ECF-σ5因子参与阿维链霉菌中阿维菌素合成和环境胁迫的研究
作者:
基金项目:

国家自然科学基金(31170045)


ECF-σ5 in Sreptomyces avermitilis is involved in regulation of avermectin biosynthesis and stress response
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    [目的]研究阿维链霉菌中ECF-σ5因子对阿维菌素合成、形态分化和环境胁迫的调控,为揭示阿维菌素生物合成的调控机制和ECF-σ因子的调控网络提供依据。[方法]构建sig5基因缺失、回补和过表达菌株,通过形态观察和摇瓶发酵实验初步确定σ5对形态分化、菌体生长和阿维菌素合成的影响。进一步通过RT-qPCR、EMSA和ChIP实验寻找确定σ5的靶基因,再通过胁迫实验揭示σ5可能参与的胁迫反应。[结果]sig5相关突变株的摇瓶发酵和形态观察结果表明,σ5对阿维菌素合成具有抑制作用,但不影响菌体生长和形态分化。sig5基因缺失导致阿维菌素生物合成途径特异性正调控基因aveR和结构基因aveA1的转录水平提高,但σ5并不与aveRaveA1的启动子区结合。σ5能结合在自身基因及附近基因SAV612SAV615SAV618的启动子区,正调控这些基因及所在操纵子的表达。胁迫实验暗示σ5可能参与渗透压引起的胁迫反应。[结论]ECF-σ5因子在转录水平间接负调控阿维菌素的合成。

    Abstract:

    [Objective] We investegated the role of extracytoplasmic function (ECF) σ factor, σ5, in avermectin biosynthesis, morphological differentiation and stress response in S. avermitilis. [Methods] We constructed sig5 gene deletion, complementation and overexpression strains and determined the role of σ5 in avermectin production and morphological differentiation by shaking flask fermentation and morphological observation of these strains. We used RT-qPCR, EMSA and ChIP assays to identify the target genes of σ5. We used stress tests to reveal the stress response that σ5 may be involved in. [Results] Determination of avermectin production and morphological observation in sig5 related strains implied that σ5 inhibits avermectin production, but has no effect on growth or morphology. Deletion of sig5 increased transcription levels of pathway-specific activator gene aveR and structural gene aveA1, but σ5 did not bind to the promoter regions of aveR and aveA1. RT-qPCR and ChIP assays showed that σ5 positively regulates the transcription of itself and adjacent genes by binding to the promoter regions of sig5, SAV612, SAV615 and SAV618. Stress tests suggested that σ5 is involved in responding to osmotic stress. [Conclusion] Our findings indicated that σ5 indirectly inhibits avermectin production by affecting transcription of ave genes.

    参考文献
    [1] Burg RW, Willer EE, Baker EE, Birnbaum J, Currie SA, Hartman R, Kong YL, Monaghan RL, Olson G, Putter I, Tunac JB, Wallick H, Stapley EO, Oiwa R, Omura S. Avermectins, new family of potent anthelmintic agents, producing organisms and fermentation. Antimicrobial Agents Chemotheraphy, 1979, 15(3): 361-367.
    [2] Egerton JR, Ostlind DA, Blair LS, Eary CH, Suhayda D, Cifelli S, Riek RF, Campbell WC. Avermectins, new family of potent anthelmintic agents: efficacy of the Bla component. Antimicrobial Agents Chemotheraphy, 1979, 15(3): 372-378.
    [3] Ikeda H, Ōmura S. Avermectin biosynthesis. Chemical Reviews, 1997, 97(7): 2591-2610.
    [4] Ikeda H, Nonomiya T, Ōmura S. Organization of biosynthetic gene cluster for avermectin in Streptomyces avermitilis: analysis of enzymatic domains in four polyketide synthases. Journal of Industrial Microbiology & Biotechnology, 2001, 27(3): 170-176.
    [5] Ikeda H, Nonomiya T, Usami M, Ohta T, and Omura, S. Organization of the biosynthetic gene cluster for the polyketide anthelmintic macrolide avermectin in Streptomyces avermitilis. Proceedings of the National Academy of Sciences, USA, 1999, 96(17): 9509-9514.
    [6] Sun P, Zhao Q, Yu F, Zhang H, Wu Z, Wang Y, Wang Y, Zhang Q, Liu W. Spiroketal formation and modification in avermectin biosynthesis involves a dual activity of AveC. Journal of the American Chemical Society, 2013, 135(4): 1540-1548.
    [7] Ōmura S, Ikeda H, Ishikawa J, Hanamoto A, Takahashi C, Shinose M, Takahashi Y, Horikawa H, Nakazawa H, Osonoe T, Kikuchi H, Shiba T, Sakaki Y, Hattori M. Genome sequence of an industrial microorganism Streptomyces avermitilis: deducing the ability of producing secondary metabolites. Proceedings of the National Academy of Sciences, USA, 2001, 98(21): 12215-12220.
    [8] Guo J, Zhao J, Li L, Chen Z, Wen Y, Li J. The pathway-specific regulator AveR from Streptomyces avermitilis positively regulates avermectin production while it negatively affects oligomycin biosynthesis. Molecular Genetics and Genomics, 2010, 283(2): 123-133.
    [9] Kitani S, Ikeda H, Sakamoto T, Noguchi S, Nihira T. Characterization of a regulatory gene, aveR, for the biosynthesis of avermectin in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2009, 82(6): 1089-1096.
    [10] Chen L, Lu Y, Chen J, Zhang W, Shu D, Qin Z, Yang S, Jiang W. Characterization of a negative regulator AveI for avermectin biosynthesis in Streptomyces avermitilis NRRL8165. Applied Microbiology and Biotechnology, 2008, 80(2): 277-286.
    [11] Miyamoto KT, Kitani S, Komatsu M, Ikeda H, Nihira T. The autoregulator receptor homologue AvaR3 plays a regulatory role in antibiotic production, mycelial aggregation and colony development of Streptomyces avermitilis. Microbiology, 2011, 157(Pt 8): 2266-2275.
    [12] He F, Liu WS, Sun D, Luo S, Chen Z, Wen Y, Li JL. Engineering of the TetR family transcriptional regulator SAV151 and its target genes increases avermectin production in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2014, 98(1): 399-409.
    [13] Guo J, Zhang X, Luo S, He F, Chen Z, Wen Y, Li J. A novel TetR family transcriptional regulator, SAV576, negatively controls avermectin biosynthesis in Streptomyces avermitilis. PLoS One, 2013, 8(8): e71330.
    [14] Guo J, Zhang X, Chen Z, Wen Y, Li J. Two adjacent and similar TetR family transcriptional regulator genes, SAV577 and SAV576, co-regulate avermectin production in Streptomyces avermitilis. PLoS One, 2014, 9(6): e99224.
    [15] Liu Y, Yan T, Jiang L, Wen Y, Song Y, Chen Z, Li J. Characterization of SAV7471, a TetR-family transcriptional regulator involved in the regulation of coenzyme A metabolism in Streptomyces avermitilis. Journal of Bacteriology, 2013, 195(19): 4365-4372.
    [16] Liu W, Zhang Q, Guo J, Chen Z, Li J, Wen Y. Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product. Applied and Environmental Microbiology, 2015, 81(15): 5157-5173.
    [17] Luo S, Sun D, Zhu J, Chen Z, Wen Y, Li J. An extracytoplasmic function sigma factor, σ25, differentially regulates avermectin and oligomycin in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2014, 98(16): 7097-7112.
    [18] Jiang L, Liu Y, Wang P, Wen Y, Song Y, Chen Z, Li J. Inactivation of the extracytoplasmic function sigma factor Sig6 stimulates avermectin production in Streptomyces avermitilis. Biotechnology Letters, 2011, 33(1椰温琺攠爱愹挵琵椭漱渹?漱昮?灢牲椾浛愱爹祝?獙楡杮浧愠?昬愠捌瑩潵爠??丠畗捥汮攠楙挬??捯楮摧猠?刬攠獃敨慥牮挠桚???どㄠ???????????ㄠ??????ription factor negatively regulates avermectin biosynthesis in Streptomyces avermitilis. Applied Microbiology and Biotechnology, 2015, 99(24): 10547-10557.
    [20] Zhuo Y, Zhang W, Chen D, Gao H, Tao J, Liu M, Gou Z, Zhou X, Ye B, Zhang Q, Zhang S, Zhang L. Reverse biological engineering of hrdB to enhance the production of avermectins in an industrial strain of Streptomyces avermitilis. Proceedings of the National Academy of Sciences, USA, 2010, 107(25): 11250-11254.
    [21] Helmann JD. The extracytoplasmic function (ECF) sigma factors. Advances in Microbial Physiology, 2002, 46: 47-110.
    [22] MacNeil DJ, Klapko LM. Transformation of Streptomyces avermitilis by plasmid DNA. Journal of Industrial Microbiology, 1987, 2(4): 209-218.
    [23] Bierman M, Logan R, Obrien K, Seno ET, Rao RN, Schoner BE. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp.. Gene, 1992, 116(1): 43-49.
    [24] Ikeda H, Kotaki H, Tanaka H, Omura S. Involvement of glucose catabolism in avermectin production by Streptomyces avermitilis. Antimicrobial Agents Chemotheraphy, 1988, 32(2): 282-284.
    [25] Kieser T, Bibb MJ, Buttner MJ, Chater KF, Hopwood DA. Practical Streptomyces genetics: a laboratory manua. Norwich, John Innes Foundation, 2000.
    [26] Chen Z, Wen J, Song Y, Wen Y, Li J. Enhancement and selective production of avermectin B by recombinants of Streptomyces avermitilis via intraspecific protoplast fusion. Chinese Science Bulletin, 2007, 52(5): 616-622.
    [27] Zhao J, Wen Y, Chen Z, Song Y, Li J. An adpA homologue in Streptomyces avermitilis is involved in regulation of morphogenesis and melanogenesis. Chinese Science Bulletin, 2007, 52(5): 623-630.
    [28] Mascher, T. Signaling diversity and evolution of extracytoplasmic function (ECF) σ factors. Current Opinion in Microbiology, 2013, 16(2): 148-155.
    [29] Yeh HY, Chen TC, Liou KM, Hsu HT, Chung KM, Hsu LL, Chang BY. The core-independent promoter-specific
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗帅,孙地,陈芝,文莹. ECF-σ5因子参与阿维链霉菌中阿维菌素合成和环境胁迫的研究[J]. 微生物学报, 2016, 56(3): 471-484

复制
分享
文章指标
  • 点击次数:1082
  • 下载次数: 1939
  • HTML阅读次数: 596
  • 引用次数: 0
历史
  • 收稿日期:2015-12-04
  • 最后修改日期:2015-12-28
  • 在线发布日期: 2016-03-03
文章二维码