谷氏菌素生物合成基因gouCgouD的功能研究
作者:
基金项目:

国家“973计划”(2015CB150600);国家自然科学基金(31270110,31571281)


Functional characterization of gouC and gouD in gougerotin biosynthesis
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [26]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]由于谷氏菌素产生菌禾粟链霉菌的遗传操作效率较低,本研究在谷氏菌素生物合成基因簇成功异源表达的基础上,通过在异源宿主天蓝色链霉菌M1146中阻断谷氏菌素生物合成基因gouCgouD,研究其在谷氏菌素生物合成中的作用,为谷氏菌素生物合成途径的阐明奠定基础。[方法]以含有谷氏菌素生物合成基因簇的黏粒D6-4H为基础,通过PCR-targeting的方法分别将gouCgouD敲除得到重组质粒pGOUe-ΔC和pGOUe-ΔD。通过接合转移将这两个重组质粒分别导入天蓝色链霉菌M1146中,获得gouCgouD的缺失突变株M1146-GOUe-ΔC和M1146-GOUe-ΔD,通过HPLC分析突变株的谷氏菌素中间产物积累情况,分离纯化后对其进行结构鉴定和生物活性检测。[结果]gouCgouD的缺失均导致谷氏菌素不能合成,突变株发酵液中积累了不同的中间产物,生物活性分析发现这些中间产物均失去了对肿瘤细胞的抑制活性。[结论]gouCgouD是谷氏菌素生物合成的重要基因,与谷氏菌素肽基部分的肌氨酸残基合成相关。本研究为阐明谷氏菌素的生物合成机制提供了更多的依据。

    Abstract:

    [Objective] To determine the functions of gouC and gouD in gougerotin biosynthesis, disruption of these two genes was performed. As gougerotin producing strain Streptomyces graminearus lacks efficient genetic manipulation system, the gene cluster for gougerotin biosynthesis was heterologously expressed in Streptomyces coelicolor M1146 to facilitate genetic manipulations of gouC and gouD. [Methods] By using fosmid D6-4H containing the complete gougerotin biosynthetic gene cluster, gouC and gouD were disrupted by PCR-targeting method to generate pGOUe-ΔC and pGOUe-ΔD. Both pGOUe-ΔC and pGOUe-ΔD were introduced into Streptomyces coelicolor M1146 by intergeneric conjugation, thus gouC and gouD disrpution mutants (M1146-GOUe-ΔC and M1146-GOUe-ΔD) were obtained. The gougerotin production of M1146-GOUe-ΔC and M1146-GOUe-ΔD were assayed by HPLC analysis. The intermediates accumulated in these mutants were purified and subjected to MS and NMR analyses for structure determinations. Bioassay of these intermediates against tumor cell line were also carried out. [Results] Disruption mutants of gouC and gouD failed to produce gougerotin and the mutants accumulated different gougerotin intermediates, which lost their ability to inhibit cancer cell proliferation. [Conclusion] gouC and gouD are key structual genes in the biosynthesis of gougerotin peptidyl moieties. This study will pave the way for the elucidation of gougerotin biosynthetic pathway.

    参考文献
    [1] Haneishi T, Arai M, Kitano N, Yamamoto S. Aspiculamycin, a new cytosine nucleoside antibiotic. 3. Biological activities, in vitro and in vivo. The Journal of Antibiotics, 1974, 27(5): 339-342.
    [2] Kondo F, Kitano N, Domon H, Arai M, Haneishi T. Aspiculamycin, a new cytosine nucleoside antibiotic. IV. Antimycoplasma activity of aspiculamycin in vitro and in vivo. The Journal of Antibiotics, 1974, 27(7): 529-534.
    [3] Lacal J, Vazquez D, Fernandez-Sousa J, Carrasco L. Antibiotics that specifically block translation in virus-infected cells. The Journal of Antibiotics, 1980, 33(4): 441-446.
    [4] Thiry L. The action of sparsomycin and gougerotin on virus growth. Journal of General Virology, 1968, 2(1): 143-153.
    [5] Kanzaki T, Toshihiko E, Yamamoto H, Shibata M, Nakazawa K, Iwasaki H, Takewaka T, Miyake A. Gougerotin, a new antibacterial antibiotic. The Journal of Antibiotics Ser. A, 1962, 15(2): 93-97.
    [6] Niu G, Li L, Wei J, Tan H. Cloning, heterologous expression, and characterization of the gene cluster required for gougerotin biosynthesis. Chemistry & Biology, 2013, 20(1): 34-44.
    [7] Clark J, Gunther J. Gougerotin, a specific inhibitor of protein synthesis. Biochimica et Biophysica Acta, 1963, 76(4): 636-638.
    [8] Cerna J, Lichtenthaler F, Rychlik I. The effect of gougerotin analogues on ribosomal peptidyl transferase. FEBS Letters, 1971, 14(1): 45-48.
    [9] Wei J, Tian Y, Niu G, Tan H. GouR, a TetR family transcriptional regulator, coordinates the biosynthesis and export of gougerotin in Streptomyces graminearus. Applied and Environmental Microbiology, 2014, 80(2): 714-722.
    [10] Niu G, Tan H. Nucleoside antibiotics: biosynthesis, regulation, and biotechnology. Trends in Microbiology, 2015, 23(2): 110-119.
    [11] Gomez-Escribano J, Bibb M. Engineering Streptomyces coelicolor for heterologous expression of secondary metabolite gene clusters. Microbial Biotechnology, 2011, 4(2): 207-215.
    [12] Kieser T, Bibb M, Buttner M, Chater K, Hopwood D. Practical Streptomyces Genetics. John Innes Foundation, Norwich, 2000.
    [13] Sambrook J, Russell D. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, New York, 2001.
    [14] Gregory M, Till R, Smith M. Integration site for Streptomyces phage fBT1 and development of site-specific integrating vectors. Journal of Bacteriology, 2003, 185(17): 5320-5323.
    [15] Jiang L, Wei J, Li L, Niu G, Tan H. Combined gene cluster engineering and precursor feeding to improve gougerotin production in Streptomyces graminearus. Applied Microbiology and Biotechnology, 2013, 97(24): 10469-10477.
    [16] Gust B, Kieser T, Chater K. REDIRECT technology: PCR-targeting system in Streptomyces coelicolor A3(2). John Innes Foundation: Norwich, 2002.
    [17] Wang J, Ma S, Chen X. Anti-tumor effects of AL3810 on A549 human lung adenocarcinoma. World Clinical Drugs, 2013, 34(4): 206-211.
    [18] Adamski R, Heymann H, Geftic S, Barkulis S. Preparation and antibacterial activity of some spiramycin derivatives. Journal of Medicinal Chemistry, 1966, 9(6): 932-934.
    [19] Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Annual Review Biochemistry, 1973, 42: 471-506.
    [20] Xue Y, Wu S, Li Y, Zhang S, Zhen Y. Antitumor activity of yungumycin. Acta Pharmaceutica Sinica, 1996, 31(3): 171-175.
    [21] Hu Y, Phelan V, Farnet C, Zazopoulos E, Bachmann B. Reassembly of anthramycin biosynthetic gene cluster by using recombinogenic cassettes. Chembiochem, 2008, 9(10): 1603-1608.
    [22] Du D, Zhu Y, Wei J, Tian Y, Niu G, Tan H. Improvement of gougerotin and nikkomycin production by engineering their biosynthetic gene clusters. Applied Microbiology and Biotechnology, 2013, 97(14): 6383-6396.
    [23] Bormann C, Lauer B, Kalmanczhelyi A, Sussmuth R, Jung G. Novel nikkomycins Lx and Lz produced by genetically engineered Streptomyces tendae Tu901. The Journal of Antibiotics, 1999, 52(6): 582-585.
    [24] Mendes M, Recio E, Fouces R, Luiten R, Martin J, Aparicio J. Engineered biosynthesis of novel polyenes: a pimaricin derivative produced by targeted gene disruption in Streptomyces natalensis. Chemistry & Biology, 2001, 8(7): 635-644.
    [25] Xiang G, Hu H, Chen J, Chen W, Wu L. A new agricultural antibiotic-ningnanmycin. Acta Microbiologica Sinica, 1995, 35(5): 368-374.
    [26] Chen W, Cheng C, Pan J. Yunnanmycin, a novel antitumor antibiotic. II. Extraction, purification, physico-chemical properties and identification. Chinese Journal of Antibiotics, 1998, 23(3): 170-174.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

韦俊宏,张集慧,江玲娟,谭华荣,牛国清. 谷氏菌素生物合成基因gouCgouD的功能研究[J]. 微生物学报, 2016, 56(3): 406-417

复制
分享
文章指标
  • 点击次数:1286
  • 下载次数: 2343
  • HTML阅读次数: 548
  • 引用次数: 0
历史
  • 收稿日期:2016-01-08
  • 最后修改日期:2016-01-29
  • 在线发布日期: 2016-03-03
文章二维码