF基因同O抗原的合成相关,是O抗原合成的关键基因,不同O抗原副溶血弧菌中waaF基因功能存在差异。

    Abstract:

    [Objective] To construct heptyl glycosyltransferase gene II (waaF) gene deletion mutant of Vibrio parahaemolyticus, and explore the function of the waaF gene in Vibrio parahaemolyticus. [Methods] The waaF gene deletion mutant was constructed by chitin-based transformation technology using clinical isolates, and then the growth rate, morphology and serotypes were identified. The different sources (O3, O5 and O10) waaF gene complementations were constructed through E. coli S17λpir strains conjugative transferring with Vibrio parahaemolyticus, and the function of the waaF gene was further verified by serotypes. [Results] The waaF gene deletion mutant strain was successfully constructed and it grew normally. The growth rate and morphology of mutant were similar with the wild type strains (WT), but the mutant could not occurred agglutination reaction with O antisera. The O3 and O5 sources waaF gene complementations occurred agglutination reaction with O antisera, but the O10 sources waaF gene complementations was not. [Conclusion] The waaF gene was related with O-antigen synthesis and it was the key gene of O-antigen synthesis pathway in Vibrio parahaemolyticus. The function of different sources waaF gene were not the same.

    参考文献
    [1] Takahashi T, Fujisawa T, Tamura Y, Suzuki S, Muramatsu M, Sawada T, Benno Y, Mitsuoka T. DNA relatedness among Erysipelothrix rhusiopathiae strains representing all twenty-three serovars and Erysipelothrix tonsillarum. International Journal of Systematic Bacteriology, 1992, 42(3): 469-473.
    [2] Takeshi K, Makino S, Ikeda T, Takada N, Nakashiro A, Nakanishi K, Oguma K, Katoh Y, Sunagawa H, Ohyama T. Direct and rapid detection by PCR of Erysipelothrix sp. DNAs prepared from bacterial strains and animal tissues. Journal of Clinical Microbiology, 1999, 37(12): 4093-4098.
    [3] Wang Q, Chang BJ, Riley TV. Erysipelothrix rhusiopathiae. Veterinary Microbiology, 2010, 140(3/4): 405-417.
    [4] Opriessnig T, Hoffman LJ, Harris DL, Gaul SB, Halbur PG. Erysipelothrix rhusiopathiae: genetic characterization of midwest US isolates and live commercial vaccines using pulsed-field gel electrophoresis. Journal of Veterinary Diagnostic Investigation, 2004, 16(2): 101-107.
    [5] Zou Y, Zhu XM, Muhammad HM, Jiang P, Li YF. Characterization of Erysipelothrix rhusiopathiae strains isolated from acute swine erysipelas outbreaks in eastern China. The Journal of Veterinary Medical Science, 2015, 77(6): 653-660.
    [6] Lu P, Huang XH, Li CF, Wei WT, Sun P, Wei JZ, Li Y. Isolation, identification and characterization of Erysipelothrix rhusiopathiae in Anhui province. Microbiology China, 2014, 41(9): 1822-1828. (in Chinese)陆萍, 黄晓慧, 李春芬, 魏文涛, 孙裴, 魏建忠, 李郁. 安徽部分地区猪丹毒杆菌的分离鉴定及生物学特性研究. 微生物学通报, 2014, 41(9): 1822-1828.
    [7] Eamens GJ, Chin JC, Turner B, Barchia I. Evaluation of Erysipelothrix rhusiopathiae vaccines in pigs by intradermal challenge and immune responses. Veterinary Microbiology, 2006, 116(1/3): 138-148.
    [8] He SC, Tan ZX, Liu DX, Qiu LX, Tang AM, Tang XM, Huang JL, Lu XH, Wang HB, Fan ZX. Isolation and identification of three Erysipelothrix thusiopathiae strains from Hunan province. China Animal Husbandry & Veterinary Medicine, 2011, 38(5): 155-158. (in Chinese)何世成, 谈志祥, 刘道新, 邱立新, 唐爱明, 唐小明, 黄建龙, 鲁杏华, 王洪冰, 范忠鑫. 3株红斑丹毒丝菌胡南珠的分离与鉴定. 中国畜牧兽医, 2011, 38(5): 155-158.
    [9] Eamens GJ, Forbes WA, Djordjevic SP. Characterization of Erysipelothrix rhusiopathiae isolates from pigs associated with vaccine breakdowns. Veterinary Microbiology, 2006, 115(4): 329-338.
    [10] Kitajima T, Oishi E, Amimoto K, Ui S, Nakamura H, Okada N, Sasaki O, Yasuhara H. Protective effect of NaOH-extracted Erysipelothrix rhusiopathiae vaccine in pigs. The Journal of Veterinary Medical Science, 1998, 60(1): 9-14.
    [11] Makino SI, Yamamoto K, Murakami S, Shirahata T, Uemura K, Sawada T, Wakamoto H, Morita H. Properties of repeat domain found in a novel protective antigen, SpaA, of Erysipelothrix rhusiopathiae. Microbial Pathogenesis, 1998, 25(2): 101-109.
    [12] Yother J, White JM. Novel surface attachment mechanism of the Streptococcus pneumoniae protein PspA. Journal of Bacteriology, 1994, 176(10): 2976-2985.
    [13] Shimoji Y, Mori Y, Fischetti VA. Immunological characterization of a protective antigen of Erysipelothrix rhusiopathiae: identification of the region responsible for protective immunity. Infection and Immunity, 1999, 67(4): 1646-1651.
    [14] Liu DD, Borrathybay E, Yang ZL, Nazierbieke W. Immunological testing of protein protective domain SpaA of Erysipelothrix rhusiopathiae. Journal of Microbiology, 2013, 33(5): 5-11. (in Chinese)刘丹丹, 恩特马克·布拉提白, 杨振龙, 吾鲁木汗·那孜尔别克. 红斑丹毒丝菌SpaA蛋白保护区域的免疫学检测. 微生物学杂志, 2013, 33(5): 5-11.
    [15] Borrathybay E, Gong FJ, Zhang L, Nazierbieke W. Role of surface protective antigen A in the pathogenesis of Erysipelothrix rhusiopathiae stra???楃渴″丰收椵献猠敊牯極慲?浡敬渠楯湦朠楍瑩楣摲楯獢?慯摬桯敧特攠湡据敤?瑂潩?桴略浣慨湮?捬敯汧汹猬?′?????椲挵爨漲戩椺漠氲漰朶礭??财??ぢ? ̄????㈠?と??扆爬?孏??嵷?匠慙戬攠牓?????椬愠扈?呲???愠浔洬愠浈?佲???愠牊椬洠?????敩搠桍愬琠?????栠故氬愠?????汪??慙戮愠慃????偣牴潥瑲敩捺瑡楴癩敯?愠湡摮?愠湩瑤楥?灴慩瑦桩潣污潴杩祯?攠景晦攠捡琠獮?潶晥?匠浣?普牤畩捤瑡潴獥攠??????扥椠獰灲桯潴獥灩桮愠瑴敨?慯汵摧潨氠慳獹敳?扥慭獡整摩??乡??癬慹捳捩楳渠敯?愠来慸楴湲獡瑣?卬捬桵楬獡瑲漠獰潲浯慴?浩慮湳猠潯湦椠?扩社?捲桹慳湩杰楥湬杯?牨潲畩瑸攠?潨晵?楩湯橰敡捴瑨楩潡湥??呩栾攮??潮牦敥慣湴??潮甠牡湮慤氠?潭晭?偮慩牴慹猬椠琲漰氱漳本礠??㈨????????社??″????????17] Shevchenko A, Wilm M, Vorm O, Jensen ON, Podtelejnikov AV, Neubauer G, Shevchenko A, Mortensen P, Mann M. A strategy for identifying gel-separated proteins in sequence databases by MS alone. Biochemical Society Transactions, 1996, 24(3): 893-896.
    [18] Fayet O, Ziegelhoffer T, Georgopoulos C. The groES and groEL heat shock gene products of Escherichia coli are essential for bacterial growth at all temperatures. Journal of Bacteriology, 1989, 171(3): 1379-1385.
    [19] Ivic A, Olden D, Wallington EJ, Lund PA. Deletion of Escherichia coli groEL is complemented by a Rhizobium leguminosarum groEL homologue at 37℃ but not at 43℃. Gene, 1997, 194(1): 1-8.
    [20] Feng YJ, Pan XZ, Sun W, Wang CJ, Zhang HM, Li XF, Ma Y, Shao ZQ, Ge JC, Zheng F, Gao GF, Tang JQ. Streptococcus suis enolase functions as a protective antigen displayed on the bacterial cell surface. The Journal of Infectious Diseases, 2009, 200(10): 1583-1592.
    [21] Basavanna S, Khandavilli S, Yuste J, Cohen JM, Hosie AHF, Webb AJ, Thomas GH, Brown JS. Screening of Streptococcus pneumoniae ABC transporter mutants demonstrates that LivJHMGF, a branched-chain amino acid ABC transporter, is necessary for disease pathogenesis. Infection and Immunity, 2009, 77(8): 3412-3423.
    [22] Maeda K, Nagata H, Kuboniwa M, Kataoka K, Nishida N, Tanaka M, Shizukuishi S. Characterization of binding of Streptococcus oralis glyceraldehyde-3-phosphate dehydrogenase to Porphyromonas gingivalis major fimbriae. Infection and Immunity, 2004, 72(9): 5475-5477.
    [23] Tunio SA, Oldfield NJ, Ala'Aldeen DAA, Wooldridge KG, Turner DPJ. The role of glyceraldehydes-3-phosphate dehydrogenase (GapA-
    相似文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵峰,孟松松,周德庆. 副溶血弧菌O抗原基因簇中庚糖基转移酶Ⅱ基因缺失株的构建及其功能[J]. 微生物学报, 2016, 56(2): 291-300

复制
分享
文章指标
  • 点击次数:888
  • 下载次数: 4933
  • HTML阅读次数: 604
  • 引用次数: 0
历史
  • 收稿日期:2015-06-08
  • 最后修改日期:2015-09-10
  • 在线发布日期: 2016-02-04
文章二维码